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Abstract: For ground-based lidars in atmospheric observation, their data acquisition unit and control
unit usually work independently. They usually require the cooperation of large-volume, high-
power-consumption Industrial Personal Computer (IPC). However, the space-borne lidar has high
requirements on the stability and integration of the acquisition control system. In this paper, a
new data acquisition and lidar control system (DALCS) was developed based on System-on-Chip
Field-Programmable Gate Array (SoC FPGA) technology. It can be used in lidar systems with high
repetition rate and photon-counting mode and has functions such as data storage, laser control,
automatic collimation, wireless communication, and fault self-test. DALCS has two working modes:
in online mode, the echo data collected by DALCS are transmitted to the computer for display in
real-time and then stored with the current time as the file name; in offline mode, the data are stored
in local non-volatile memory, which can be read remotely and can work autonomously when there
is no IPC. The test results showed that in the frequency range of 0–70 M, the counting linearity of
DALCS reached 0.9999, and the maximum relative error between the DALCS card and the standard
signal source was 0.211%. The comparison results showed that the correlation coefficient between
DALCS and MCS-PCI was as high as 0.99768. The DALCS was placed in a self-developed lidar
sensor system for continuous observation, and the system worked stably under different weather
conditions. The range-squared-corrected signal profiles obtained from the observations reflect the
spatial and temporal distribution characteristics of aerosols and clouds well. This provides scheme
verification and experimental support for the development of space-borne lidar data acquisition and
control system.

Keywords: data acquisition; lidar control; SoC FPGA; photon-counting; space-borne lidar

1. Introduction

Lidar uses a laser as a medium. The laser interacts with particles or various gas
molecules in the atmosphere, and the backscattered echo signals are collected, which are
eventually used to obtain atmospheric parameters through data inversion and analysis [1,2].
Lidar is widely used to detect atmospheric aerosols, water vapors, ozone, or temperature
due to its high spatial and temporal resolution and high detection accuracy [3–5]. It mainly
consists of a laser transmitter unit, an optical receiver unit, an acquisition unit, and a control
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unit [6,7], of which the acquisition unit and the control unit are important components [8].
The echo light signal is converted to an electrical signal by photoelectric sensors, such as
Avalanche photodiode (APD) or Photomultiplier tube (PMT). The signal is then sent to the
control unit after data acquisition and pre-processing. The control unit receives and stores
the echo data, monitors the operating status of the laser and other components in real-time,
sets the acquisition card parameters, configures the photodetector gain and high voltage,
etc. It generally uses a universal Industrial Personal Computer (IPC) to achieve this, so that
the lidar works in an orderly manner according to the set steps.

Depending on the platform, lidar can be classified as ground-based, mobile, airborne,
and space-borne lidar [9]. They have different requirements for the acquisition and control
system. For example, ground-based lidar has relatively low requirements. Commercial
data acquisition cards are usually used to work with the IPC (control unit) to obtain
higher spatial resolution. The acquisition and control system is generally not dedicated,
which makes the ground-based lidar acquisition and control system relatively large. The
requirements of space-borne lidar are much more complicated compared to ground-based
lidar. For example, in the space environment, it is powered by solar energy and cannot
be manually adjusted or maintained during orbital operation. Therefore, the electronic
system is required to have high stability and integration. Due to the limitation of size,
power consumption, stability, and other factors, the software and hardware architecture
of the lidar data acquisition and control system is different from that of ground-based
lidar, and there is no such mature and available equipment in the market. At present,
the representative space-borne lidar in the cloud and aerosol detections are CALIOP
(Cloud-Aerosol Lidar with Orthogonal Polarization) and CATS (Cloud Aerosol Transport
System). CALIOP is a space-borne lidar launched by NASA in 2006. In the aspect of
control, it measures the detector’s dark current through the movable shutter and controls
the depolarizer to enter the 532 nm channel for depolarization calibration [6,10–12]. It not
only monitors the working status of the laser (e.g., laser energy) but also monitors other
components (acquisition card, controller, drive motor, power supply) to ensure reliable
operation of the system. Through the pre-processing of the data acquisition and control
system, it generates different levels of data products for researchers to download. CALIOP
acquires the echo signal using analog detection mode due to the large energy of the single
pulse of the laser it uses (110 mJ) [10]. While CATS is the first space-borne lidar using
photon-counting mode, which has two lasers with a single pulse energy of 1 mJ/2 mJ
and a repetition rate of 5 kHz/4 kHz, respectively. CATS increases the average transmit
power of the laser by increasing the pulse repetition frequency. In this detection mode,
the echo signal received by the lidar is extremely weak, only in the order of photons.
If the analog detection mode is used, the effective signal will not be extracted from the
background noise. Therefore, photon-counting technology was used. The intensity of the
echo signal at different distances is obtained statistically, which puts higher requirements
on data acquisition. In terms of control, it realizes whether to generate the 355 nm band by
controlling the moving mirror, leading to and away from the Third Harmonic Generation
(THG), which validated the feasibility of using the 355 nm band for space-borne lidar to
detect the atmospheric environment [13–15].

Previous reports show that researchers have designed photon-counting cards (multi-
channel scaler: MCS) based on high-speed digital chips, which have a complex circuit
structure. Marek Zieliński et al. designed a real-time multichannel scaler with a high
time resolution of 5 ns, but it supports a low laser repetition rate of 50 Hz (at 215 time
channels) [16,17]. With the development of semiconductor technology, field-programmable
gate array (FPGA) technology with high-speed parallel processing advantages has attracted
more attention from researchers. Z. Guzik et al. designed the TUKAN data acquisition
system, which has multi-channel analysis and multi-channel scaling function, but the
maximum counting rate of MCS is only 8 MHz [18,19], so it does not support photon-
counting detectors used by lidar. Commercially, available and mature photon-counting
cards are MCS-PCI and EASY-MCS, which use Peripheral Component Interconnect (PCI)
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and Universal Serial Bus (USB) bus to communicate with a computer, respectively. They
use sophisticated digital circuits to eliminate the effect of dead time caused by channel
switching. It is widely used in biological, chemical, atmospheric, and environmental
fields [20,21]. However, the data triggered each time needs to be uploaded to the computer
for software accumulation, the software provided does not support continuous acquisition.
They have a maximum vertical resolution of 15 m (minimum bins width is 100 ns), so they
are not dedicated for lidar detection in the atmospheric field. AMCS-USB is used in NASA
GSFC lidars such as Holographic Airborne Rotating Lidar (HARLIE), which has a vertical
resolution of up to 7.5 m. However, at this resolution, the detection range is only nearly
30 km (the maximum number of bins is 4 K) [22]. Due to the limitation of internal circuit
structure and transmission rate (USB 1.1 interface), it is not suitable for high repetition
rate space-borne lidar. The Licel transient recorder supports both analog and photon-
counting modes, it transmits data with Ethernet interface [23], but it is relatively large
due to its modular structure. All of the above only has a data acquisition function, while
data transmission, data storage, and control of lidar components need the participation
of IPC, which increases the complexity of the whole lidar structure. Analysis of technical
parameters of space-borne lidar are shown in Table 1. Based on previous reports and
research, we believe that the space-borne lidar in high repetition rate and photon-counting
mode is suitable for remote sensing monitoring of regional haze pollution, so we have
carried out the development of the current lidar data acquisition and control system.

Table 1. Analysis of technical parameters of space-borne lidar.

Parameter MCS-PCI EASY-MCS AMCS-USB Licel TR20-160

Minimum bins width 100 ns 100 ns 50 ns 50 ns
Maximum number of bins 64 K 64 K 4 K 32 K

Maximum number
of accumulation 4 M-1 4 M-1 32 K 2 M-1

Wired communication interface PCI USB 2.0 USB 1.1 10/100 Ethernet
Control function (wireless,

storage, self-test,
collimation, etc.)

No No No No

IPC is needed when working Yes Yes Yes Yes

This paper proposes a software-hardware co-design method based on System-on-Chip
(SoC) FPGA (Xilinx Zynq7020), and we develop a system (DALCS) integrating data ac-
quisition and lidar control function, which supports triggering the high repetition rate
signal, photon counting, and the control of lidar components. Zynq is a heterogeneous
multi-core chip with integrated FPGA and Advanced Reduced Instruction Set Computer
Machine (ARM), where the functions related to echo photon signal acquisition are imple-
mented in the FPGA, including segment counting, accumulation, and data transmission
of dual-channel photon signals. In addition, background noise removal [24] algorithm,
laser status monitoring, data storage, wireless communication, automatic collimation, and
other functions are executed in ARM. The second part of the article introduces the system
structure and key parameters of the self-developed lidar, which works in high repetition
rate and photon-counting mode, in which the laser, the mirror adjustment frame, and other
components need to work under the control of DALCS.

2. Data and Methods
2.1. Lidar Sensor System

DALCS is an important part of the lidar sensor system, which was developed by the
Key Laboratory of Atmospheric Optics Center of Anhui Institute of Optics and Mechanics,
Chinese Academy of Sciences. It is placed in Science Island, Hefei, Anhui Province, China
(Longitude: 117.175, Latitude: 31.907). Figure 1 shows the principle and internal structure
of the lidar sensor system. The transmitter system uses an Nd:YAG high repetition rate
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pulsed laser. Under the control of DALCS, it emits a 532 nm laser and simultaneously
outputs a trigger signal. The direction of the laser is adjusted by the reflector, and the
laser divergence angle is compressed by the beam expander and finally emitted into the
atmosphere. The backscattered echo signal is received by the Cassegrain telescope. The
small aperture on the back focal plane of the telescope limits the receiving field of view,
which can reduce the sky background noise. The collimating lens further converts the
echo light signal into parallel light. Then, the light is guided into the polarizing prism by
the reflector, so that the echo light signal is divided into horizontal and vertical detection
channels, and filtered by a narrow-band interference filter. Then, the lens focuses the
parallel light onto the target surface of the PMT sensor, which has a photon detection ability.
DALCS collects echo photon signals in real-time under the synchronous trigger signal. The
reflector at the last stage of the transmitting unit adopts a 2-inch picomotor piezoelectric
reflector adjustment frame (including X and Y axes). When the direction of the emitted
laser beam deviates from the receiving field of view of the telescope, DALCS can adjust
the reflection angle of the reflector to make the receiving and emitting paths parallel. In
addition, to ensure the stable operation of the lidar sensor system, DALCS can monitor the
working state of each lidar component and obtain the system operation and environmental
state parameters.
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Figure 1. Lidar sensor system: (a) schematic diagram and (b) internal structure diagram.

The detailed parameters of the lidar sensor system are shown in Table 2. Due to the
size limitation of the satellite payload platform, a small (340 mm × 120 mm × 125 mm),
high repetition rate laser was selected. The pulse repetition frequency of the laser is 3 kHz,
and the single pulse energy is 1 mJ. After the laser is expanded by 20 times, the divergence
angle is compressed to 113 µrad, which ensures a longer detection distance. As the core
component of the receiving optical system, the telescope also adopts a miniaturized design
with a diameter of 125 mm, a field of view angle of 280 µrad, and a diaphragm aperture
of 0.5 mm. The data acquisition and control unit adopts photon-counting detection mode.
The pulse width of the PMT detection module output is 10 ns, and the pulse pair resolution
is 20 ns. Bins width corresponds to the distance resolution, e.g., 100 ns corresponds to 15 m
(this can be calculated from the speed of light propagation in the atmosphere). The number
of bins is the number of acquisition points, and its product with bins width determines
the detection range. The amount of accumulation is limited by the cumulative sum (not to
exceed 4 M). Three adjustable parameters can meet the detection requirements of lidar in
different application environments.
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Table 2. Main parameters of lidar.

Part Parameters Value Part Parameters Value

Laser emitting unit

Laser wavelength/nm 532.18

Data acquisition
and lidar

control unit

Detector PMT
Divergence angle/µrad 113 Pulse width/ns 10

Single pulse laser
energy/mJ 1 Pulse-pair

resolution/ns 20

Pulse repetition rate/Hz 3 k Acquisition mode Photon-counting
Line width/pm 45 Number of Channels 2

Pulse width /ns 13 Maximum counting
rate/MHz 250

Optical
receiving unit

Telescope diameter/mm 125 Minimum bins
width/ns 20

Iris/mm 0.5 Maximum number
of bins 4 M-1

Field of view/µrad 280 Maximum number
of accumulation 4 M-1

Telescope focus
distance/mm 1430 Data storage mode Store or Sending

Filter bandwidth/nm 0.3

The backscattered echo signal received by lidar can be given by the lidar equation [6,9]:

P(z) =
1
z2 Kβ(z) exp

{
−2
∫ z

0
α(z′)dz′

}
(1)

where P(z) represents the echo signal power (unit: W) received by the lidar at the height z.
Since the echo signal power is inversely proportional to the square of the detection range z,
we usually use the range-corrected signal (P(z) × z2) to reflect the spatiotemporal distribu-
tion characteristics of aerosols and clouds; K is a system constant, which is related to the
lidar structure (unit: W × km3 × sr); β(z) = βa(z) + βm(z), where βa(z) is the backscattering
coefficient of aerosol at height z (unit: km−1 × sr −1), βm(z) is the backscattering coefficient
of atmospheric molecules; α(z) = αa(z) + αm(z), where αa(z) is the extinction coefficient of
the aerosol (unit: km−1), and αm(z) is the extinction coefficient of the atmospheric molecule.
exp

{
−2
∫ z

0 α(z′)dz′
}

is the transmittance of laser to and from the atmosphere, which re-
flects the attenuation effect of aerosol and molecules on the laser when the laser enters the
atmosphere. The horizontally and vertically polarized signals collected by DALCS can be
used to retrieve the extinction coefficients of atmospheric aerosols and clouds. Common
methods are Slope method [25], Fernald method [26], and Klett method [27].

2.2. Zynq-Based Acquisition and Control System

(1) Hardware design

Figure 2 is a block diagram of the hardware structure. ZYNQ-7020 integrated a
processing system (PS) and programmable logic (PL) unit. PS is a processing system
that integrates ARM Cortex-A9 core, and PL has programmable logic resources, which
can be used as peripherals of ARM [28,29]. In the DALCS of this paper, the pulse signal
counting and acquisition function was implemented in FPGA, and the programs related
to device control were run in ARM. Zynq-7020 is connected with lidar components (such
as laser, memory module, wireless module, electric adjustment rack) through UART, SPI,
Ethernet, and other communication interfaces. For example, the PS sends commands to
the DAC TLV5612 [30] (Texas Instruments, Dallas, TX, USA). Through the SPI bus, and
the DAC output voltage is used as the reference voltage for the high-speed comparator
ADCMP600 [31] (Analog Devices, Norwood, MA, USA). Since only two UART modules
were integrated into the PS, an IP core (Axi uart16550 [32]) was added to the PL to expand
the serial communication function, which was used to connect the laser and motion driver.
DALCS has both online and offline modes (marked in Figure 2). In the online mode,
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the data are sent to the host computer through the Ethernet, which has good real-time
performance and can be used for echo signal detection of ground-based lidar. In offline
mode, the data are stored in non-volatile memory and sent to a remote computer wirelessly,
which is suitable for use in special environments such as space-borne lidar.
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(2) Principle and logical realization of photon-counting

The echo photon signal acquisition process of the lidar sensor system is shown in
Figure 3. When the laser emits the laser, it outputs a trigger signal synchronized with the
laser. After being discriminated by the comparator, the signal is used as the starting signal of
sampling. The echo signal is detected by the PMT module and then input to the acquisition
unit. To obtain the distribution characteristics of aerosol concentration at different heights,
the segmented counting method is used to count the echo photon signal, which is based
on FPGA technology [33]. Due to the existence of shot noise, electronic thermal noise,
the background light of the sky will also cause the detector to output electronic pulses,
and “dark noise” will cause “dark counts”, which has a great impact on the observation
accuracy of lidar. In this paper, the echo signals of the same height interval (bins width) are
correspondingly accumulated to improve the signal-to-noise ratio [34]. Due to the influence
of the blind area (mark A) or the transition area (mark B), the telescope cannot receive or
partially receive the echo signal. In the filled area (mark C), the backscattered signal is fully
received by the telescope. Therefore, the detected echo intensity curve shows a trend of
first rising and then falling.
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The echo photon signal acquisition system is implemented in FPGA, and the overall
logic structure is shown in Figure 4. The system has two channels to collect the backscattered
signal’s parallel and perpendicular polarization parts. Each channel includes a control
module, counting module, storage module, and output module. By receiving the trigger
signal output by the laser as the enable signal, the acquisition, counting, and storage of the
photon signal are completed. After the counting of the specified specifications is completed,
the final collected data are sent to the data buffer (Block Read Only Memory (BRAM),
BRAM controller) through the output module to complete the data transmission between
FPGA and ARM. In addition, the ARM part can also change the time channel (para_bins),
the sampling length (para_length), and the number of accumulations (para_accum) through
the AXI_Lite bus. This enables the dynamic configuration of the FPGA count specification.
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The control module monitors the entire acquisition process, as shown in Figure 5. This
module mainly completes the real-time control of counting, storage, and output modules
by generating run, busy, and done signals. The rising edge detection of the trigger is
completed by processing the register beat of the external trigger signal. When the rising
edge of the trigger signal comes and done is low, the run is pulled high, indicating that the
single round counting of the acquisition system begins to work. When the run is high and
done is low, busy is pulled high, indicating that the single round counting of the acquisition
system is in progress. As the values of the internal registers cnt_bins and cnt_length are
equal to the set values of para_bins and para_length, respectively, done is pulled high, and
the single-round counting work of the acquisition system ends.
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Figure 5. The control module logic structure diagram.

The counter module is the core component of the acquisition system, as shown in
Figure 6. The module is designed with asynchronous logic, where registers (cnt1 and cnt2)
are driven by random pulses from an external echo photon signal. First, a square wave
signal (js_en) with a period of 2× para_bins is generated by counter select to enable cnt1
and cnt2 to count alternately with para_bins as the time unit. As js_en is pulled high and
the values of the internal registers (cnt_bins and para_bins-1) are equal, the clear signal
rst_1 is pulled high, and rst_1 is 0 in other cases. Conversely, when js_en is pulled low and
the values of the internal registers (cnt_bins and para_bins-1) are equal, the clear signal
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rst_2 is pulled high, and rst_2 is 0 in other cases. The rst_1 and rst_2 perform clearing of
registers cnt1 and cnt2, respectively. The values of registers cnt1 and cnt2 are increased
by 1 for each random pulse of the external echo photon signal received, as long as rst_1
and rst_2 are not pulled high. This method of using two registers to count alternately can
effectively reduce the probability of external pulse loss.
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Figure 6. The logic structure diagram of the counting module.

The final result of the sampling system count needs to be output to the ARM for pre-
processing. Figure 7 shows the logic of the data output module. The output module writes
the count results to the BRAM memory in the order of acquisition, and then the BRAM
controller transmits them to the Double Data Rate 3 Synchronous Dynamic Random-Access
Memory (DDR3 SDRAM) via the high-performance Advanced eXtensible Interface 4 (AXI4)
bus. After data transmission is completed, FPGA notifies the ARM processor through an
interrupt. ARM is connected to SDRAM, so it can quickly read out data, increasing the
timeliness. The flag_out is a transmission status signal, and data transmission starts when
flag_out is high. The following conditions for transmitting data must be satisfied: the
bins countercnt_bins, the sampling length counter cnt_length, and the accumulative times
counter cnt_accum are respectively equal to the parameters transmitted from the ARM. The
sampled data (data) are sequentially transferred to the BRAM under the synchronization
of the address(addr). Since the width of the AXI data bus is 32 bits, the addr signal is
increased by 4 each time.
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The timing diagram of the main logic signals is shown in Figure 8. The main clock
signal (clk) of the acquisition system is generated by a crystal oscillator and a phase-locked
loop (PLL). The red box in Figure 8 is a single trigger process, and flag_out is the output
flag signal after accumulation. After the accumulation (3000 accumulations here), the data
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will be output to ARM. After the external trigger signal trig_in is input to the acquisition
system, the run signal is output by the rising edge detection circuit. Run is the counting
start signal; when it has a falling edge, the busy signal is pulled up, indicating that the
counter is working. Once the count is completed, done outputs a high-level signal for one
cycle, indicating the end of sampling caused by a single trigger. To reduce the influence
of counting dead time, two counters are used for time-sharing, that is, when one of the
counters counts, the other is stored. The cnt1 and cnt2 are two independent counters, and
the length of bins (50 ns here) in a single counting cycle can be adjusted. Cnt_en selects
these two counters to prevent missing count events caused by data storage procedures.
This paper adopts the design method of asynchronous logic, which can effectively reduce
the probability of missing sampling.
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(3) Software design

The embedded program is designed based on Xilinx SDK 2017.4 software by Xilinx
(San Jose, CA, USA) software and developed in C language. Figure 9a shows the software
flow chart. The program runs on the ARM side of the Zynq chip, including device initialization,
system status self-check, echo data pre-processing, local storage, and network transmission.
(1) After the acquisition control system is powered on, the control program first initializes
the peripherals, acquisition cards, and communication protocols, then performs self-checks
on key components such as lasers, and reads the device status information. (2) After the
self-test is completed, ARM sends commands to the laser through the serial port to make it
emit laser light. Then, ARM sends three acquisition parameters (bin_width, length, and
accumulation) to FPGA through the AXI_Lite bus to make it work. (3) After receiving
the interrupt request from FPGA, ARM immediately reads data from DDR3 SDRAM and
executes the background noise removal algorithm to calculate the read echo data, which
is finally stored in the buffer. (4) In online mode, DALCS sends data to the computer via
Ethernet. The data acquisition and control software of the computer reads the data in
real-time and stores it in the hard disk according to the preset format. (5) In offline mode,
DALCS runs automatically, the data are stored in non-volatile memory after pre-processing
and are periodically sent to the computer wirelessly.

In online mode, the main program of the upper computer software is shown in
Figure 9b. The software is designed based on LabVIEW. It contains lidar component
control, data receiving, data processing, waveform display, and data storage functions.
Firstly, the computer sends the acquisition parameters to the DALCS card and monitors
the working status of key components, such as laser working current and temperature.
Secondly, when receiving the data from the acquisition card, the computer displays it



Sensors 2022, 22, 3706 10 of 15

in the waveform chart after processing (data reorganization and linear correction are
realized in data_process.vi). Finally, the data are stored in ASCII format in ‘.txt’ files named
‘hour-minute-second’ (e.g., ‘081902’), while the daily data are stored in a folder named ‘year-
month-day’ (e.g., ‘20220301’), which is used to generate the spatial-temporal distribution
of the aerosols by inversion. In offline mode, DALCS runs an automatic control program.
It can also be manually intervened by the upper computer software wirelessly, such as
obtaining the working state of lidar components. Its data processing mode is similar to
the online mode, but the communication mode is a serial port (connecting the wireless
communication module).
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3. Results and Analysis
3.1. Data Acquisition Testing and Analysis

To test the linearity of the acquisition and control system, according to the charac-
teristics of the output signal of the laser and the PMT module (as shown in Figure 10a),
two function generators are used to simulate the trigger signal and the photon signal,
respectively (the two signal generators can reduce their correlation), and to test the count
value output by DALCS under different pulse signal frequencies. The experimental process
is as follows: signal generator 33500B (signal jitter <40 ps RMS) by Keysight (Santa Rosa,
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CA, USA) outputs a pulse signal (3 kHz frequency, 3.33 µs pulse width) to simulate the
trigger signal (the same parameters as the laser output trigger signal); signal generator
WF1968 (signal jitter 90 ps RMS) by NF (Kohoku-ku, Yokohama, Japan) outputs a narrow
pulse signals of different frequencies (0–70 MHz). Set the width of the bins to 100 ns, the
Number of Bins to 2000, and the Number of Accumulation to 3000. Count values were
captured by Integrated Logic Analyzer (ILA) in Vivado software (Xilinx: San Jose, CA,
USA). As can be seen in Figure 10c, the mean count value agrees well with the ideal value
(black line) when different frequency pulse signals are input, and the correlation coefficient
reaches 0.9999, and the maximum relative error between the DALCS card and the standard
signal source was 0.211% (At an input frequency of 35 MHz). It can be seen from the test
results that DALCS supports the triggering of 3 kHz high repetition frequency pulse signals,
so it can be used for lidar with a high repetition rate laser.
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3.2. Hardware and Software Collaborative Debug

To verify the stability and reliability of data transmission, data pre-processing, and
lidar control functions, the echo signals were acquired by self-developed upper computer
software (developed based on LabVIEW). As shown in Figure 11, both sides of the software
are control functional areas, which mainly include the parameter setting or status monitor-
ing of the DALCS card, laser, wireless communication module, and the laser collimation
system. We installed the card in a lidar sensor system for continuous testing. In online
mode, the laser is turned on by this software, and the DALCS card monitors the operational
status of the lidar components (e.g., laser and collimation system) and the operational
environment parameters (e.g., temperature and humidity and latitude and longitude), and
the latter is sent out together with the collected photon-counting data. In offline mode,
DALCS works autonomously. The DALCS card directly sends control commands to make
the laser emit light. The sensor data, together with the photon-counting data, are stored in
the non-volatile memory and sent to the terminal computer wirelessly for a fixed period
(24 h). After debugging, the software can reliably send and receive data in both online
(Ethernet) and offline (wireless) modes. The received data are pre-processed, stored in the
local disk in turn with the time as the file name, and the echo photon signal of the two
channels is displayed in the waveform chart. When a fault is monitored, the indicator in
the upper right corner of the software turns red.
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Figure 11. The upper computer software of DALCS.

To further test the measurement accuracy of DALCS in lidar applications, the DALCS
card (Figure 12b, size 131 × 96 mm) was installed on the lidar sensor system (the left side
of Figure 12a) and compared with the MCS-PCI card. The frequency-divided trigger signal
and the photon signal of the 532 nm parallel polarization channel are connected to the
DALCS and MCS-PCI cards at the same time. Under the same parameters (bin width is
100 ns, number of bins is 1000, number of accumulation is 3000), the test results are shown
in Figure 12c,d. When the signal changes, the DALCS and MCS-PCI count values match
well in different bin intervals. It can be seen that DALCS has high counting accuracy and
time resolution. The linear fit plots of the two are shown in Figure 12d, and the correlation
coefficient is as high as 0.99768, which indicates that the two are in good agreement.
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3.3. Application Synthesis Experiment and Analysis

The DALCS is placed in the lidar sensor system, and the 532 nm parallel and perpen-
dicular polarization channel signals are continuously collected. To verify the adaptability
of DALCS to different environments, different weathers were selected for comparison.
Meteorological information shows that 5 March 2022 was cloudy with light pollution, and
8 March 2022 was sunny with good air quality. Therefore, the data detected by DALCS on
these two days were selected for comparison. Figure 13a,c show the spatial and temporal
distribution of the range-corrected signals of the 532 nm parallel and perpendicular polar-
ization channels detected on 5 March, respectively. As seen in Figure 13a, clouds appeared
at 5 km altitude from 0:00 a.m. to 4:00 a.m., including a temporary high cloud at 7.5 km at
around 3:00 a.m., with a cloud height of nearly 8 km. There is a thicker aerosol layer at a
low altitude of 1–3 km, with a maximum intensity of 70 MHz·km2, nearly 8 km. There was
a thicker aerosol layer at 1–3 km at low altitude, with a maximum intensity of 70 MHz·km2.
Around 12:00, clouds appeared at an altitude of 7.5 km, and at 8:00 p.m., the thickness of
the cloud layers increased, and the cloud height began to decline. Figure 13b,d show the
spatial and temporal distribution of the range-corrected signal detected on 8 March. As
can be seen from Figure 13b, the sky was cloudless that day and only low concentrations
of aerosols were present, with intensities mainly between 30 and 45 MHz·km2 and with
aerosol stratification. Before 5 p.m., aerosols are mainly distributed below 2 km; after 5 p.m.,
aerosols are present below 4 km. The experiments confirm that the designed DALCS is
capable of detecting the vertical optical properties of aerosols in clean, polluted, and cloudy
weather with high spatial and temporal resolution. The control unit provides a guarantee
for the collection and transmission of echo photon signals so that DALCS can work stably
and continuously in different environments.
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4. Conclusions

Based on SOC FPGA technology, a system integrating data acquisition and lidar con-
trol (DALC) was developed in this paper. Through testing and joint debugging on the
self-developed lidar sensor system, we carried out continuous vertical observations. The
conclusions are summarized as follows: (1) We have implemented the photon-counting
function of echo signals on Zynq-7020. In the counting method, the asynchronous logic
design was adopted to reduce the probability of missing photon pulse signals. The accu-
mulation function was realized by hardware on FPGA, so it can support the triggering
of a 3 kHz high repetition rate laser. In the frequency range of 0–70 MHz, the counting
linearity of DALCS reaches 0.9999, and the maximum relative error with the standard
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signal source is 0.221%. Compared with the actual measurement, the linear correlation
between DALCS and MCS-PCI is as high as 0.9983. (2) The echo signal acquisition and
lidar control functions are integrated on a circuit board. The communication interface is
extended on the FPGA, and the control program is executed on the ARM, which makes the
DALCS have functions such as fault self-test, lidar component status monitoring, local stor-
age, wireless communication, and auto-collimation. Through the software and hardware
co-design of the electronic system, the DALC is integrated with the optical-mechanical
structure of the lidar sensor system. In addition, the data collected by FPGA is transmitted
to ARM through the internal AXI bus of the chip, which reduces the probability of external
interference. These advantages meet the design requirements of high integration and high
stability of space-borne lidar. (3) The range-square-corrected profiles obtained from lidar
observations reflect the spatiotemporal distribution characteristics of aerosols and cloud
particles. In a variety of weather environments such as clean weather, polluted weather,
and cloudy weather, the DALCS can work stably in both online and offline modes. This
DALCS has flexible functions, high integration, and good stability. It provides a new option
for space-borne lidar with high repetition rate and photon-counting modes.
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