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Abstract: WiFi-based indoor positioning has attracted intensive research activities. While localization
accuracy is steadily improving due to the application of advanced algorithms, the factors that affect
indoor localization accuracy have not been sufficiently understood. Most localization algorithms
used in changing indoor spaces are Angle-of-Arrival (AoA) based, and they deploy the conventional
MUSIC algorithm. The localization accuracy can be achieved by algorithm improvements or joint
localization that deploys multiple Access Points (APs). We performed an experiment that assessed
the Test Point (TP) accuracy and distribution of results in a complex environment. The testing space
was a 290 m2 three-room environment with three APs with 38 TPs. The joint localization using
three APs was performed in the same test space. We developed and implemented a new algorithm
for improved accuracy of joint localization. We analyzed the statistical characteristics of the results
based on each TP and show that the local space-dependent factors are the key factors for localization
accuracy. The most important factors that cause errors are distance, obstacles, corner locations, the
location of APs, and the angular orientation of the antenna array. Compared with the well-known
SpotFi algorithm, we achieved a mean accuracy (across all TPs) improvement of 46%. The unbiased
joint localization median accuracy improved by 20% as compared to the best individual localization.

Keywords: channel state information; indoor localization accuracy; joint localization; WiFi

1. Introduction

The rapid development of wireless communication technology and the omnipresence
of mobile devices enable the rapid growth of Location-Based Services (LBSs) [1,2]. Outdoor
LBSs, such as the Global Navigation Satellite System (GNSS), are used for applications
such as navigation, emergency services, timekeeping, or uses for military or geodesy
purposes [3,4]. Indoor LBSs complement outdoor LBSs. For example, indoor LBSs can be
used to track assets, build management, provide indoor location information for emergency
services, and navigate customers in shopping centers [5–7]. In healthcare, applications
include monitoring patients in nursing homes, tracking Alzheimer’s patients, monitoring
the activities and movements of rehabilitating patients, or improving the safety of elderly
patients [8–10].

The outdoor LBSs cannot be used indoors due to blocked signals. This is because of
the additional challenges such as multipath effects, Non-Line-of-Sight (NLoS), moving
humans or objects, ambient noise, and electromagnetic interference, which need to be
addressed [11]. Reliable Indoor Positioning Systems (IPSs) must satisfy key requirements:

Accuracy: Accuracy is a key improvement target for most indoor LBSs’ research [1].
Improving the indoor LBSs can be addressed by signal processing, additional hardware,
model-based analysis, or new communication protocols [12–17].

Availability: IPSs should cover all locations within the serviced indoor area at all
times. Preferably, IPSs should work with widely available devices, such as mobile phones
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or WiFi [12]. Some solutions, such as Ultra-Wide Band (UWB) [18] or Visible Light Commu-
nication (VLC) [15,19] systems, require additional hardware, limiting their usability.

Scalability: IPSs should perform well when the indoor environment changes. Most
Machine Learning (ML) or fingerprinting-based IPSs lack reliability in changing envi-
ronments [20] because these methods are highly dependent on pre-training defined by
particular environment settings.

Cost: IPSs’ implementation should not require a high capital cost. The system should
not include any additional infrastructure or expensive equipment on the server and user
sides. The system should be easily maintained without investing much labor and hard-
ware maintenance.

Other requirements: Requirements specific to the use scenarios and applications may
include update rates, privacy, security, and user interfaces, among others [21].

The availability, ubiquity, scalability, and low cost of Wireless Local Area Network
(WLAN) systems make WiFi-based indoor localization a competitive solution for IPSs. The
protocols defined in the IEEE802.11a/n standards make the Channel State Information (CSI)
of WiFi signals readily available [22]. CSI provides stable and feature-rich channel informa-
tion, which enables the estimation of the AoA. The AoA and the signal strength information
enable the estimation of the source position. The AoA is calculated by applying algorithms,
such as MUSIC [23]. The AoA-based localization algorithms, such as SpotFi [13], can
achieve a decimeter-level median localization accuracy in an office environment.

Factors affecting the accuracy of indoor localization of specific location points are
poorly understood. Most localization performance assessments utilize median accu-
racy [13,14,24–26], but they do not provide detailed spatial assessment maps. We are
particularly interested in possible blind localization points in indoor spaces and the reasons
for their existence. Therefore, we performed extensive data analysis and factor analysis
based on the experiment. The sources of errors may include doors, obstacles, human
activities, space settings, electromagnetic interferences, and the number of AP, among
others [27]. To better understand the factors that limit localization accuracy and improve
performance, we focused on better utilizing available information, optimizing localization
algorithms, and performing a comprehensive localization testing experiment.

Utilization of information: Most of the information available for signal processing
is not considered or fully utilized. For example, AoA-based approaches such as Array-
Track [25] and SpotFi [13] do not consider the amplitude of the AoA spectrum for the LoS
identification. The amplitude of the AoA spectrum can reflect the power of different paths
for better LoS identification. In addition, the variance of RSS is also neglected in most
reported algorithms. We used additional information to improve IPS performance.

Optimization by joint localization: Most of the known methods are not optimized for
multi-AP localization. For instance, ROArray [14] locates the target among multiple APs
by minimizing an RSS-based objective function. SpotFi [13] and MaTrack [28] use similar
approaches to find the optimal solution from a large number of results. These methods are
not computationally efficient in performing joint localization.

Adequacy of TP-based analysis: Most of the reported methods in WiFi indoor localiza-
tion do not provide a detailed analysis of multiple TPs and scenarios. Some reports use
simulations to assess the accuracy of localizations [29] or actual point localization error [30],
but the TP-based error analysis is largely lacking in available reports. The TP-based er-
ror maps enable an analysis of factors that affect localization accuracy. We performed a
localization experiment and accuracy analysis at each of the 38 TPs within a test space (a
multi-room space with three APs).

We intended to compare the performance of different localization algorithms. How-
ever, some available algorithms [14] are proprietary and do not provide the source code.
Other studies [31] involved custom-designed hardware, which could not be reproduced for
our study. Therefore, it was not possible to compare the performance of the majority of the
reported algorithms. The well-known SpotFi algorithm was chosen as the benchmark; it is
available as open-source [32] and uses a commodity WiFi device.
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We previously developed MoLA, a Multi-step Optimization Localization Algorithm,
and compared the performance of MoLA and SpotFi for a single AP. We showed that the
multi-step optimization used in MoLA improved the median accuracy of indoor localization
as compared with SpotFi (0.96 m vs. 1.93 m) in the test space [33]. To enable further
comparisons and encourage knowledge sharing, we provided MoLA to the community as
open-source [34]. We extended the initial version of MoLA and used it to perform a multi-
AP assessment of indoor localization accuracy by using multiple APs. For joint estimation,
MoLA locates the target by weighting different APs based on the variance information of
the RSS. MoLA adaptively combines multiple APs to improve the localization results. The
flowchart of the proposed method is shown in Figure 1. There are three main contributions
of this work:

• Developed and implemented a new self-adaptive multi-AP localization algorithm that
improves MoLA system performance;

• Performed a comprehensive statistical analysis of individual TP localization accuracy;
• Analyzed the effects of TP location in the room setup on localization accuracy. We

identified and described key factors that affect the individual TP and the overall
localization accuracy.

Section 2 describes related works in CSI-based indoor localization. The technical
background of this study is presented in Section 3. Section 4 describes the design of MoLA
and its multi-AP localization extension. Section 5 describes the hardware platform and the
experimental results in different cases. Section 6 analyzes the factors of localization errors,
and Section 7 concludes this paper.
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Figure 1. Flowchart of the proposed method.

2. Related Work
2.1. AoA-Based Systems

With the development of MIMO-OFDM technology, AoA approaches based on CSI
became popular solutions in the indoor localization field. All AoA-based algorithms
deploy the conventional MUSIC algorithm [23] to estimate the AoA. The AoA-based
IPS achieves decimeter accuracy. The ArrayTrack system [25] uses the phase shift of
the received signal with 6–8 antennas. A system called Phaser [26] synchronizes two
network cards by sharing one antenna. Phaser achieves decimeter accuracy with five
antennas. The Ubicarse system [24] is a new Synthetic Aperture Radar (SAR) formulation
for locating the target within an indoor space. Ubicarse requires at least two antennas
fixed at the localization target and the rotation of antennas around the vertical axis while
positioning. However, hardware modifications are required for operating ArrayTrack,
Phaser, or Ubicarse. The SpotFi system [13] introduces an indoor localization system that
does not need any hardware modifications to improve usability. It includes a “super-
resolution” AoA algorithm to estimate the AoA by creating a smooth CSI matrix. SpotFi
utilizes a clustering method and a likelihood algorithm to identify the LoS path to deal with
the multipath effect. Unlike other MUSIC-based AoA estimation methods, ROArray [14]
proposes a robust indoor localization system using a sparse recovery method. It can obtain a
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median localization accuracy in a meter range in low Signal-to-Noise Ratio (SNR) scenarios.
Multi-AP localization systems such as SpotFi and ROArray have high computational costs.

2.2. Range-Based Systems

FILA, a range-based system [16], uses a fast supervised training algorithm to refine
the model using the amplitude information of the CSI. FILA cannot be deployed directly in
the spaces where the settings change. The Chronos system [12] uses a Time-of-Flight (ToF)
approach with a single AP. It uses the characteristics of the bandwidth and time to imitate
the wideband system. Chronos achieves a moderate median accuracy using a single AP.
However, this method requires a specialized protocol for frequency sweeping and software
modifications on commercial WiFi devices. A single AP system S-Phaser deploys a phase
calibration solution called the Interpolation Elimination Method (IEM) [35]. It determines
the target location by the Broadband Angle Ranging (BAR) algorithm. S-Phaser can obtain
a low median accuracy of 1.5 m in an LoS environment. MaTrack [28] and LiFS [36] are
device-free passive indoor localization methods. They locate targets within a specific range
by observing the AoA and ToF of one or multiple pairs of signals. However, these methods
have limited abilities to locate multiple objects or targets with no LoS and are very sensitive
to environmental changes.

2.3. Learning-Based Systems

FIFS [37] proposed an indoor fingerprint localization system based on the CSI. It builds
the fingerprint database by measuring the signal amplitude on multiple antennas. However,
the amplitude data are not informative, and the phase information in the CSI is not fully
utilized. To overcome this problem, PhaseFi [38] proposed a localization algorithm using
calibrated phase data features. It designs a deep network to train the data and optimize the
computational cost by using a greedy learning algorithm. The localization error is about
1 m in the open environment and 2 m in a complex environment. DeepFi [39] uses deep
learning methods to deal with WiFi signals. However, this approach requires constructing
a fingerprint database and the collection of information on each location. This method
requires high labor cost and effort and is vulnerable to changes in the spatial configuration
and obstacles.

2.4. Single-AP MoLA

MoLA collects CSI from commercial devices and uses a phase calibration algorithm to
eliminate phase errors. MoLA then applies the spatial smoothing algorithm [40] and the
I-MUSIC algorithm [41] to find possible AoAs. The Sequential Quadratic Programming
(SQP) algorithm [42] is used to solve this optimization problem. In this process, the MDL
equation [43] is used to estimate the number of LoS signals from different directions. To
further deal with multipath effects and noise, MoLA first groups the AoAs from multiple
packets and then builds a new estimator to identify the LoS cluster.

3. Background

Assume that the receiver has a Uniform Linear Array (ULA), consisting of M antennas
spaced at a distance d. As the signal emitted from the transmitter reaches the antenna array,
an AoA with an angle θ is generated due to the distance difference existing between the
two adjacent antennas (Figure 2). In indoor environments, obstacles often reflect signals,
resulting in multipath effects. Assuming that there are L propagation paths, the phase shift
of the lth path at each antenna is [44]:

Λ(θl) = e−j2π×d cos(θl)×
f
c , (1)
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where f is the signal frequency and c is the speed of light. In an OFDM system, each
subcarrier is modulated into a different frequency, which causes a delay. The phase shift
caused by the delay function is:

Γ(τl) = e−j2π× fδ×τl , (2)

where fδ is the frequency interval between subcarriers and τl is the transmission delay of
the lth path. Combining the phase shift Λ(θl) and phase shift Γ(τl), the steering vector
matrix with K subcarriers’ transmission delays can be written as :

a(θl , τl) =

[
1, . . . , Γ(τl)

K−1︸ ︷︷ ︸
Antenna 1

,

Λ(θl), . . . , Λ(θl)Γ(τl)
K−1︸ ︷︷ ︸

Antenna 2

, . . . ,

Λ(θl)
M−1, . . . , Λ(θl)

M−1Γ(τl)
K−1︸ ︷︷ ︸

Antenna M

]T

.

(3)

2 1M

θ
d·cosθ

d

Figure 2. The uniform linear array consists of M antennas spaced at a distance d. Due to the additional
distance dcos(θ) traveled in propagation, the signal is phase-shifted.

After obtaining the steering vector, we calculate the auto-correlation matrix of the data
matrix and apply the MUSIC algorithm. The data matrix is obtained from the device, as a
CSI matrix H, expressed as:

H =


csi1,1 csi1,2 · · · csi1,K
csi2,1 csi2,2 · · · csi2,K

...
...

. . .
...

csiM,1 csiM,2 · · · csiM,K

. (4)

The auto-correlation matrix Rx is defined by [44]:

Rx = E
[
HHH

]
. (5)

After performing the Eigenvalue Decomposition (EVD) of Rx, the noise subspace EN
can be obtained. The MUSIC algorithm is used to find the AoA and ToF:

P(θl , τl)MUSIC =
1

a(θl , τl)ENEH
N a(θl , τl)

. (6)
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4. MoLA: Design and Optimization

To localize the target, MoLA performs phase correction, AoA estimation, and identi-
fication of the LoS path. Here, we report a new adaptive joint localization algorithm. A
detailed description of MoLA is available in [33]. This section provides a brief description
of MoLA.

4.1. Pre-Processing of CSI

Due to imperfections in the hardware, the received CSI signal array produces phase
shifts. The errors can be caused by Packet Detection Delay (PDD), Sampling Frequency
Offset (SFO), Center Frequency Offset (CFO), and some other causes [45]. All these factors
will impact the AoA estimation, so we modeled the phases as described in [46]. The
measured phase ϕ

(i)
m,k from the ith packet of the mth antenna at the kth subcarrier can be

represented as:
ϕ
(i)
m,k = φ

(i)
m,k − 2π × fs × k× δ + β + Z, (7)

where φ
(i)
m,k is the true phase, fs is the frequency interval of the subcarrier, δ is the time

delay at the receiver, β is the non-linear phase offset, and Z is the noise. The comparison
between the raw and calibrated phases is shown in Figure 3. The calibrated phases identify
the narrow range of the true CSI phase (congregation of red points in Figure 3), which
otherwise may not be directly identifiable from the raw CSI phase data. The CSI phase
calibration is performed as described in Algorithm 1.

0
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240
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Figure 3. Phase offsets are removed by using the calibration algorithm. In polar coordinates, the
phase of the raw signal exhibits a random distribution. After calibration, the real phase shift is shown.
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Algorithm 1: Phase calibration.

Input: CSI matrix H(i)
m,k

Output: Calibrated H(i)
m,k matrix

1 for each packet i ∈ 1, 2, . . . , I do
2 for each antenna m ∈ 1, 2, . . . , M do
3 for each subcarrier k ∈ 1, 2, . . . , K do
4 ϕ

(i)
m,k = ∠H(i)

m,k; A(i)
m,k = |H(i)

m,k|;
5 ∆ϕ

(i)
1 = LinearRegression(ϕ

(i)
m,k);

6 ψ
(i)
m,k = Unwrap(ϕ

(i)
m,k − ∆ϕ

(i)
1 );

7 ∆ϕ
(i)
2 = LinearRegression(ψ(i)

m,k);

8 ϕ̂
(i)
m,k = ϕ

(i)
m,k − ∆ϕ

(i)
1 − ∆ϕ

(i)
2 ;

9 H(i)
m,k = A(i)

m,k × exp(jϕ̂(i)
m,k);

10 end
11 end
12 end

4.2. Estimating the AoAs with Improved MUSIC and MDL
4.2.1. The I-MUSIC Algorithm

MoLA estimates the AoA of the incoming wave signal. Due to the complex indoor
environment, the signal is coherent and creates multipath effects. To decorrelate the signals
as much as possible, MoLA deploys the I-MUSIC algorithm for the smoothed correlation
matrix of the signal [40]. The modified correlation matrix Rxx is defined by:

Rxx = Rx + JR∗xJ, (8)

where

J =


0 0 · · · 1
0 0 1 0
...

...
. . .

...
1 0 · · · 0

. (9)

where J is a K-order opposed unit matrix and “∗” denotes the complex conjugate of the
correlation matrix Rx, as defined in Equation (5).

4.2.2. Estimating the Number of Signals with MDL

The number of incoherent signals is important in spatial–spectral estimation because it
determines the threshold for subspace partition. In SpotFi [13], they used a fixed threshold
to determine the subspace. This is an imperfect solution because the indoor environment
is often variable. The MDL equation [43] determines the number of incoherent signals re-
quired for spatial–spectral estimation. Given that the correlation matrix Rxx in Equation (8)
is of order K and the number of incoherent signals is p, then p is determined by minimizing
the estimator:

p̂MDL = arg min
p∈{0,··· ,K−1}

MDL(p), (10)

where

MDL(p) = (K + M− 1)× (K− p) log

 1
K−p ×∑

K−p
k=1 λ(

∏
K−p
k=1 λ

) 1
K−p


+

p
2
× (2K− p + 1)× log (K + M− 1),

(11)
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where p ∈ {0, . . . , K− 1} and the integer k that makes MDL(p) smallest is the number of
estimated incoherent signals. λ is the diagonal vector of the eigenvalue matrix of the Rxx
after EVD, which is ordered from largest to smallest:

λ = [λ1, λ2, · · · , λk, · · · , λK]
T , λ1 ≥ λ2 ≥ . . . ≥ λk ≥ . . . ≥ λK. (12)

4.3. Identification of the LoS

After performing AoA estimation on multiple packets, we use a clustering algorithm to
cluster the possible AoAs. To identify the LoS accurately, we developed and implemented
a new LoS estimator. It calculates the number of AoAs in each cluster, the compactness of
the clusters, and the transmission delay of each cluster. The estimator can be expressed as:

WEn = wn × exp
(
CN Nn − CPCPn − Cττn

)
, (13)

where Nn is the number of points in the cluster n. CPn is the compactness, and τn is the
mean delay of transmission of the cluster n. CN , CP, and Cτ are the scale parameters used
to bring the exp factor into the (0, 10) range. wn is the mean weight of cluster n.

4.4. Target Localization

The distance between the target and the receiver can be obtained by minimizing the
following equation D:

D = arg min
R

I

∑
i=1

[(
P̂Ri − PRi

)2
]
, (14)

where P̂Rn and PRn are the observed and estimated RSS values. The coordinate of the
target (x̂, ŷ) can be obtained by performing geometric calculations with the previously
obtained direct path θ and distance D. The process described in Sections (B), (C), and (D) is
formalized in Algorithm 2.

Algorithm 2: AoA Estimation and localization.

Input: Calibrated H(i)
m,k matrix

Output: Target location
1 for each packet i ∈ 1, 2, . . . , I do
2 Calculate R(i)

xx in Equation (8) and estimate p̂(i) in Equation (10);

3 Evaluate I-MUSIC spectrum: P(i)
IMUSIC(θl , τl) =

1
a(i)H
(θl ,τl )

E(i)
N E(i)H

N a(i)
(θl ,τl )

;

4 Find peaks in pseudo-spectrum by using SQP algorithm, and remove ineligible points;
5 end
6 Cluster the points from multiple packets by using DBSCAN algorithm to obtain possible

AoAs;
7 for each AoA-ToF cluster n ∈ 1, 2, . . . , N do
8 for each AoA-ToF point j ∈ 1, 2, . . . , Nn do
9 Calculate the weights wn;

10 Obtain the compactness value CPn;
11 end
12 Estimate the WEn value in Equation (13);
13 end
14 Consider the AoA-ToF cluster with highest WEn value as the direct AoA path;
15 Minimize the Equation (14) to obtain the distance and estimate the target’s location (x̂, ŷ)
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4.5. Multiple AP Localization
4.5.1. Conventional Trilateration with the Kalman Filter

In the existing RSS-based trilateration localization methods, the RSS signal is often
processed using a Kalman Filter (KF) [47]. The wireless signal transmission model is:

d = d010
Pr,dB(d0)−Pr,dB(d)

10η , (15)

where Pr,dB(d0) and Pr,dB(d) are the received signal power at the TP, which have distances
d0 and d. η is the path loss exponent of the signal attenuation model.

This model will be used as a benchmark for the analysis of the results of multi-
AP localization.

4.5.2. Characteristics of the RSSI among Different Locations

The previous work was extended to joint localization by multiple APs. First, we need
to investigate the characteristics of the RSSI at different locations. The OFDM provides rich
information on the RSSI measurements; each subcarrier has a unique RSSI value because of
different multipath fading channels. The RSSI value for each subcarrier varies at the same
TP, but varies with different locations (Figure 4a). Therefore, the RSSI variance of each
packet at different locations reflects the changes in the environment better than a single
RSSI value (Table 1).

Table 1. Comparison of the RSSI and variance at different locations.

Location A Location B

RSSI (dB) 23 19
Variance 0.1 2.1

To show the high correlation between environment changes and RSSI variance, we
collected the RSSI value through 38 different locations from AP1. Each bar represents
the variance of the RSSI for each subcarrier throughout multiple packets (Figure 4b).
RSSI variance is relatively high among Points 28–31, which are all NLoS locations when
using AP1.

0 5 10 15 20 25 30

Subcarrier Index
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20
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N
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 (

d
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)

Location A

Location B

(a) (b)

Figure 4. RSSI measurements and variance. (a) RSSI of two different locations; (b) RSSI variance
among all the TPs.

4.5.3. Weight Calculation and Multi-AP Localization

We propose a new multi-AP localization algorithm based on the observed relationship
between the RSSI variance and specific locations (Figure 4b). This algorithm calculates the
weight of each AP from the variance of RSSI measurements at each target location and then
assigns these weights for multi-AP localization (Equation (16)). Locations with low RSSI
variance contribute significantly to the results, while locations with large RSSI variance
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(rich NLoS environments) contribute very little to the final results. A better signal strength
usually means that the target is more likely to be in an LoS or less multipath environment
for observed AP. TPs with strong RSSI weights will assign higher weights to the receiving
AP and vice versa.

This approach utilizes the multidimensional information of the RSSI and adaptively
estimates the target location through multiple APs. The joint estimated location (X̂, Ŷ) is
formulated by:

(X̂, Ŷ) =

(
Q

∑
q=1

wq x̂q,
Q

∑
q=1

wqŷq

)
, (16)

where x̂q and ŷq are the estimated coordinates from the qth AP, Q is the number of APs,
and wq is the weight. It can be calculated by:

wq =

1
M(Vq)

1
M(V1)

+ 1
M(V2)

+ · · ·+ 1
M(Vq)

=
1

M(Vq)
×

∏Q
q=1 M(Vq)

∑Q
q=1 M(Vq)

,

(17)

where M(·) represents the median value and Vq is the variance column vector from K
subcarriers of the qth AP:

M(Vq) =
[
var(q)1 , var(q)2 , · · · , var(q)k

]T
, (18)

where var(l)k is the RSSI variance from I packets:

M(Vq) = Var
(

RSSI(1)k , RSSI(2)k , · · · , RSSI(i)k

)
. (19)

The process described in Section E is formalized in Algorithm 3.

Algorithm 3: Adaptive multi-AP localization.

Input: RSSI(i)k matrix
Output: Target location

1 for each AP q ∈ 1, 2, . . . , Q do
2 for each packet i ∈ 1, 2, . . . , I do
3 Calculate RSSI variance var(q)k in Equation (19);
4 Calculate median value Vq in Equation (18);
5 end
6 Calculate the weights wq in Equation (17);
7 end
8 Obtain the coordinate (x̂, ŷ) from Algorithm 2;
9 Estimate the target location (X̂, Ŷ) in Equation (16)

5. Experimental Evaluation
5.1. Implementation

We deployed the experimental platform (Figure 5a) in a large 290 m2 conference room
to validate MoLA, with SpotFi serving as a benchmark. For the hardware part, we used
an Industrial Control Computer (ICC) as the AP, which was equipped with an Intel 5300
Network Interface Card (NIC) (Figure 5b). Each ICC was equipped with three antennas,
spaced 2.8 cm, and placed in three different locations in the conference room. The antennas
were mounted on the ICC aluminum housing (Figure 5c). All NICs were set to monitor
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mode (bandwidth of 40 MHz, operating in the 5 GHz band). We broadcast each TP and
collected data on the three ICCs.

We performed six measurements for each TP. Three measurements were performed on
one day at a fixed time (9:00–9:45, 12:00–12:45, and 19:00–19:45). The order of measurements
was from TP1 to TP38 (Figure 5a). Measurements were repeated the following day at the
same time. At each TP, we sent a total of 300 packets with a transmission interval of 100 ms.
Then, we compared the results with the coordinates obtained using a laser range finder. We
calculated the angle between each TP and AP’s antenna within the LoS path as the AoA’s
ground truth since the position of the APs and TPs was fixed in the room. The impact of
the input packet number (between 5 and 300) on the localization error was analyzed, as
described in Section 6.
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Figure 5. Experimental configurations. (a) There are 38 TPs and the blue symbols show the orientation
of the antenna array; (b) ICC with Intel 5300 NIC; (c) practical deployment of APs.

5.2. TP-Based Localization Accuracy

We conducted experiments at different locations and in different scenarios to evaluate
the accuracy of MoLA. TPs 1–27 in the large room (Figure 5a) represent the LoS scenario,
while the other TPs represent the NLoS scenario. The overall localization performance of
the two systems was compared, and the results are shown in Figure 6a. MoLA achieved a
median error of 0.9 m, while SpotFi had a median error of 1.9 m under the AP1 scenario.

We then analyzed the different blocking cases with the LoS and NLoS scenarios.
Figure 6b depicts the localization error without any obstructions, where MoLA achieved
a median accuracy of 0.7 m and SpotFi achieved 1.5 m. When the TP was moved in an
enclosed environment, the median error increased to 1.7 m for MoLA and 3.3 m for SpotFi
(Figure 6b).
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Figure 6. The cumulative distribution function of the localization error between MoLA and SpotFi un-
der the LoS and NLoS scenarios. (a) Overall localization error; (b) the LoS/NLoS case; (c) comparison
of the AoA estimation error in degree.
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The accuracy varied between TPs. We calculated the standard deviation (σ) of the
localization results for each TP. The largest standard deviation of the localization error for
AP1 was TP20 (3.9 m ± 1.1 m). For AP2, the largest was TP33 (5.9 m ± 1.6 m). For AP3, the
largest was TP6 (2.1 ± 2.2 m). This illustrates that the overall localization error is related to
the position of the AP, while the individual localization error is related to the position of
the TP.

5.3. AoA Comparison

To verify the algorithm’s reliability, we compared the AoA estimation error for each
TP with the ground truth AoA of each TP. The comparison showed that MoLA had higher
accuracy (Figure 6c). In the LoS case, the median AoA error was 6 degrees for MoLA
and 10 degrees for SpotFi. The AoA error in the NLoS case was 13 degrees for MoLA
and 24 degrees for SpotFi. These results indicate that the clustering algorithm and the
weighted estimator Equation (13) effectively discriminated the LoS path from multiple
incident signals. Furthermore, these improvements may be due to the correct partitioning
of the subspace by the MDL algorithm. SpotFi uses the conventional MUSIC algorithm
with a fixed threshold to estimate the spectrum. However, MUSIC is sensitive to the noise
subspace EN , and a fixed threshold does not provide optimized results.

5.4. Multi-AP Localization Accuracy

For other APs, MoLA achieved a median error of 2.3 m at AP2, compared to 3.4 m for
SpotFi. In contrast, at AP3, in the NLoS scenario, MoLA achieved a median error of 1.4 m,
while SpotFi degraded to 3.2 m (Figure 7a). Thus, MoLA improved positioning accuracy
more than SpotFi, with an average error reduction of 46.2% (50.3% at AP1, 31.3% at AP2,
and 57.0% at AP3).
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Figure 7. Comparison of localization errors with different APs. (a) Localization error of MoLA and
SpotFi at three different AP locations; (b) localization error using a single AP and the weighted algorithm.

Next, we investigated the error of joint localization. The signal from each TP was
broadcast to three APs, and both the CSI and RSSI information was collected. The results
showed that MoLA further improved the localization performance through multiple APs
(Figure 7b). Compared to the single-AP median errors of 0.9 m, 2.3 m, and 1.4 m, MoLA
achieved a median accuracy of 0.7 m, better than any single-AP scenario.

To assess the performance of multi-AP MoLA localization, we compared it with the
RSSI trilateration with the KF. However, the path loss exponent (Equation (15)) is sensitive
to the environment. We set the path loss exponent according to the environment and then
chose the best one to compare with MoLA. The received signal strength at 1 m is based on
the real measured numbers (P(1)

r (d0) = −39 dB, P(2)
r (d0) = −41 dB, P(3)

r (d0) = −44 dB).
The CDF plot (Figure 8a) shows the impact of different path loss exponents on the median
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localization error. The results indicate that the KF-based trilateration method had the best
localization accuracy (2.7 m) when η = 2.5 (Figure 8b).

In addition, we further minimized the error by jointly varying the path loss exponent
and the received power at 1 m (P(1)

r (d0) = −36 dB, P(2)
r (d0) = −41 dB, P(3)

r (d0) =
−39 dB, η(1) = 2.3, η(2) = 1.7, η(3) = 2.2), which finally gave the best median localization
error of about 2 m. The CDF plot (Figure 8c) shows that the conventional trilateration
method had a median localization error similar to that of the single-AP MoLA. With the
number of APs increasing from one to three, localization accuracy improved. We also
observed that 80% of the individual TPs had the localization error within 2.5 m with three
APs, even within the complex space of 290 m2 with rich multipath. The median value of
optimized trilateration with the KF was approximately 2 m, demonstrating the localization
accuracy improvement of multi-AP MoLA.
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Figure 8. Comparison of localization errors with multi-AP MoLA and optimized trilateration with the
KF. (a) Impact of different path loss exponents on the localization error of conventional trilateration
with the KF; (b) localization error with different path loss exponents; (c) localization error with
multi-AP MoLA and trilateration with the KF.

6. Analysis of Influencing Factors
6.1. Impact of the Packet Number

We investigated the distribution properties of the MoLA results. We found the variance
(σ2) for six different rounds of measurements for each TP, which gave us a total of 38 values.
Since six measurements were performed on each TP, we calculated the pooled variance (S2)
of all 38 points [48]. Figure 9a shows the pooled variance of localization error for various
packet numbers. For AP1 and AP3, placed at corner positions, S2 decreased as the number
of input packets increased. For AP2, placed in the middle of the long wall (Figure 5a),
both S2 and localization errors were relatively stable; S2 was between 0.2 and 0.8, and
localization error was approximately 2.5 m for all packets. Overall, the results indicated
that the minimum number of packets used for localization should be 50 or 100 (Figure 9b).

The stability of the localization error depends on the AP location (Figure 9a). Higher
stability is not necessarily associated with higher localization accuracy. For example,
AP2 showed high stability, but low localization accuracy. The analysis of the causes of
localization errors offers an insight that can guide the multi-AP system by placing APs in
favorable positions, such as corners and places with a rich LoS.
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Figure 9. Impact of different input packet numbers on the results. (a) Pooled variance of the results
with three APs; (b) localization error with three APs.

6.2. TP-Based Analysis

To better understand the causes of localization errors, we analyzed the results at each
TP. To compare the localization error of MoLA and SpotFi, we defined several thresholds,
where TR1 is the localization performance of MoLA and TR2 is the localization performance
of SpotFi. We identified the TPs with errors less than TR1 as High-Accuracy Localization
Points (HALPs); TPs with errors between TR1 and TR2 as Median-Accuracy Localization
Points (MALPs); and TPs with errors greater than TR2 as “Blind Points (BP)” (Table 2). We
analyzed localization errors at each TP under three different AP locations (Table 3).

Table 2. Thresholds of HALP, MALP, and BP.

AP1 AP2 AP3

TR1 0.9 m 2.3 m 1.4 m
TR2 1.9 m 3.4 m 3.2 m

The TP-based error distribution indicated the reasons for higher MALP and BP, gener-
ated by several reasons:

Corner Location: For all APs (AP1, AP2, and AP3), the TPs in the corners had high
localization errors (Figure 10). The examples include TP19 and TP20 in the large room,
TP32 and TP35 in the small room, etc.

Obstacles: For the NLoS cases, TPs without direct paths in the small rooms, the
localization accuracy was lower. For the LoS case, a reinforced concrete pillar in the main
room was the main obstacle, and the TPs around it or in the area behind its shadowing
were affected by the multipath.

Distance: For TPs far away from the AP, the localization accuracy decreased, such
as TP 36–38 with AP1. Although the NLoS and antenna orientation also influenced the
accuracy, distance was still a key factor that impacted the results. The heat map of three
APs and the weighted method were constructed to show the distribution of localization
error among different scenarios (Figure 11).

Table 3. HALP, MALP, and BP in the LoS/NLoS scenario with three APs.

AP1 AP1 AP2 AP2 AP3 AP3
(LoS) (NLoS) (LoS) (NLoS) (LoS) (NLoS)

BP 4 7 6 5 0 8
MALP 6 3 7 2 1 10
HALP 17 1 14 4 2 17
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Figure 10. TP-based error map of three different APs. The red circles are BPs, the yellow circles are
MALPs and the green circles are HALPs. The blue symbols show the orientation of the antenna array.
(a) AP1 has a rich LoS with most locations in the V-shaped sector of the antenna array; (b) AP2 has a
rich LoS with most locations out of the V-shaped sector; (c) AP3 has an NLoS scenario.

(a) (b)

(c) (d)

Figure 11. Localization error heat map of (a) AP1, (b) AP2, and (c) AP3 and (d) the multi-AP
adaptive method. The blue symbols show the orientation of the antenna array.

6.3. Impact of Antenna Array Orientation

In front of the antenna arrays, the TP within the V-shaped sectors (angular shape
with a 120° field of view) showed better localization accuracy than the TPs outside the
sector (Figure 10). Examples include TP10 and TP19 in Figure 10a and TP 1–7 in Figure 10b.
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However, in Figure 10c, TP 28–31 within the V-shaped sector had good localization accuracy
even if there was no LoS path. Overall, the results showed that the antenna array orientation
defines a narrow V-shaped sector with a high localization accuracy of TPs within the sector.
The results showed that covering more TPs within the V-shaped sector of the antenna is
expected to yield good localization performance. To obtain higher localization performance,
we need to adjust the antennas’ orientation and deploy APs at positions covering long LoS
areas to increase localization accuracy in the AoA approach.

6.4. Impact of the AP’s Location

The location of the AP can have a significant impact on the localization results
(Figure 11). Considering all the results, the localization performance will be strongly influ-
enced by the positioning of the AP in the target localization space. This position should
satisfy as much coverage of the LoS area as possible, optimized antenna orientation, and the
shortest possible transmission distance. Since the primary role of APs is to ensure normal
network communication, optimizing such networks for highly accurate indoor localization
becomes a design optimization problem.

6.5. Other Considerations

Antenna Configuration: The configuration of the antennas will have some effect on
the results, such as the number of antennas, the array aperture, etc. In general, more
antennas will provide for higher localization accuracy. However, this will also increase the
computational complexity and the cost of the system. The use of the limited number of
antennas is still predominant in existing commercial WiFi solutions that provide a large
area of network coverage. Increasing the linear array aperture will enhance the resolution
of the algorithm to obtain higher SNR spectral peaks. However, the aperture must not
be larger than the half-wavelength of the transmitted signal to prevent the occurrence of
spurious spectral peaks. In our experiments, we used the half-wavelength criterion for
antenna spacing to obtain the best performance.

Co-Channel Interference (CCI): Adjacent and co-channel interference are some of the
biggest problems noted in the IEEE 802.11 standard, while channel overlapping is the main
cause of CCI [49]. In this work, we used the 5 GHz band to minimize the occurrence of CCI
effects. Since our test site was covered by a high density of WiFi devices, which included
the 5 GHz band, CCI inevitably generated packet loss and interferences. We collected the
results multiple times for each TP to minimize the effects of CCI.

7. Conclusions

We extended the original single-AP localization algorithm [33], implemented it for
a multi-AP solution, and proposed a novel adaptive localization algorithm with a low
computational cost. The median localization accuracy was improved by ∼20% by an
unbiased combination of three APs as compared to the best individual AP localization. We
conducted an exhaustive TP-based analysis and analyzed the distribution of the results. We
identified factors that affect the accuracy of WiFi indoor positioning. The most influential
factors were distance, corner locations, obstacles, AP location, and the orientation of the
antenna arrays. Additional factors that affect localization accuracy are antenna configura-
tions and co-channel interferences. The heat map of TP locations showed the distribution
of localization errors, and it enables factor analysis. The heat map and the information
about the distribution of localization errors enable the calibration of localization spaces
and promise further improvements in localization accuracy by WiFi devices. The location
and orientation of APs for improved localization accuracy can be optimized for further
improvement of localization accuracy.



Sensors 2022, 22, 3709 17 of 19

Author Contributions: Conceptualization, S.L., S.W. and V.B.; methodology, S.L., S.W. and V.B.;
software, S.L.; validation, S.L., S.W. and V.B.; formal analysis, S.L., S.W. and V.B.; investigation, S.L.,
S.W. and V.B.; resources, S.L., S.W. and V.B.; data curation, S.L. and V.B.; writing—original draft
preparation, S.L.; writing—review and editing, S.W. and V.B.; visualization, S.L.; supervision, S.W.
and V.B.; project administration, S.W. and V.B.; funding acquisition, V.B. All authors have read and
agreed to the published version of the manuscript.

Funding: Shuyu LI has been supported by the UNNC scholarship 18053HLC. This work was
supported by the Ningbo High-End Innovative Research Grant with grant number 2018A-08-C.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zafari, F.; Gkelias, A.; Leung, K.K. A Survey of Indoor Localization Systems and Technologies. IEEE Commun. Surv. Tutor. 2019,

21, 2568–2599. [CrossRef]
2. Pascacio, P.; Casteleyn, S.; Torres-Sospedra, J.; Lohan, E.S.; Nurmi, J. Collaborative Indoor Positioning Systems: A Systematic

Review. Sensors 2021, 21, 1002. [CrossRef] [PubMed]
3. Dow, J.; Neilan, R.; Gendt, G. The International GPS Service: Celebrating the 10th anniversary and looking to the next decade.

Adv. Space Res. 2005, 36, 320–326. [CrossRef]
4. Bentley, F.; Cramer, H.; Müller, J. Beyond the bar: The places where location-based services are used in the city. Pers. Ubiquitous

Comput. 2015, 19, 217–223. [CrossRef]
5. Renaudin, V.; Ortiz, M.; Perul, J.; Torres-Sospedra, J.; Jiménez, A.R.; Pérez-Navarro, A.; Mendoza-Silva, G.M.; Seco, F.; Landau, Y.;

Marbel, R.; et al. Evaluating indoor positioning systems in a shopping mall: The lessons learned from the IPIN 2018 competition.
IEEE Access 2019, 7, 148594–148628. [CrossRef]

6. Elbes, M.; Alrawashdeh, T.; Almaita, E.; AlZu’bi, S.; Jararweh, Y. A platform for power management based on indoor localization
in smart buildings using long short-term neural networks. Trans. Emerg. Telecommun. Technol. 2020, 33, e3867. [CrossRef]

7. De Cillis, F.; Faramondi, L.; Inderst, F.; Marsella, S.; Marzoli, M.; Pascucci, F.; Setola, R. Hybrid indoor positioning system for first
responders. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 468–479. [CrossRef]

8. Stavropoulos, T.G.; Papastergiou, A.; Mpaltadoros, L.; Nikolopoulos, S.; Kompatsiaris, I. IoT wearable sensors and devices in
elderly care: A literature review. Sensors 2020, 20, 2826. [CrossRef]

9. Ramezani, R.; Zhang, W.; Xie, Z.; Shen, J.; Elashoff, D.; Roberts, P.; Stanton, A.; Eslami, M.; Wenger, N.; Sarrafzadeh, M.; et al. A
combination of indoor localization and wearable sensor–based physical activity recognition to assess older patients undergoing
subacute rehabilitation: Baseline study results. JMIR mHealth uHealth 2019, 7, e14090. [CrossRef]

10. Munadhil, Z.; Gharghan, S.K.; Mutlag, A.H.; Al-Naji, A.; Chahl, J. Neural network-based Alzheimer’s patient localization for
wireless sensor network in an indoor environment. IEEE Access 2020, 8, 150527–150538. [CrossRef]

11. Basiri, A.; Lohan, E.S.; Moore, T.; Winstanley, A.; Peltola, P.; Hill, C.; Amirian, P.; e Silva, P.F. Indoor location based services challenges,
requirements and usability of current solutions. Comput. Sci. Rev. 2017, 24, 1–12. [CrossRef]

12. Vasisht, D.; Kumar, S.; Katabi, D. Decimeter-Level Localization with a Single WiFi Access Point. In Proceedings of the 13th
USENIX Symposium on Networked Systems Design and Implementation (NSDI), Santa Clara, CA, USA, 16–18 March 2016;
pp. 165–178.

13. Kotaru, M.; Joshi, K.; Bharadia, D.; Katti, S. SpotFi: Decimeter Level Localization Using WiFi. In Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication (SIGCOMM), London, UK, 17–21 August 2015; pp. 269–282.

14. Gong, W.; Liu, J. RoArray: Towards More Robust Indoor Localization Using Sparse Recovery with Commodity WiFi. IEEE Trans.
Mob. Comput. 2019, 18, 1380–1392. [CrossRef]

15. Luo, J.; Fan, L.; Li, H. Indoor positioning systems based on visible light communication: State of the art. IEEE Commun. Surv.
Tutor. 2017, 19, 2871–2893. [CrossRef]

16. Wu, K.; Xiao, J.; Yi, Y.; Gao, M.; Ni, L.M. FILA: Fine-grained indoor localization. In Proceedings of the IEEE International
Conference on Computer Communications (INFOCOM), Orlando, FL, USA, 25–30 March 2012; pp. 2210–2218.

17. Liu, K.; Tian, Z.; Li, Z.; Wang, J.; Zhou, M. HiLoc: Sub-meter Level Indoor Localization Using a Single Access Point with
Distributed Antennas in Wireless Sensor Networks. IEEE Sens. J. 2021, 22, 4869–4881. [CrossRef]

18. Alarifi, A.; Al-Salman, A.; Alsaleh, M.; Alnafessah, A.; Al-Hadhrami, S.; Al-Ammar, M.A.; Al-Khalifa, H.S. Ultra Wideband
Indoor Positioning Technologies: Analysis and Recent Advances. Sensors 2016, 16, 707. [CrossRef]

19. Rahman, A.B.M.M.; Li, T.; Wang, Y. Recent Advances in Indoor Localization via Visible Lights: A Survey. Sensors 2020, 20, 1382.
[CrossRef]

http://doi.org/10.1109/COMST.2019.2911558
http://dx.doi.org/10.3390/s21031002
http://www.ncbi.nlm.nih.gov/pubmed/33540703
http://dx.doi.org/10.1016/j.asr.2005.05.125
http://dx.doi.org/10.1007/s00779-014-0772-5
http://dx.doi.org/10.1109/ACCESS.2019.2944389
http://dx.doi.org/10.1002/ett.3867
http://dx.doi.org/10.1109/TSMC.2017.2772821
http://dx.doi.org/10.3390/s20102826
http://dx.doi.org/10.2196/14090
http://dx.doi.org/10.1109/ACCESS.2020.3016832
http://dx.doi.org/10.1016/j.cosrev.2017.03.002
http://dx.doi.org/10.1109/TMC.2018.2860018
http://dx.doi.org/10.1109/COMST.2017.2743228
http://dx.doi.org/10.1109/JSEN.2020.3048903
http://dx.doi.org/10.3390/s16050707
http://dx.doi.org/10.3390/s20051382


Sensors 2022, 22, 3709 18 of 19

20. Nessa, A.; Adhikari, B.; Hussain, F.; Fernando, X.N. A survey of machine learning for indoor positioning. IEEE Access 2020,
8, 214945–214965. [CrossRef]

21. Mautz, R. Indoor Positioning Technologies. Ph.D. Thesis, ETH, Zurich, Switzerland, 2012. [CrossRef]
22. Halperin, D.; Hu, W.; Sheth, A.; Wetherall, D. Tool Release: Gathering 802.11n Traces with Channel State Information. SIGCOMM

Comput. Commun. Rev. 2011, 41, 53. [CrossRef]
23. Schmidt, R. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, 34, 276–280. [CrossRef]
24. Kumar, S.; Gil, S.; Katabi, D.; Rus, D. Accurate Indoor Localization with Zero Start-up Cost. In Proceedings of the 20th Annual

International Conference on Mobile Computing and Networking (MOBICOM), Maui, HI, USA, 7–11 September 2014; pp. 483–494.
25. Xiong, J.; Jamieson, K. ArrayTrack: A Fine-Grained Indoor Location System. In Proceedings of the 10th USENIX Symposium on

Networked Systems Design and Implementation (NSDI), Lombard, IL, USA, 2–5 April 2013; pp. 71–84.
26. Gjengset, J.; Xiong, J.; McPhillips, G.; Jamieson, K. Phaser: Enabling Phased Array Signal Processing on Commodity WiFi Access

Points. In Proceedings of the 20th Annual International Conference on Mobile Computing and Networking (MOBICOM), Maui,
HI, USA, 7–11 September 2014; pp. 153–164.

27. Xu, X.; Tang, Y.; Li, S. Indoor localization based on hybrid WiFi hotspots. In Proceedings of the International Conference on
Indoor Positioning and Indoor Navigation (IPIN), Sapporo, Japan, 18–21 September 2017; pp. 1–8.

28. Li, X.; Li, S.; Zhang, D.; Xiong, J.; Wang, Y.; Mei, H. Dynamic-MUSIC: Accurate Device-Free Indoor Localization. In Proceedings
of the ACM International Joint Conference on Pervasive and Ubiquitous Computing (UBICOMP), Heidelberg, Germany, 12–16
September 2016; pp. 196–207.

29. Zayets, A.; Steinbach, E. Robust WiFi-based indoor localization using multipath component analysis. In Proceedings of the
International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sapporo, Japan, 18–21 September 2017; pp. 1–8.
[CrossRef]

30. Ohara, K.; Hayashi, T.; Maekawa, T.; Matsushita, Y. Metric structure from motion by indoor localization using WiFi channel state
information. In Proceedings of the IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, Japan,
6–9 August 2017; pp. 352–357. [CrossRef]

31. Bnilam, N.; Tanghe, E.; Steckel, J.; Joseph, W.; Weyn, M. ANGLE: ANGular Location Estimation Algorithms. IEEE Access 2020,
8, 14620–14629. [CrossRef]

32. SpotfiMusicAoaEstimation. Available online: https://bitbucket.org/mkotaru/spotfimusicaoaestimation/src/master/ (accessed
on 1 January 2022).

33. Li, S.; Welsen, S.; Brusic, V. Multi-Step Optimization of Indoor Localization Accuracy Using Commodity WiFi. In Proceedings of
the IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Helsinki,
Finland, 13–16 September 2021; pp. 1267–1272. [CrossRef]

34. MoLAAlogorithm. Available online: https://github.com/SimonXMM/MoLA (accessed on 6 March 2022).
35. Han, S.; Li, Y.; Meng, W.; Li, C.; Liu, T.; Zhang, Y. Indoor localization with a single WiFi access point based on OFDM-MIMO.

IEEE Syst. J. 2018, 13, 964–972. [CrossRef]
36. Wang, J.; Jiang, H.; Xiong, J.; Jamieson, K.; Chen, X.; Fang, D.; Xie, B. LiFS: Low Human-Effort, Device-Free Localization with

Fine-Grained Subcarrier Information. In Proceedings of the 22nd Annual International Conference on Mobile Computing and
Networking (MOBICOM), New York, NY, USA, 3–7 October 2016; pp. 243–256.

37. Xiao, J.; Wu, K.; Yi, Y.; Ni, L.M. FIFS: Fine-grained indoor fingerprinting system. In Proceedings of the 21st International
Conference on Computer Communications and Networks (ICCCN), Munich, Germany, 30 July–2 August 2012; pp. 1–7.

38. Wang, X.; Gao, L.; Mao, S. PhaseFi: Phase fingerprinting for indoor localization with a deep learning approach. In Proceedings of
the IEEE Global Communications Conference (GLOBECOM), San Diego, CA, USA, 6–10 December 2015; pp. 1–6.

39. Wang, X.; Gao, L.; Mao, S.; Pandey, S. CSI-based fingerprinting for indoor localization: A deep learning approach. IEEE Trans.
Veh. Technol. 2016, 66, 763–776. [CrossRef]

40. Molodtsov, V.; Kureev, A.; Khorov, E. Experimental Study of Smoothing Modifications of the MUSIC Algorithm for Direction of
Arrival Estimation in Indoor Environments. IEEE Access 2021, 9, 153767–153774. [CrossRef]

41. Bakhar, M.; Vani, R.; Hunagund, P. Implementation and optimization of modified MUSIC algorithm for high resolution DOA
estimation. In Proceedings of the IEEE International Microwave and RF Conference (IMaRC), Bangalore, India, 15–17 December
2014; pp. 190–193.

42. Nocedal, J.; Wright, S. Numerical Optimization; Springer Science & Business Media LLC: New York, NY, USA, 2006; pp. 530–560.
43. Wax, M.; Ziskind, I. Detection of the number of coherent signals by the MDL principle. IEEE Trans. Acoust. Speech Signal Process.

1989, 37, 1190–1196. [CrossRef]
44. Tuncer, T.E.; Friedlander, B. Classical and Modern Direction-of-Arrival Estimation; Academic Press: Burlington, MA, USA, 2009;

pp. 2–21.
45. Zhuo, Y.; Zhu, H.; Xue, H. Identifying a new non-linear CSI phase measurement error with commodity WiFi devices. In

Proceedings of the IEEE 22nd International Conference on Parallel and Distributed Systems (ICPADS), Wuhan, China, 13–16
December 2016; pp. 72–79.

46. Liu, W.; Cheng, Q.; Deng, Z.; Chen, H.; Fu, X.; Zheng, X.; Zheng, S.; Chen, C.; Wang, S. Survey on CSI-based indoor positioning
systems and recent advances. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation
(IPIN), Pisa, Italy, 30 September–3 October 2019; pp. 1–8.

http://dx.doi.org/10.1109/ACCESS.2020.3039271
http://dx.doi.org/10.3929/ethz-a-007313554
http://dx.doi.org/10.1145/1925861.1925870
http://dx.doi.org/10.1109/TAP.1986.1143830
http://dx.doi.org/10.1109/IPIN.2017.8115943
http://dx.doi.org/10.1109/ICMA.2017.8015842
http://dx.doi.org/10.1109/ACCESS.2020.2966519
https://bitbucket.org/mkotaru/spotfimusicaoaestimation/src/master/
http://dx.doi.org/10.1109/PIMRC50174.2021.9569286
https://github.com/SimonXMM/MoLA
http://dx.doi.org/10.1109/JSYST.2018.2823358
http://dx.doi.org/10.1109/TVT.2016.2545523
http://dx.doi.org/10.1109/ACCESS.2021.3127861
http://dx.doi.org/10.1109/29.31267


Sensors 2022, 22, 3709 19 of 19

47. Xue, W.; Qiu, W.; Hua, X.; Yu, K. Improved WiFi RSSI measurement for indoor localization. IEEE Sens. J. 2017, 17, 2224–2230.
[CrossRef]

48. Gupta, S. Measurement Uncertainties: Physical Parameters and Calibration of Instruments; Springer Science & Business Media:
Berlin/Heidelberg, Germany, 2012; pp. 119–123.
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