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Abstract: In this paper, we propose a new privatization mechanism based on a naive theory of a
perturbation on a probability using wavelets, such as a noise perturbs the signal of a digital image
sensor. Wavelets are employed to extract information from a wide range of types of data, including
audio signals and images often related to sensors, as unstructured data. Specifically, the cumulative
wavelet integral function is defined to build the perturbation on a probability with the help of this
function. We show that an arbitrary distribution function additively perturbed is still a distribution
function, which can be seen as a privatized distribution, with the privatization mechanism being
a wavelet function. Thus, we offer a mathematical method for choosing a suitable probability
distribution for data by starting from some guessed initial distribution. Examples of the proposed
method are discussed. Computational experiments were carried out using a database-sensor and
two related algorithms. Several knowledge areas can benefit from the new approach proposed in
this investigation. The areas of artificial intelligence, machine learning, and deep learning constantly
need techniques for data fitting, whose areas are closely related to sensors. Therefore, we believe that
the proposed privatization mechanism is an important contribution to increasing the spectrum of
existing techniques.

Keywords: artificial intelligence; data fitting; database-sensor; digital image sensor; machine learning;
perturbation theory; signal-to-noise ratio; statistical modeling; wavelets

1. Introduction

Probability models capable of capturing the fundamental information contained in
modern data, as those used for artificial intelligence [1] and big data [2], as well as models
presenting unique features, have promoted derivations of novel continuous probability
distributions [3,4].

Numerous and diverse approaches have been proposed over time to generate new
probability or statistical distributions [5]. One of the most common approaches allows us
to enhance the functionality of a base continuous cumulative distribution function (CDF).
This can be achieved utilizing various transformations based on exponential, logarithmic,
power, or other functions [6].

On this topic, we may refer to the so-called “families of probability distributions”, as
described in [7,8]. The new probability distributions may be employed efficiently in diverse
settings, as described in [9,10]. We may also refer to the work stated in [11] pointing out the
importance of continuous probability distributions in the definition of various measures.
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In view of the impacts of the current research on probability distributions [12], diverse
applications related to the areas of artificial intelligence [1], machine learning [13], and
deep learning [14] constantly require new techniques for data fitting, whose areas are
closely related to sensors. Additionally, to aid in the progress of computer sciences, new
approaches are welcome to expand the options of a reference probability distribution [15].

An application of probability models can be introduced by perturbing a CDF additively,
similarly to how a noise perturbs the signal of a digital image sensor [16]. Surprisingly,
such a strategy does not appear to have received much attention in the literature. More
precisely, given a continuous CDF, one can add this function to another (the perturbation
function) in such a way that the resulting function is also a continuous CDF.

To propose a manageable perturbation [17], one can employ a special, well-known
function called wavelet [18,19]. Basically, such a function has a wave-like oscillation with
an amplitude that starts at zero and increases or decreases before returning to zero, one
or more times. Wavelets may be utilized to extract information from a wide range of
data, including audio signals and images often related to sensors [20], as unstructured
data. To thoroughly analyze data, wavelet sets might be used. For more information on
wavelets, we refer the reader to [21–23]. More specifically, in [24], transients and their
wavelet coefficients are modeled as mixed Laplace probability density functions (PDFs).
In [25], image segmentation based on a wavelet feature descriptor and dimensionality
reduction was applied to remote sensing. Thus, one could involve a wavelet function to
define a valid perturbation, and then a privatized probability distribution can be obtained
through theoretical and practical tools.

The main objectives of this article are to propose and derive a naive theory of an
additive perturbation on a continuous probability distribution based on a wavelet approach,
and to illustrate it with a sensor-related application. The use of wavelets in this probability
distribution setting is original, and our findings offer up a new modeling horizon, which
are examined in depth. Therefore, we offer a mathematical method for choosing a suitable
probability distribution to model data by starting from some guessed-at initial probability
distribution. Examples for the proposed method are also presented. For the computational
experiments, we utilize a database-sensor and two related algorithms.

The rest of the article is organized as follows. Section 2 introduces the new wavelet
approach. In Section 3, we discuss the choice of a perturbation for an arbitrary probability
distribution. Section 4 proposes a correction for statistical moments due to the perturbation.
Then, in Section 5, the generalization of the perturbation approach at further levels is
presented. In Section 6, we provide an empirical application of our approach. Finally,
Section 7 gives the concluding remarks.

2. Background and Wavelet Approach

Suppose we have a random variable X with a continuous CDF FX . Let us consider an
additive (functional) perturbation, denoted as ε-perturbation, so that

Fpriv(x) := FX(x) + ε(x), (1)

with the CDF Fpriv stated in (1) being a privatized CDF.
Note that, in the expression defined in (1), the CDF of the variable X has been perturbed

and a new function Fpriv is obtained. However, the choice of the perturbation cannot be
arbitrary because it could break the requirements to deal only with a probability distribution.
The following conditions must be met by the perturbation:

(C1) lim|x|→+∞ ε(x) = 0;
(C2) ε is derivable and satisfies |dε(x)/dx| ≤ fX(x), where fX denotes the PDF related to

the CDF FX .

The conditions (C1) and (C2) above stated guarantee that Fpriv is also a CDF. This new
distribution could be seen as a privatized version of the reference distribution.
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To describe our new wavelet approach, some definitions need to be given. Let us
begin with the mathematical definition of a wavelet.

Definition 1 (Wavelet function). A wavelet is a Lebesgue measurable function ψ(x) that is both
absolutely integrable and square-integrable, such that∫ +∞

−∞
ψ(x)dx = 0, (2)

∫ +∞

−∞
ψ2(x)dx = 1. (3)

On the one hand, from the expression established in (2), observe that the absolute
value of ψ is integrable over the entire real line and its result is equal to zero (0). On the
other hand, in the formula stated in (3), note that the square of ψ is also integrable over R
and its result is equal to one (1). Keep in mind that, in this study, we deal with compactly
supported wavelets [26], that is, the closure of the set upon which the wavelet stands
non-vanishing is a compact set. Specifically, if ψ is a wavelet function, then {x: ψ(x) 6= 0}
is a compact set, and we say ψ is a wavelet of compact support. Henceforth, we assume
that support{ψ(x)} ≡ [a, b], which plays a crucial role in our proposal [21,27]. The next
definition presents the notion of wavelet cumulative function in this setting.

Definition 2 (Wavelet cumulative function). A wavelet cumulative function is defined by

Ψ(x) :=
∫ x

−∞
ψ(ζ)dζ. (4)

Since only compactly supported wavelets are considered, the wavelet cumulative
function given in (4) can be simplified to

Ψ(x) =
∫ x

a
ψ(ζ)dζ, a ≤ x ≤ b. (5)

Thus, from the expression stated in (5), the following properties can be verified:

Ψ(x) = Ψ(a) = 0, x ≤ a, (6)

Ψ(x) = Ψ(b) = 1, x ≥ b, (7)

dΨ(x)
dx

= ψ(x). (8)

Note that the properties formulated in (6)–(8) are helpful. To begin with, let us deal
with the uniform distribution, denoted as U [0, 1], whose CDF is given by FX(x) = x, for
0 ≤ x ≤ 1, where FX(x) = 0, for x ≤ 0, and FX(x) = 1, for x ≥ 1. A mapping is proposed
to bring the support [0, 1] of the uniform distribution to the support [a, b] of the wavelet,

that is, [0, 1]
map→ [a, b]. Then, we propose to choose a particular perturbation ε according to

ε(x) := Ψ[0,1](x) =
1

(b− a)
Ψ((b− a)x + a). (9)

For the particular choice stated in (9), the new distribution defined in (1) has the same
support as the original distribution, with no perturbation added. Furthermore, imposing
the condition |ψ(t)| ≤ 1, it follows that

|ε(x)| ≤ 1
(b− a)

∫ (b−a)x+a

a
|ψ(ζ)|dζ. (10)
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From the expression established in (10), we can guarantee that |ε(x)| ≤ x, for all x ∈ [0, 1].
Therefore, the condition Fpriv(x) ≥ 0 is assured, for all x ∈ [0, 1]. Hence, we must determine
whether Fpriv is always a non-descending function or not. Thus, we examine the behavior
of the corresponding PDF formulated as

fpriv(x) =
dFpriv(x)

dx
= 1 +

1
(b− a)

dΨ((b− a)x + a)
dx

, (11)

implying
fpriv(x) = 1 + ψ((b− a)x + a), (12)

where fpriv denotes the PDF related to the CDF Fpriv.
From the formulas given in (11) and (12), it follows that

∫ +∞
−∞ fpriv(x)dx = 1 and

fpriv(x) ≥ 0, for all x, thereby proving that this is indeed a valid PDF to be considered.
Then, this new PDF and its associated CDF might be visualized as a privatized version
of the reference distribution, with the privatization mechanism being named wavelet
perturbation. This is that we call “privatization analysis”.

As an example, let us first consider a compactly supported wavelet defined within
[0, 1] proposed in [28] and mathematically defined as

ψU(x) := −1
2

x ln(x) +
1
2
(1− x) ln(1− x). (13)

Figure 1 shows the original distribution, that is, U [0, 1], and the new distribution generated
by the perturbation identified in (13).

(a)

(b)
Figure 1. Plots of: (a) a wavelet perturbation to be applied to the U [0, 1] distribution; and (b) wavelet
perturbation (— blue), uniform (- - red), and perturbed uniform (- · - orange) CDFs.
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Another family of compactly supported wavelets with parameters that can be adjusted
is the beta wavelet family [29]. One of the advantages of adopting beta wavelet pertur-
bations consists of the easy replacement of shape (α > 0) and scale (θ > 0) parameters to
make the perturbation ψbeta(x, α, θ) flexible. In other words, this wavelet family allows for a
simple parametrization that drives the asymmetry of the resulting probability distribution.
The plots of two beta wavelet perturbations are shown in Figure 2 as examples.

(a)

(b)
Figure 2. Plots of the beta wavelet perturbations: (a) ψbeta(x, 4, 3); and (b) ψbeta(x, 3, 7).

Figure 3 displays perturbed uniform distributions that are generated as a result of
applying the perturbations of Figure 2. This approach can be employed to introduce
asymmetries in a chosen probability distribution, controlled by the beta wavelet parameter.
Among the compactly supported wavelets, certainly the most used are the Daubechies
(DB4) wavelets [27]. Expressions close to approximately the DB4 wavelets of any order
have been proposed in [30]. Using MatlabTM commands, these continuous approximations
were employed to plot the DB4 perturbation adapted to the U [0, 1] distribution, denoted by
ΨDB4, in Figure 4.
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(a)

(b)
Figure 3. Plots of: (a) beta wavelet perturbations to be applied to the U [0, 1] distribution; and
(b) ψbeta(x, 4, 3) perturbed uniform (· · · blue), ψbeta(x, 3, 7) perturbed uniform (- · - blue), and uniform
(— red) CDFs.

(a)

(b)
Figure 4. Plots of: (a) a DB4 wavelet perturbation to be applied to the U [0, 1] distribution; and (b) DB4
wavelet perturbation (— blue) and uniform (- · - red) CDFs.
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3. Choosing a Perturbation for an Arbitrary Probability Distribution

Now, we offer a valid perturbation for an arbitrary CDF FX. For a given compactly
supported wavelet ψ with its cumulative function (see Definition 2), consider a new chosen
CDF according to

Fpriv(x) := FX(x) + ε(x), (14)

with

ε(x) :=
1

(b− a)
Ψ((b− a)FX(x) + a)

max
ζ∈[a,b]

|ψ(ζ)| .

From (11) and (14), note that Fpriv(−∞) = 0, Fpriv(+∞) = 1, and

fpriv(x) =
dFpriv(x)

dx
= fX(x) +

dε(x)
dx

, (15)

with dε(x)/dx stated in (15) given by

dε(x)
dx

:=
ψ((b− a)FX(x) + a)

max
ζ∈[a,b]

|ψ(ζ)| fX(x). (16)

Then, ε is a valid perturbation because the condition (C1) is satisfied. In addition, we have
lim|x|→+∞ ε(x) = 0 due to

∫ b
a ψ(u)du = 0, so that the condition (C2) is also satisfied, since∣∣∣∣∣ψ((b− a)FX(x) + a)

maxζ∈[a,b]|ψ(ζ)|

∣∣∣∣∣ ≤ 1, (17)

by (16), having |dε(x)/dx| ≤ fX(x). Thus, any wavelet of compact support can be used
to induce a different perturbation in the vicinity of the probability distribution initially
assigned. From the expressions stated in (14)–(17), note that, after applying the perturbation,
the resulting function is also a CDF.

In summary, given a random variable X with CDF FX, a perturbation can be added,
which guarantees that the modified function is still a CDF around the original CDF. This
new CDF, and its associated distribution, as mentioned, are privatized versions of the
reference distribution using a wavelet-based privatization mechanism.

4. Moments Correction Due to the Perturbation

Based on the random variable X, the hypothesized distribution (initial or prior distribu-
tion around which the wavelet perturbation is introduced) has its k-th moment defined by

E(Xk) :=
∫ +∞

−∞
xkdFX(x), (18)

providing its existence in the mathematical sense. By introducing the perturbation defined
in (9), the new (adjusted/privatized) k-th moment is stated as

Epriv(Xk) :=
∫ +∞

−∞
xkdFpriv(x). (19)

Consider the equation given by dFpriv(x) = dFX(x) + ψ((b− a)FX(x) + a)dFX(x).
Then, by using the expressions given in (18) and (19), it follows that

Epriv(Xk) = E(Xk) +
1

(b− a)

∫ b

a

[
F−1

X

(
u− a
b− a

)]k
ψ(u)du. (20)

The second term on the right side of (20) accounts for a moment correction due to the
introduced wavelet perturbation.
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Let us consider now the particular case of a perturbation in a (normalized) uniform
distribution, that is, X ∼ U (0, 1). To evaluate the moments of the new CDF Fpriv, under the
wavelet perturbation ψ with a compact support [0, 1], we have

Epriv(Xk) := E(Xk) +
∫ 1

0
ukψ(u)du. (21)

Note that the moment of the wavelet used to build the additive perturbation also adds to
the moment of the starting distribution, because

Epriv(Xk) = E(Xk) +
∫ +∞

−∞
ukψ(u)du = E(Xk) + Mk. (22)

If the support set is the unit interval, that is [0, 1], then the formulas stated in (21) and (22)
may be utilized. In the general case, if ψ has a support [a, b] 6= [0, 1], we can build a
modified (supported-normalized) wavelet defined as

ψ[0,1] =
ψ((b− a)x + a)

(b− a)
.

Hence, we have that

Epriv(Xk) = E(Xk) +
∫ +∞

−∞
ukψ[0,1](u)du. (23)

Under the assumption that the integral term given in (23) vanishes, the moments of the
new and hypothesized distributions coincide.

5. Generalizing the Perturbation Approach at Further Levels

In the case that a beta perturbation occurs over a U [0, 1]distribution, it depends on
its parameters α and θ of the perturbation wavelet. Thus, it is worth rewriting, via the
equations stated in (1)–(9), that

Fpriv(x) = x︸︷︷︸ + Ψ[0,1](x; α, θ)︸ ︷︷ ︸ . (24)

approximation detail

The interpretation presented in (24) of wavelet theory (approximation + detail) can be
generalized into the lines of a wavelet tree with several levels. First, we present level-1
parameters (α, θ) by means of

Flevel-1(x) = x + Ψ[0,1](x; α, θ). (25)

In Figure 3, we can see examples of this case. Second, we introduce level-2 LH parameters

(αL, θL
...αH, θH) considering

Flevel-2(x) =

{
x + Ψ[0,1](2x; αL, θL), 0 ≤ x ≤ 1/2;

x + Ψ[0,1](2x− 1; αH, θH), 1/2 ≤ x ≤ 1.
(26)

An example can be provided using the parameters αL = 4, θL = 3, and αH = 3,
θH = 7. These parameters are similar to those employed in Figure 3. However, note
that different wavelets may be selected to fit different segments of the initial distribution
support. For instance, in a level-2 perturbation, the sub-level-L can use a beta wavelet,
whereas the sub-level-H may employ a Mexican-hat wavelet, denoted by ΨM̂, as in Figure 5.
The parameterization αL = 4, θL = 3, and αH = 3, θH = 7 is used in Figure 6, with the
corresponding perturbation denoted by Ψlevel-2.
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(a)

(b)
Figure 5. Plots of: (a) a Mexican-hat wavelet perturbation to be applied to the U [0, 1] distribution;
and (b) Mexican-hat wavelet perturbation (— blue) and uniform (- · - red) CDFs.

(a)

(b)
Figure 6. Plots of: (a) a level-2 beta wavelet perturbation to be applied to the U [0, 1] distribution; and
(b) level-2 beta wavelet perturbation (— blue) and uniform (- · - red) CDFs.
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Next, we present level-4 LL LH HL HH parameters, (αLL, θLL: αLH, θLH
...αHL, θHL: αHH,

θHH) namely, stated as

Flevel-4(x) =



x + Ψ[0,1](4x; αLL, θLL), 0 ≤ x ≤ 1/4;

x + Ψ[0,1](4x− 1; αLH, θHL), 1/4 ≤ x ≤ 1/2;

x + Ψ[0,1](4x− 2; αHL, θHL), 1/2 ≤ x ≤ 3/4;

x + Ψ[0,1](4x− 3; αHH, θHH), 3/4 ≤ x ≤ 1.

(27)

An example of this level-4 approach is illustrated utilizing the values given by

(αLL, θLL : αLH, θLH
...αHL, θHL : αHH, θHH) = (4, 3: 3, 7

... 5, 3: 2, 7).

An interpretation for this approach is considering a distinct perturbation in each
quartile of the distribution such as:

• First quartile driven by (αLL, θLL) = (4, 3).
• Second quartile driven by (αLH, θLH) = (3, 7).
• Third quartile driven by (αHL, θHL) = (5, 3).
• Fourth quartile driven by (αHH, θHH) = (2, 7).

In short, the privatization mechanism allows us to perturb a probability distribution
employing levels (applying a partition on the compact support), which may be very
attractive when fitting data. We can use the expression stated in (25) when implementing
one level, in (26) when implementing two levels, and in (27) when implementing four levels.

6. Empirical Application

Next, we apply our privatization approach to a real-world problem. An e-commerce
company sells products on the Internet and wants to analyze the possibility of adding
more servers or changing its most important server. By collecting daily data, we find many
days in which the best server has almost all its hardware resources consumed 70% of the
time. Looking at the empirical PDF and CDF, we see that a triangular distribution, with
support on the set [0, 1] and mode equal to 0.7, might represent the data well. However,
when performing goodness-of-fit tests, the results tell us that a triangular distribution is
not the best option. However, a “quasi-triangular” distribution could be an appropriate
probability model for the random variable X that measures the daily proportion of times
with full resource consumption of the best server. Among the known techniques to fit data,
the privatization mechanism that we propose in this work is an excellent option to slightly
perturb the triangular distribution and describe the data well. For the computational
experiments, we utilize a database-sensor and two related algorithms.

Let X be a continuous variable, which is triangularly distributed, with support on
the interval [0, 1], and whose mode is m, for 0 < m < 1. The PDF and CDF of X are,
respectively, given by

fX(x) =


2x
m

, 0 ≤ x ≤ m;

2(1− x)
1−m

, m < x ≤ 1;

and

FX(x) =


x2

m
, 0 ≤ x ≤ m;

1− (1− x)2

1−m
, m < x ≤ 1.
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Now, we use the wavelet function defined in (13). Figure 7 shows the graphical plot of
the CDF corresponding to X (original triangular distribution) and also the graphical plot of
the privatized version that corresponds to the random variable Xpriv (perturbed triangular
distribution). We consider the value m = 0.7 in the calculations carried out. Note that, in
the perturbed triangular distribution, the CDF values are greater than when compared
to the original triangular distribution, for values of X less than 0.5, while for values of X
greater than 0.5, the opposite occurs. This behavior is due to the wavelet function employed
in such an empirical application. In practice, this method is flexible allowing us to choose
the most convenient wavelet to fit the data.

(a)

(b)
Figure 7. Plots of: (a) PDF and CDF of the triangular distribution; and (b) wavelet perturbation (—
blue), triangular (- - red), and perturbed triangular (- · - orange) CDFs.

For the computational experiments that were carried out, a database-sensor was used.
Algorithm 1 shows the steps to perturb a probability distribution with compact support. If a
perturbation by levels is required, we propose Algorithm 2 as a generalization of Section 5,
where the number k of levels is left to the consideration of the data analyst.
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Algorithm 1 Approach to perturb a probability distribution with a database-sensor.

1: Consider a random variable X with compact support [a, b].
2: Select a wavelet with compact support [a, b] to perturb the distribution of the previous

step, with the computations being performed by a first process denoted by A that sends
the generated data to a database.

3: State a sensor in the database that detects the entry of new data, so that, using a trigger,
the sensor responds sending a copy of the stored data to a second process denoted by B.

4: Establish that process B receives the perturbed data and is responsible for building the
CDF of the resulting distribution.

5: Confirm that process B generates the corresponding plots showing, between a and b,
the original distribution, wavelet used, and perturbed distribution.

Algorithm 2 Approach to perturb a probability distribution by levels.

1: Select a probability distribution with compact support [a, b].
2: Apply a partition of k subintervals over the interval [a, b] (not necessarily equispaced).
3: Use Algorithm 1 on the interval [ai, bi], for each i from 1 to k.
4: Perform computations to unify the results on the interval [a, b] of the previous step.
5: Generate unified plots on the interval [a, b] for the original distribution, wavelet used,

and perturbed distribution.

7. Concluding Remarks

This paper has presented a new method for building an additive wavelet-based per-
turbation, as a privacy mechanism, to modify a given continuous probability distribution.
Then, the initial guess could be perturbed as some sort of “prospecting within the ensemble
of possible probability distributions around the starting distribution”.

The method we have proposed in this investigation is flexible with respect to the
perturbation function that may be employed to fit the data, since different wavelets are
available. A procedure was also offered to employ four different perturbations, one in
each quartile of the original distribution, which can be quite attractive when fitting data.
Examples of the proposed method were discussed. Computational experiments were
carried out using a database-sensor and two related algorithms. Several knowledge areas
can benefit from using the new method proposed in this study.

Stochastic programming, simulation studies, and multivariate analysis [31–34], among
other areas of knowledge, may also benefit from the utilization of the new approach pro-
posed in this investigation. The Internet of things, robotics, monitoring stations, telemetry,
and the use of sensors are also important fields for data reading and fitting. Concrete
applications via this new approach may now emerge, with an efficient configuration for the
involved functions. Another benefit of this technique is its ease of implementation in any
programming language. Software developers must be the first to get involved to make this
technique available to data analysts. The areas of artificial intelligence, machine learning,
and deep learning [35] constantly require new techniques for data fitting, whose areas are
closely related to sensors. Accordingly, we think that the proposed privatization mecha-
nism is an important contribution to increasing the spectrum of existing techniques. An
avenue of future work to be considered is to provide a method that allows us to determine
the most appropriate wavelet during data fitting.
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