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Abstract: Air pollution is one of the prime adverse environmental outcomes of urbanization and
industrialization. The first step toward air pollution mitigation is monitoring and identifying its
source(s). The deployment of a sensor array always involves a tradeoff between cost and performance.
The performance of the network heavily depends on optimal deployment of the sensors. The latter is
known as the location–allocation problem. Here, a new approach drawing on information theory
is presented, in which air pollution levels at different locations are computed using a Lagrangian
atmospheric dispersion model under various meteorological conditions. The sensors are then placed
in those locations identified as the most informative. Specifically, entropy is used to quantify the
locations’ informativity. This entropy method is compared to two commonly used heuristics for
solving the location–allocation problem. In the first, sensors are randomly deployed; in the second,
the sensors are placed according to maximal cumulative pollution levels (i.e., hot spots). Two
simulated scenarios were evaluated: one containing point sources and buildings and the other
containing line sources (i.e., roads). The entropy method resulted in superior sensor deployment
in terms of source apportionment and dense pollution field reconstruction from the sparse sensors’
network measurements.

Keywords: air pollution; environmental monitoring networks; location–allocation models; sensors’
array; information theory

1. Introduction

In recent years, the negative impact of air pollution on health and climate change has
become a major environmental issue. According to the World Health Organization, air
pollution has emerged as the deadliest form of pollution and the fourth leading risk factor
for premature deaths worldwide, accounting for about seven million deaths in 2012 [1]
with a toll of about US $225 billion in lost labor income in 2013 [2,3]. Hence, controlling and
monitoring air pollution is crucial. Routine monitoring is typically done by standardized
air quality monitoring (AQM) stations spread thinly due to their size and cost [4]. Therefore,
the effective deployment of AQM is crucial.

Advances in sensory and communication technologies have made the deployment
of portable and relatively low-cost Micro-Sensing air pollution Units (MSUs) feasible.
These sensors can be spread more densely and provide higher spatial resolution data.
Recent studies evaluating these sensors in laboratory and field trials have shown that these
units are less accurate than standard laboratory equipment or AQM stations; however,
their sheer number makes it possible to effectively capture air pollution spatiotemporal
variability [5–8]. While these sensors are becoming increasingly available compared to
AQM, procuring, maintaining, and operating many MSUs is still a demanding task. Hence,
sensor networks remain limited in size, so even for MSU networks, an optimal deployment
strategy is critical.
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Placing sensors in optimal locations so that the sensory network provides valuable
environmental information is known as the location–allocation problem and has attracted
considerable attention for many years [9–12]. The sensor location–allocation problem has
also been studied for water resource management [13–15], structural health monitoring [16],
soil contamination [17], and many other domains. While different systems pose different
challenges, the sensor location–allocation problem can be viewed as a case of choosing the
best subset of sensor locations from a set of candidates that results in a desirable outcome
under budget constraints, which usually dictate the number of sensors and their properties.
Formulating the location–allocation problem in this fashion serves to cast it as the well-
known knapsack problem [11]. Thus, the location–allocation problem is NP-hard. Since
there is no computationally efficient solution, heuristic approaches are often applied.

There are many examples of such heuristics. Zou et al. [18] utilized sensor deployment
spatial proximity models and the theoretical reliability of Gaussian dispersion processes of
air pollutants to build a Gaussian weighting function-aided proximity model (GWFPM).
Li et al. [19] used inverse distance weight (IDW) interpolation coupled with a geographic
information system (GIS) to assess the particle matter (PM) dense pollution field for the
placement of sensors in locations with the highest pollution (i.e., hot spots). Another
method that capitalizes on GIS capabilities was presented by Alsahli and Harbi [20], where
land use was inferred from GIS data, and sensors were deployed based on a greedy
algorithm that traded off highly polluted with highly populated areas. However, the use
of GIS systems requires detailed information on the target region. Often, these data are
unavailable or grossly inaccurate [21]. Furthermore, placing the sensors in locations where
the substance recorded by the sensors is the highest or near populated areas does not
guarantee optimality in terms of pollution field reconstruction and source apportionment.

Optimization-based methods have also been used to solve the location–allocation
problem. Two main problems have been addressed: optimizing network operations through
connectivity and coverage [22] and optimizing air-quality sensing. For the latter, Boubrima
et al. cast the optimization problem as a minimum cost problem that finds optimal sensors
and sink locations, ensuring air pollution coverage and network connectivity [23–25].
Zoroufchi-Benis et al. [26] defined the optimization problem as a minimum fitness problem
with multi-objective functions with the aim of ensuring maximum coverage, continuity of
the coverage area, the least overlap among coverage areas, maximum detection of violations
over ambient air standards, and sensitivity of monitoring stations to emission sources. Al-
Adwani et al. [27] formulated the monitoring cost minimization problem as a minimum set
cover [28], where the maximum number of overlapping points in space was correlated with
the maximum number of peaks. In this work, the pollution dispersion model consisted
of a Gaussian plume model to describe the dispersion of continuous emissions in steady-
state conditions and a Gaussian puff model that simulated instantaneous emissions. The
findings showed that the cost of monitoring could be reduced without a concomitant
loss of information by minimizing the number of stations. Kumar et al. [29] presented a
deterministic spatial sampling design to capture intra-city variability in air pollution. Their
objective was to draw a sample of households that best represented the spatial distribution
of ambient air pollution while maximizing the variance in the preliminary estimates of
air pollution with the minimum number of sample sites. The algorithm ensured that the
sample sites were informative for addressing inferences by emphasizing certain population
or environmental characteristics. Kanaroglou et al. [10] developed a methodology for
selecting monitoring sites based on spatial variations in air pollution and the distribution of
addresses over the target area. The network density increased with concentration variability
and population. The method specified a continuous demand surface (for monitoring) over
the area. Lerner et al. [11] cast the air pollution location–allocation problem as the knapsack
problem, where a given sensor’s utility in a given location was inferred from the sensor’s
physicochemical characteristics and land-use analysis.

These works all dealt with the three main factors that affect the solution of the location–
allocation problem: land use, meteorological conditions, and pollution signal characteristics.
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The latter has mostly been considered in terms of the signal’s extreme points, i.e., hotspots.
However, no previous work has attempted to associate these three factors in one framework
to provide a more comprehensive solution.

This paper presents a new approach to the location–allocation problem, which takes
the topography of the observed area and its meteorology, as well as its expected pollution
signal characteristics, into account. This is done by utilizing Lagrangian atmospheric
dispersion models and information theory to solve the location–allocation problem. Sensors
are regarded as information sources that vary due to the nature of pollution dispersion and
variations in climatic conditions. The sensors are placed in a configuration that maximizes
the amount of information, i.e., the joint information according to Shannon entropy, and
minimizes redundancy, i.e., the mutual information.

2. Materials and Methods
2.1. Simulation Study

A simulation was carried out to evaluate sensor deployment strategies. A GRAZ
Lagrangian (GRAL) dispersion model, combined with a Prognostic Wind Field Model
GRAMM [30,31] was used to facilitate the examination of a wide range of scenarios differing
in source characteristics and environmental conditions.

GRAL is an open-source air pollution simulator developed by the Graz University of
Technology (TUG) and the Government of Styria, Austria. The GRAL can model a wide
range of spatial scales, from street-level through whole cities to a state-wide scale. The
model takes as inputs topography, including buildings and infrastructure, sources with
their emission profiles, and wind fields. The output is a spatiotemporal dense pollution
map over the study region [32]. To compute this map and given the topography, the model
takes into consideration building’s downwash effects through microscale modeling. The
sources may be of different types, including surface road networks and point sources,
such as tunnel ventilation outlets and industrial stacks, tunnel portals, and area sources.
GRAL has been used extensively in regulatory assessments and scientific studies, such
as calculating the impacts of road traffic or industry on air pollution, and it has been
extensively validated in several different countries and contexts [30].

It is important to note that, with respect to meteorology, the GRAL model takes
as input solely the wind field and does not regard any other chemical reactions and
transformations between substances [33]. To this end, the wind field is computed by
the GRAMM meteorological model, which is based on the Reynolds-averaged Navier–
Stokes equations (RANS equations) and the law of mass conservation [34]. Thus, the term
meteorology is limited to the wind field and its stability class.

The region of interest, Ω, was modeled as a flat 500× 500 m area divided into a grid of
5 × 5 m cells, {ω} ∈ Ω. In this area, two different scenarios were examined to present the
capability of the method for a wide range of substances (gaseous and particulate matter)
and topographical complexities:

1. A Small NeighBorHood, SNBH, consists of six buildings of different sizes and five-
point sources emitting PM10 at different rates.

2. A Central Business District, CBD, consists of 35 buildings, three-line sources (i.e.,
roads), and five-point sources. NOx was emitted from the point sources and the roads
at different rates. Figure 1 depicts the two computer-generated scenarios.
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Figure 1. Schemas of the two scenarios: (a) small neighborhood, SNBH; (b) CBD, where the red
squares indicate buildings; the green lines indicate line sources; and the circles indicate point
sources (PS).

For each meteorological condition (a given wind speed and direction), a dense pol-
lution map was computed, where each grid point was represented by several pollution
values, each of which corresponded to a specific meteorological condition.

The meteorology input for the GRAL simulation was obtained from real-life data
collected by the Israel Meteorology Service at the Hadera Port station (lon: lat, 34.8815:
32.4732) on 1 May 2020. For T, the total time in hours of the analysis, the temporal resolution
of the meteorological data in minutes is ∆Φ; thus, for a T = 24 h period, the number of
samples was: |q| = T · 60

∆Φ . Here, T = 24, ∆Φ was a 10-min interval, so that |q| = 144. The
meteorological input for the GRAL simulation also contained the atmospheric stability
classes (A–G), which were computed based on an atmospheric stability classification
scheme [35].

The GRAL building prognostic approach was used with the default parameters. The
maximum number of iterations for the internal flow field solver was 500 iterations, and
concentration levels were measured three meters above ground level. A complete list of the
parameter sets used for the GRAL computations is provided in the Supplementary Materials.

2.2. System Overview

When addressing the location–allocation problem in a given region for the first time,
there is likely to be little information on pollution behavior in that specific region. On the
other hand, information on the static attributes of the land, such as topography, land use,
meteorological, and the locations of buildings, and potential pollution sources are more
readily available. Thus, relying on static factors constitutes a more feasible approach. While
we assume that potential sources’ locations are known a priori, the method suggested here
is still applicable when sources’ locations are not known. This is discussed in the discussion
section. Using static factors facilitated problem formulation, as described below.

In the initial stage, it is assumed that all sources emitted at a constant and equal rate
(zero approximation). In this work, a constant rate of 100 kg/h was chosen arbitrarily.
Then, a simulation generates a dense pollution map describing the pollution level, Cq

ω,
for meteorological condition q at location ω ∈ Ω. This process resulted in |q| different
maps. Based on these |q| dense pollution maps, the locations that maximized a decision
criterion were selected, resulting in a set of several possible deployment configurations.
These possible configurations were evaluated for their ability to locate and quantify the
source term under the simplistic zero approximation. Then, the optimal configuration was
tested on other, more realistic source terms.
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2.3. Algorithmic Approach

Based on the |q| dense pollution maps generated by the simulation for the different
meteorological conditions, under the zero-approximation assumption, for each location
ω ∈ Ω, we obtained a set of measurements

{
Cq

ω

}
. The measuring units of

{
Cq

ω

}
for

gaseous matter can be parts per million (ppm), parts per billion (ppb) or µgr/m3; for
particulate matter it can be particle number or µgr/m3. Regardless, it is important to
note that the method and entropy measure are invariant to the measuring units. The
analysis of these sets constituted the decision criterion, DMω ∀ω ∈ Ω, to allocate the
sensors. For P

(
Cq

ω

)
the empirical probability function of Cq

ω, two different metrics were
compared—Entropy (Equation (1)) and Hot Spot (Equation (2)):

DMω = −∑
q

P
(

Cq
ω

)
log P

(
Cq

ω

)
(1)

DMω∈Ω = ∑
q

Cq
ω (2)

The method is based on finding a set of sensor positions that maximize the entropy
or hot spot score and have the lowest correlations between the sensor readings over
time. The correlation between the two sensors is defined as the Pearson correlation index
between the pollution concentration sets of the different meteorological conditions. This is
accomplished using an iterative algorithm allocated to one sensor in each iteration. The
following notations are used to describe the algorithm: let dmax and d be the maximum
available sensors for deployment and the number of sensors already deployed by the
algorithm, respectively, and Ωd ⊆ Ω is the set of locations with sensors. For each location
ω ∈ Ω, the set of neighboring locations is Bω. The union of all the cells’ neighboring
sensors is then denoted by Bd. Bd allows for avoiding placing sensors too close to each
other, which would have represented the same information. Note that Bd is automatically
updated as Ωd is updated.

Using the notation above, at each iteration, the candidate locations for placing a
sensor are ΩN = Ω\

(
Ωd ∪ Bd

)
. For N, the maximum candidate locations for placing a

sensor in each iteration, the locations are selected by taking the minimum between
∣∣∣ΩN

∣∣∣
and N locations in ΩN with the highest DM score. Using small N values leads to sensor
allocations mainly influenced by the DM score, whereas using large N values leads to
sensor allocations mainly influenced by the correlation. A specific location is then selected
from this set of candidate locations by computing the correlation between each candidate
location and previously selected sensing locations and choosing the location with the lowest
cumulative correlation. Here for each d ≤ dmax , the N producing the best results is used.
Typically, the N values were between 30 and 50. The algorithm appears in the box below
(Algorithm 1):
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Algorithm 1: Placing dmax sensors with the highest DM score and the lowest correlation

1. Set: Ωd = φ

2. Compute DMω ∀ω ∈ Ω
3. Place the first sensor in the location with the highest DM score,

ω∗ = max
ω∈Ω

DMω

4. Set:

a. Ωd ← ω∗

b. d← dmax − 1

5. While d > 0 do:

a. Find
{

min
(

N,
∣∣∣Ω\(Ωd ∪ Bd

)∣∣∣)} candidate locations in all optional locations,

Ω\
(

Ωd ∪ Bd
)

, with the highest DM score:

ΩN = max
ω ∈ Ω\(Ωd ∪ Bd)

|ΩN | = min(N, | Ω\(Ωd ∪ Bd)|)

DMω

b. For each location in ωn ∈ ΩN , compute the correlation of Cq
ω with all locations where

sensors have already been placed; i.e., ωd ∈ Ωd.
c. Place the next sensor in location ω∗ within ΩN , which presents the lowest summation

of correlations with all locations in Ωd:
ω∗ = min

ωn∈ΩN
∑

ωd∈Ωd
corr

(
Cq

ωd , Cq
ωn

)
d. Set:

i. Ωd ← Ωd ∪ ω∗

ii. d← dmax − 1

Here dmax was arbitrarily set to 30 and Bωd
, the restricted area in which sensors could

not be placed around already deployed sensors, was a rectangular area of 4900 square
meters (70 m× 70 m), centered at ωd.

2.4. Deployment Evaluation
2.4.1. Formulation

The deployment evaluation was conducted using the notation in Nebenzal et al. [36].
Recall that {D} is the set of sensors and {S}, a set of sources. d ∈ {D} is then a sensor
located at ωd ∈ Ω. For atmospheric conditions q, d records a pollution level of Cq

ωd . The
source s ∈ S, located at ωs ∈ Ω, emits at a rate of rs. mq

ds is the pollution transfer function,
which associates sensor d’s readings, located at ωd ∈ Ω, with the emission of source s at
atmospheric condition q:

Cq
ωd = mq

ds · r
s (3)

For a multiple source scenario, each sensor’s reading consists of the contribution of all
sources, i.e.,:

Cq
ωd = ∑

s∈{S}
mq

ds · r
s (4)

For the set {D}, the sources’ contributions for each of the sensors can be written in a
matrix form:

→
Cq = Mq

→
rs

t
(5)

where
→
Cq is the row measurement vector, Mq is the transfer matrix consisting of mq

ds, and
→
rs

t
is a column vector of the pollution emission rates. Mq can be inferred either through

empirical measurements or through a dispersion model.
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Sensor deployment is then evaluated based on its ability to predict the source term;
i.e., the real emission vector, rs. This is achieved by formulating an optimization problem
for a given meteorological condition, q:

min
→
r̂

||Mq
→
r̂ −

→
Cq ||

s.t all elements in r̂ ≥ 0
(6)

The solution to Equation (6) provides
→
r̂ , which represents the estimation of the source

term, rs, and thus its quality, is given by the normalized difference between the estimation
of the source term and the true emission vector:

E =
||
→
r̂ −

→
rs ||

||rs || (7)

The computation of
→
r̂ is repeated for every condition, q. In this case, 144 meteorological

conditions are used, resulting in 144 source-term vector estimates. The element-wise
median is taken as the emission rate of each source in the vector.

2.4.2. Source Term Estimation

The zero approximation is a single value source term vector; i.e., c ·
→
1 , with c arbitrarily

set to 100 kg/h. Hence, sensor placement is based on a simplified source term vector.
However, the evaluation was carried out using more realistic emission profiles that serve
to evaluate the capability of the network to estimate complex source term vectors. Four
configurations were used, one for the SNBH and three for the CBD scenarios, as listed in
Table 1. Note that the 5th point source (PS5) in SNBH and CBD.1 is zero. Thus, not all
potential sources need to be active.

Table 1. Emission rates from different sources in different scenarios.

PS1 PS2 PS3 PS4 PS5 Line 1 Line 2 Line 3

SNBH

Emission rate:
[kg/h]

100 50 200 100 0 N/A N/A N/A

CBD

CBD.1 150 100 50 200 0 10 15 20

CBD.2 5 3 9 7 10 1000 1000 1000

CBD.3 50 30 90 70 10 100 200 150

2.4.3. Comparison of Deployment Methods

Three deployment methods are evaluated in this study: random deployment and the
application of Algorithm 1, using either the hotspot approach or the entropy to compute
the DM score. The random deployment is justified because sensor installation is often
governed by the availability of infrastructures, such as public facilities, power sources,
utility poles, and communication towers. Random deployment is evaluated for each
atmospheric condition, q, for 1 ≤ dmax ≤ 30. In these cases, for a given d the only two
limitations on sensor placement are to avoid non-vacant grid points and to satisfy the “Box-
Out” criterion; i.e., the possible candidate locations have to satisfy ω ∈ Ω\

(
Ωd ∪ Bd

)
.

Once the dmax sensors are placed, deployment is evaluated using the method detailed
above. Since this is a random process, the average error is computed for several different
deployments (in this work, 50).
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3. Results and Discussion
3.1. Dense Pollution Maps

The dense maps were computed for all 144 meteorological conditions extracted from a
real dataset in Hadera, Israel, using the GRAL/GRAMM Lagrangian atmospheric disper-
sion model. Figure 2 shows four dense pollution maps in µgr/m3, for the two scenarios
under a zero-approximation emission vector, where (a) and (b) depict the pollution over
SNBH in two different meteorological conditions, and (c) and (d) over CBD in two other
meteorological configurations. Note that the color scale is different for the SNBH and
CBD scenarios. Note that these values, as defined Equation (2), are cumulative rather than
instantaneous values.
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3.2. Decision Matrix

Based on the 144 dense pollution maps, two types of decision matrices, Entropy
(Equation (1)) and hotspot (Equation (2)), were computed. The entropy and hotspot
decision matrices are presented in Figures 3 and 4, respectively, where the right-hand
side (a) in both figures represents the decision matrix for the SNBH, and the left-hand side
shows the same matrix for CBD. It shows that for the SNBH scenario, similar patterns
are obtained for both methods, whereas for the CBD scenario, each metric resulted in a
different pattern. Hence, the data gain did not necessarily coalign with the locations with
the highest pollution.
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3.3. Sensor Placement

The optimal deployments of 30 sensors, as dictated by Algorithm 1 for the two DMs,
entropy and hotspot, are presented Figure 5 The locations identified by the entropy DM
are marked in blue, while the locations identified by the hotspot DM are marked in red.
Comparing the two deployments, while considering Figures 3 and 4 show that the main
difference between the two deployments is that while the hotspot assigns the locations in
the epicenter of the pollution field, the entropy allocates locations with larger pollution
field gradients. This conclusion co-aligns with the conclusion reached by Kendler and
Fishbain [37].

The optimal sensor deployment was assessed in terms of source-term estimation
accuracy (Equation (7)). Figures 6–8 show the error of the source term estimation for each
of the deployment methods (entropy, hot spot, and random) as a function of dmax, for each
SNBH, CBD.1, CBD.2, and CBD.3 scenario, as detailed in Table 1. The graphs show the
error (left) and the cumulative error (right) as a function of the number of sensors. The
graphs clearly indicate that, in all cases, the error did not reach stagnation and decreased
steadily with each sensor added to the array in a similar way for all three metrics. The
cumulative error for the entropy metric deployment was slightly better for each additional
sensor deployed.
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Although, in general, similar results were obtained in all cases, there were some
interesting differences. In the case of CBD.1, where the point sources were dominant,
with larger emission rates by one order of magnitude than the line sources, the Entropy
metric significantly outperformed the hotspot metric. When the line sources were two
orders of magnitude higher than the point sources (CBD.2), the difference between the
entropy and hotspot metrics was less pronounced. In the case of the CBD.3 scenario in
which the line source emission rate was only one order of magnitude higher than the point
source, the entropy metric was marginally superior for sensor arrays comprised of fewer
than 10–12 sensors. Increasing the number of sensors beyond 15 decreased the error when
using the entropy metric but only led to a minor improvement in the hotspot metric. This
difference was most noticeable for large sensor arrays, where the error for the entropy
metric was five times lower than the hotspot metric. These findings suggest that the entropy
metric was superior to the other two methods since it provided lower error and evidenced
greater stability to changes in the site.

Table 2 presents the cumulative error obtained from each case for the maximum
number of sensors, i.e., the overall error. The table suggests that in all cases, using the
entropy metric for deploying the sensors resulted in an overall lower error compared to the
hot spot or random deployment metrics. In certain specific cases, for example, Figure 9,
for 12–13 sensors, the random or hot spot metric emerged as slightly better than entropy,
but the overall trend was clear. Further, using the hot spot metric resulted in inconsistent
performance, where in some cases the results for this metric were similar to those obtained
using entropy (for example, Figure 8), but in others was considerably worse (Figure 7).

Table 2. The cumulative error in each scenario for each deployment metric. Best result, for each
scenario (SNBH, CBD.1, CBD.2 and CBD.3), are highlighted in bold.

Entropy Hot Spot Random Max Random

SNBH 6.34 8.85 6.44 13.64
CBD.1 7.29 23.45 11.23 25.14
CBD.2 3.13 3.58 5.14 12.77
CBD.3 6.04 11.25 7.92 23.35
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Thus, Figure 6 through Figure 9 and Table 2 show that the entropy approach produced
superior accuracy and stability over the hot spot or random methods. These findings
suggest that sensors should be placed in locations where the information gain is maximal.
In the entropy method, informativity is based on a concept taken from information theory,
where the entropy of a random variable is the average level of information inherent in
the variable’s possible outcomes. In this case, the random variable was the pollution
level at each grid point, and its possible outcomes were all possible readings of the air
pollution sensor.

4. Conclusions

This study presents a new information theory-based approach to the deployment of
air pollution sensors. This entropy-based approach was compared to methods based on
hot spots and random metrics. The random approach simulated situations in which no
previous knowledge was available, and the deployment was mainly dictated by availability
and convenience.

The presented method does not require any prior knowledge of the number and source
locations, since the optimization problem (Equation (6)) can be solved for sources with a
pollution emission rate that equals zero. The ability of the method here to estimate a source
with zero emissions (see source PS5 in CBD.1 in Table 1) makes it possible to set the source

term vector to be the size of the entire region of interest; thus, |
→
r̂ | = |Ω| and a source can

be in each ω ∈ Ω. In this fashion, locations without a source are estimated to be zero. A
similar notion was presented by Nebenzal et al. [36,38]. The study here addresses optimal
sensor deployment in a small neighborhood. The algorithm can be easily adapted to a
large-scale deployment in a city and even on a national scale.

Future work will include the extension of this work to cases where the number and
locations of the sources are unknown, where the simulations will be run with real sensor
capabilities (sensitivity and dynamic range), and a comparison to field experiments will
be made. The application of the methodology over a large geographical scale will also
be sought.
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