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Abstract: The use of big data leads to higher demands for hyperscale data centers (HDCs) in terms
of the scale and quantity required for data storage and processing. Before the construction of an HDC,
it is necessary to comprehensively analyze the economic budget according to the energy require-
ments and potential energy cost. We propose a global energy consumption prediction framework
based on the power usage effectiveness (PUE) calculation that considers all heat sources and power
consumption. The framework integrates physical models and a statistical framework that combines
IT equipment energy consumption and data center energy consuming predictions. Furthermore,
the framework provides a method to calculate the carbon emissions and electricity cost of the data
center. Using hourly meteorological data as climate parameters, combined with a limited range
of energy parameters, the annual PUE values of 60 regions were estimated, and a further analysis
of the Carbon Usage Effectiveness (CUE) and electricity costs in China was conducted as an example.
Based on experimental validation and an evaluation of real-time data, our framework can predict
the overall energy consumption of HDCs effectively, filling a gap in HDC research in the Asia-Pacific
region and providing a basis for HDC feasibility analysis.

Keywords: data centers; energy consumption modeling; power usage effectiveness (PUE);
prediction under uncertainty; carbon usage effectiveness (CUE)

1. Introduction

The rapid development of information technology has made data centers key infras-
tructure to support the development of cloud computing, the Internet of Things, 5 G,
AR/VR, etc.; thus, they require significant energy consumption. According to statistics,
the global energy demand for data centers surged from 194 TWh to 205 TWh between
2010 and 2018 [1]. The growing demand for computing-intensive services, such as artificial
intelligence (AI), and the increasing number of internet users has resulted in exponential
growth in both the types and volume of data. Data centers indirectly affect CO2 emissions.
It is estimated that, by 2030, CO2 emissions will reach 720 million tons [2]. More HDCs
have been constructed to meet this demand, which has caused a contradiction between
huge energy consumption and the limited power supply, and it is necessary to balance
the performance of HDCs with the capability of the external environment. In addition,
operators of HDCs try to find business opportunities by taking advantage of natural advan-
tages [3]. At present, there are two main development directions for large-scale data centers:
(1) reducing PUE and improving the energy efficiency of data centers, and (2) purchasing
renewable energy to provide power, rather than using a traditional power supply [1].
Therefore, to better optimize data center energy consumption on the premise of application
performance, it is necessary to build an appropriate and accurate energy consumption
model [4] that incorporates the performance, scale, location, and other characteristics
of data centers. Energy consumption models help to predict the consequences of opera-
tional decisions, allowing for more effective management and control of a system [5]. We
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planned to analyze energy consumption by investigating the following two aspects: First,
we identified the essential factors affecting energy consumption. Data centers consist of a
wide range of complex IT equipment and infrastructures [6], enhancing the complexity
of energy consumption calculations. To simplify the calculation, we planned to identify
the decisive factors that play key roles in the energy efficiency of a data center to balance the
calculation accuracy and efficiency. Second, we built mathematical models for the energy
consumption of data centers. Currently, there are no official statistical data on the energy
use of HDCs at the global level. It is necessary to formally describe the energy consump-
tion of data centers through mathematical models by transforming the energy efficiency
optimization problem of data centers into a classic combinatorial optimization problem [7]
to provide optimization strategies.

Data centers of different sizes consume different amounts of energy in the same
period. It is meaningless to judge whether a data center meets the energy-saving standard
from the perspective of how much energy is consumed. However, PUE can be applied
to most scenarios internationally to reflect the energy efficiency of data centers. Traditional
data center energy consumption models usually consider all internal components separately
and then perform a linear combination. However, it is easy to ignore the interactions
between components that are hard to predict. Currently, PUE can be predicted in several
ways. Using the PUE formula, we can calculate the overall energy consumption of a data
center by measuring the energy consumption of IT equipment.

In this paper, based on the PUE calculation method, we proposed a global energy
consumption prediction framework that integrates physical models and a statistical frame-
work and takes all heat generation sources and power consumption components of a data
center into consideration. The framework uses the quasi-Monte Carlo (QMC) method [8]
to calculate the Sobol sensitivity results [9]. Specifically, the PUE model takes into account
the free cooling technology used [10]. Based on hourly meteorological observation data
in 60 regions, we estimated the annual PUE of HDCs under the use of different cooling
methods and conducted a comparative analysis. We simulated the internal and external
parameters of HDCs and predicted the overall energy consumption and carbon emissions
of the data center based on PUE and CUE formulas. The feasibility of the zero-carbon data
center was then concluded from an in-depth analysis combined with data on the electricity
cost and energy structure.

The rest of the paper is organized as follows: Section 2 provides background knowl-
edge and work related to HDC energy consumption technologies. Section 3 presents
our energy consumption prediction framework, which includes the PUE models, the IT
equipment model, and related calculation methods. Section 4 presents an analysis of the
experimental results, an evaluation of our framework, and a discussion. Finally, Section 5
concludes the paper.

2. Related Work

Energy-saving, cost reduction, and carbon emission reduction strategies are the current
research hotspots regarding the construction of green data centers. The deployment of energy-
saving infrastructure and scheduling could dramatically increase the energy efficiency of data
centers; however, such infrastructure is required to predict energy consumption. Energy
consumption prediction is the basis of data center energy scheduling management, and it can be
divided into two parts: the energy consumption of IT facilities and the supporting infrastructure.
The former mainly refers to energy consumption during the operation of IT hardware, such
as servers, switches, and disk arrays, and the latter mainly includes energy consumption by
cooling equipment and power supplies. Generally, the former accounts for a larger proportion
of energy than the latter [11,12].

Energy consumption by the data center can be calculated separately. From the per-
spective of server equipment, the most popular models are the additive model [13–16]
and the model based on system utilization [17,18], and each model type can be further
divided into linear and non-linear models. For server energy-saving technologies, the most
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common technologies include server sleep scheduling [19] and Dynamic Voltage Frequency
Scaling (DVFS) [20]. Refrigeration is also a major energy-consuming part of large data
centers, as about 40% of the total energy consumption of data centers is used for cooling [21].
For data center refrigeration, heating, ventilation, air conditioning (HVAC), and computer
room air conditioning (CRAC) are commonly applied, and many experiments and models
have been developed for the accurate estimation of these processes. Some researchers have
found that the overall consideration of the IT system layer and the use of a supporting facil-
ity layer for cross-layer optimization can maximize the energy-saving potential of the data
center [22,23]. This research focused on the cross-layer energy consumption optimization
of the data center, taking the modules as a whole and considering the relationships be-
tween modules and carrying out unified optimal scheduling and management. The power
management methods of a data center air-conditioning system based on IT load scheduling
mainly include cooling cost optimization, cabinet heat balancing, peak heat load reduction,
and free cooling source utilization, in which free cooling is more universal. Power supply
system management technologies based on IT load scheduling mainly include limiting
power, the use of UPS supplemental power, and power supply equipment scheduling.

Unified cross-layer energy consumption models are mainly constructed by the follow-
ing two steps:

I. According to the physical energy consumption characteristics of the equipment,
specific mathematical formulas are applied to calculate the energy consumption
of each system, a process known as cross-layer joint optimization.
The total energy efficiency optimization framework proposed by Wan et al. [24]
is one of the examples of cross-layer joint optimization. This framework opti-
mizes the energy cost of a cross-layer data center, spanning the chip layer, server
layer, and computer room layer. The thermal prediction model ThermoCast [25] is
another example of joint optimization. It can integrate data center sensor obser-
vations and physical laws and is capable of capturing cyber–physical interactions
and undergoing automatic learning using the data.

II. With the help of learning tools, we can predict the temperature or energy con-
sumption of a system based on current/historical information (load, air condi-
tioning parameters, external environmental parameters, etc.), a process known as
prediction-based cross-layer joint optimization. However, methods based on CFD
simulation software have high computational complexity. There are also methods
based on machine learning, such as the self-aware workload forecasting (SAWF)
framework (Hsu et al. [26]), while Gao et al. [27] chose to directly predict the PUE.

PUE [28] is the ratio calculated by the total energy consumption of a data center (pDC)
over the energy consumption of the IT equipment used (pIT). It is an index that is used
to evaluate the energy efficiency of a data center, and the result is usually greater than 1.
The closer the PUE is to 1, the higher the energy efficiency level of the data center is. PUE is
expressed by Equation (1):

PUE =
pDC

pIT (1)

Many researchers have chosen to calculate data center energy consumption by measur-
ing PUE. The most comprehensive study applied a thermodynamic model using constant
model inputs to estimate PUE and compared the results with a different free cooling method
developed by Gozcü et al. [29]. Research on PUE prediction has also been conducted. A
5-layer neural network developed by Gao’s team [27] mentioned above predicted the PUE
of a Google center with an average absolute error rate of 0.004. However, this work used
2-year historical data, and training such a neural network model requires a large amount
of nonpublic data containing 19 dimensions, which further increases the training difficulty.
Another study by Brady et al. [28] performed high-precision PUE calculations on a set
of Facebook HDCs in Prineville, Oregon. This was a thermodynamic modeling case study,
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which was limited to the airside economizer of a single data center and did not include an ac-
curacy evaluation of other data centers using airside economizers or waterside economizers.
Although sensitivity analyses were performed in both studies, the were analyses were
conducted separately. The relative importance of parameters was not assessed, and the in-
teraction effects of important variables were also ignored.

In addition to PUE, other energy efficiency metrics have been applied to the evaluation
of data centers, such as pPUE [30] (i.e., local PUE) and RER [31] (i.e., renewable energy ratio).
Greenpeace, an international environmental protection organization, believes that “green IT
= energy efficiency + renewable energy“, which means the greening of the Internet not only
needs to involve the reduction of costs by improving the energy efficiency but also requires
the use of renewable energy to fundamentally reduce carbon emissions. Internet companies
have begun to deploy data centers in places with lower electricity costs or have switched to
high usage of new energy, where the power either comes from purchasing from third-party
power plants or is provided by new energy power plants built by the company itself.
Typical examples of new-energy-powered plants include the solar farm used by Facebook
in Ohio for powering data centers and the Green House Data wind farm built in Ohio.

The mature energy consumption prediction methods mentioned above (as well as the
currently used method) first establish an energy consumption prediction model based
on the historical data generated during the operation of IT equipment and supporting
infrastructure and then apply the algorithm to obtain the optimal parameters to control
the energy consumption value of various pieces of equipment in the future. The feasibility
of these methods relies on the quality of the model. Once the model deviates from the real
situation of the equipment operating parameters, the quality of the control strategy cannot
be guaranteed.

Cloud computing services are extremely popular and widely adopted due to their
flexibility and on-demand advantages. They are hosted in cloud data centers (CDCs),
enabling lower energy consumption and carbon emissions. CDC techniques are dependent
on geodispersed Modular Data Center (MDC) designs and virtualization-based workload
migration [32]. Ahmad et al. [33] reviewed the Virtual Machine (VM)-based workload
consolidation schemes in CDCs. P. Nehra et al. [34] compared several existing energy
consumption models of CDCs. Yamini et al. [35] proposed a method to reduce the number
of servers based on the clique star cover number theorem in which more nodes are con-
nected to the server. Zhang et al. [36] elaborated on the energy consumption in the cloud
environment by measuring energy usage in different scenarios. The field of energy effi-
ciency in CDCs holds great promise and remains explorable for researchers.

3. Energy Consumption Prediction Framework

To predict the total energy consumption of a data center, we (1) calculated the PUE
according to different internal and external parameters, and (2) estimated the IT equipment
energy consumption. The overall energy consumption, carbon emissions, and electricity
cost of the data center were obtained directly.

3.1. PUE Prediction

As shown in Figure 1a, the prediction of PUE is based on the model proposed by
Lei et al. [37], which considers all of the heat-generating sources and power-consuming
components in the data center system. When free cooling is involved in energy-saving
problems, the model mainly considers three cooling scenarios: airside economizers com-
bined with adiabatic cooling (AE), waterside economizers utilizing the evaporative cooling
capability of cooling towers (WEC), and waterside economizers using seawater for cooling
(WES). When the above technologies cannot provide a sufficient cooling capacity, the me-
chanical chiller of the cooling system will be deployed to maintain the indoor temperature
within an acceptable range.

The aim of the experiments described in this paper was to verify the WEC refrigeration
method. Given the external climatic conditions and a specified indoor thermal environment,
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the PUE model identifies the economizer application scenarios and the amount of addi-
tional mechanical cooling that may be required. Based on the thermodynamic model,
the total calorific value and electricity consumption of a data center can be described by
Equations (2) and (3):

qDC = pIT + (1− ηUPS)pUPS + αPD pPD + pL (2)

pDC = pIT + (1− ηUPS)pUPS + αPD pPD + pL + ∑
f

pFAN
f + ∑

p
pPUMP

p + pCH (3)

where qDC is the total heat generated by a data center. pIT , pUPS, pL, and pDC represent
the power used by the IT equipment, UPS, lighting system, and the entire data center,
respectively. pPD represents the power used across the power transformation and dis-
tribution system. pFAN

f , pPUMP
p represents the power used by the fan type f (including

CRAC fans and cooling tower fans) and the power used by pump type p (including chiller
pumps, waterside economizer pumps, cooling tower pumps, and humidification pumps).
pCH is the power used by the chiller. The units of all of the above parameters are kW.
ηUPS is the efficiency of the UPS, and αPD is the percentage of power loss in the power
transformation and distribution system (i.e., the loss of lines and switches).

Figure 1. Data center global energy consumption prediction framework. (a) is used for PUE predic-
tion, and (b) is applied for IT equipment energy consumption.

The determination of the WEC application scenario requires the water temperature
delivered by the economizer heat exchanger (TWEC, ◦C) and the return temperature of the
facility water (Trw, ◦C) to be compared. The supply temperature of the facility water (Tsw,
◦C) was set according to the dynamically changing temperature of the supply and return
air of CRAC, which is described by Equation (4):

Tsw = Tra − (Tra − Tsa)/ε = Tra − ∆Tair/ε (4)
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where Tra represents the CRAC supply air temperature, and Tsa represents the CRAC supply
air temperature. ∆Tair is the temperature difference between the supplied and returned
CRAC air. The units of the above parameters are ◦C. ε is the heat exchanger effectiveness
of CRAC cooling coils. Then, Trw can be calculated as the temperature difference between
the supplied and returned facility water (∆Tw, ◦C). TWEC can be calculated by Equation (5):

TWEC = Twb + (ATCT − ATEX)/ε = Tra − ∆Tair/ε (5)

where Twb, ATCT , and ATEX represent the wet bulb temperature of outdoor air, the approach
temperature of the cooling tower, and the approach temperature of the economizer heat
exchanger, respectively. Their units are ◦C.

In general, qDC can be expressed by Equation (6):

qDC = qWEC + qCH (6)

where qWEC represents free cooling supplied by WEC. Its units are kW.
As shown in Figure 2, the example vectors of the PUE model can be expressed in

vector form:
~s = [Toa, RHoa, Patm, ηUPS, αPD, ...] (7)

Figure 2. Generation of example vectors.

The input of the PUE model can be divided into two categories: climate parameters and
data center energy system parameters. The latter includes equipment specifications, system
operating efficiency parameters, and indoor environmental set-points, and a detailed
description of the former can be found in [37].

In order to find the parameters that have the greatest influence on predicting the PUE
value and to further evaluate the influence of the interactions among variables during
PUE prediction, we first used Sobol’s method to generate sample vectors from climate
and energy system parameters, processed the sample vectors using the model, and finally,
calculated the Sobol sensitivity index using the quasi-Monte Carlo (QMC) method for the
uncertainty analysis. If the uncertainty of key parameters can be reduced, the accuracy
of the prediction results can be greatly improved.

The outdoor dry bulb temperature and outdoor relative humidity ranges were set
to −40–40 ◦C (approximate range of the outdoor dry bulb temperature in all regions
of China throughout the year) and 0–100%. The range of parameters was estimated and
determined based on public information, and each interval adopted a uniform probability
distribution.
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The results of the Sobol sensitivity analysis show that climate parameters play a key
role in PUE values, so site-specific climate data are needed as input. Fortunately, accurate
values are relatively easy to obtain with meteorological data as the input. Specific data
on energy and machinery depend on the internal documents of the specific data center. The
results of the analysis of the Sobol sensitivity are described in detail in Section 4.1.

3.2. IT Equipment Energy Consumption Model

Energy consumption models of IT equipment presented in previous work can be
roughly divided into two categories: energy consumption evaluation models based on sys-
tem utilization and energy consumption prediction models based on performance monitor-
ing counters (PMC) [38]. We built an additive model for IT equipment energy consumption
considering the former category, as described by Equation (8):

pIT = pCPU + pMEM + pDISK + pOthers (8)

Specifically, processor energy consumption can be calculated by CPU usage modeling,
memory energy consumption can be calculated by cache miss rate modeling, and disk energy
consumption can be calculated as the number of read and write bytes.
Based on the performance monitoring counter, the model was built as described by Equation (9):

pIT = C0 +
n

∑
i=1

CiEi (9)

where C0 is a constant, Ei is the collected performance counter event, and Ci is the influence
coefficient of the ith event on energy consumption. C0 and Ci can be found by linear regression.

Energy prediction models based on PMC have become mainstream applications for
energy optimization. They always outperform energy modeling methods based on sys-
tem utilization due to their fine-grained characteristic. A. Shahid et al. pointed out that
any nonlinear energy model using only PMC (such as RF and NN models) is inconsis-
tent and inaccurate [39] and proposed a theoretical framework for computing energy
prediction models [40] because of the current state-of-the-art multicore CPU energy pre-
diction models based on linear regression.The basic practical implications of the theory
include selection criteria for model variables, model intercepts, and model coefficients.
The model theory follows the physical laws of the conservation of computing energy.

Property 1: An abstract application run can be accurately characterized by a set
of n-vectors of PMCs over R ≥ 0. A null vector of PMCs is represented by

NULL = {0}n
k=1 (10)

A function, fE : Rn
≥0 −→ R≥0 maps the vectors to energy values, and ∀p, q ∈ Rn ≥ 0,

p = q⇒ fE(p) = fE(q) (11)

Property 2: There exists an application space, (A,⊕), where A is a (infinite) set
of applications, and ⊕ is a binary function on A,⊕:

A×A −→ A (12)

There exists a (infinite) set of binary operators,

O = {◦PQ,k : R≥0 ×R≥0 −→ R≥0, P, Q ∈ A, k ∈ [1, n]} (13)

so that for each P, Q ∈ A, and their PMC vectors p = {pk}n
k=1, q = {qk}n

k=1 ∈ Rn
≥0, respec-

tively, the PMC vector of the compound application P ⊕ Q will be equal to
{pk ◦PQ,k qk}n

k=1.
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Property 3:
fE(NULL) = 0 (14)

Property 4:
∀p ∈ Rn

≥0∧ 6= NULL, fE(p) > 0 (15)

Property 5: ∀P, Q ∈ A, p = {pk}n
k=1, q = {qk}n

k=1 ∈ Rn
≥0, ◦PQ,k ∈ O,

fE({pk ◦PQ,k qk}n
k=1) = fE(p) + fE(q) (16)

When fE(x) is a linear function, the model is linear. The linear consistent energy
prediction model can be formalized as ∀p = (pk)

n
k=1, pk ∈ R≥0,

fE(p) = β0 + β× p = β0 +
n

∑
k=1

βk × pk (17)

where β0 is the model intercept, β = {β1, β2, ..., βn} is the vector of the regression coef-
ficients or the model parameters. Influenced by measurement errors or stochastic noise,
the measured energy can be described by Equation (18):

f̃E(p) = fE(p) + ε (18)

where the error term ε is a Gaussian random variable with an expectation of zero and
variance of σ2, written as ε N (0, σ2).

Linear energy models have following properties:

Theorem 1. If a linear energy predictive model, such as Equation (17), is consistent, the model
intercept must be zero and the model coefficients must be positive.

Theorem 2. If a consistent energy model is linear, then it is strongly composable with O = {+}.

Theorem 3. If a consistent energy model is strongly composable with O = {+} and the function
fE(x) is continuous, then it is linear.

Details and proofs can be found in [40]. Experiments on two modern Intel multi-
core servers improved the prediction accuracy of state-of-the-art linear regression models
with significant energy saving. This theory can be used to build accurate linear energy
prediction models.

Based on the above settings, it can be assumed that the PMC-based energy prediction
model satisfying the following five properties of the extended model can be defined as a
consistent energy model under the same computing environment.

3.3. Calculation of the Total Energy Consumption and Related Analysis

According to Equation (1), we can calculate the total energy consumption of a data
center using Equation (19):

pDC = PUE× pIT (19)

If the PUE result is predicted by Section 3.1, and the IT equipment energy consumption
is obtained by Section 3.2 or known data, the total energy consumption of a particular data
center can be inferred.

PUE cannot evaluate the environmental performance and energy expenditure of a data
center. The Green Grid Organization proposed a new energy measurement standard for green
data centers, the Carbon Usage Effectiveness (CUE). The CUE is the carbon emission intensity
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per kilowatt-hour of electricity used [41], the ratio of the total CO2 emissions of the data center
(Dtotal, kgCO2eq) to the energy consumption of the IT equipment (pIT, kW× h):

CUE =
Dtotal
pIT (20)

The CUE can also be expressed by the product of the Carbon Emission Factor (CEF)
and PUE as shown in Equation (21):

CUE = CEF× PUE (21)

The CEF is the carbon emissions per unit of energy consumed (kgCO2e× kWh−1),
and Table 1 shows the CEF of several common electrical energy sources [42]. The carbon
emission factor of fossil fuels is the largest.

Table 1. CEF of common electric energy sources.

Energy Type Carbon Emission Factor / kgCO2e × kWh−1

Coal 968
Oil 890

Natural Gas 440
Solar Energy 53
Wind Energy 29

Nuclear Energy 15
Water 13.5

Of the energy sources presented above, wind energy and solar energy are the most
promising green energy sources for data centers due to their extensive existence and
environmental friendliness. However, the power generation of these green energy sources
varies over time, causing instability. Environmental conditions also have a great impact.
For example, wind speed affects wind energy, and sunshine intensity affects solar energy.
In terms of early installation and deployment, new energy power generation costs more
than energy production by traditional fossil fuel power plants, but the former has lower
follow-up management costs and significantly less pollutant emissions during operation.

Table 2 shows the CEF and overheads of the grid and some new green energy products.
In terms of the electricity cost, it is necessary to consider the power source. In addition,
the impact of its carbon emissions needs to be considered.

Table 2. Unit energy expenditure and carbon emission factor.

Energy Price per Unit/$ × kWh−1 Carbon Emission
Factor/kgCO2e × kWh−1

Electricity Grid 5.0 586
PPA 6.0 0
REC 0.5 0
DG 30.0 1056

4. Evaluation

We used hourly meteorological data as the input data for the climate component
of the PUE model and generated random values within the range of established reliable
mechanical parameters as the parameter input for the energy component. The annual PUE
was estimated, and the carbon emissions and electricity costs were further analyzed.

4.1. Sensitivity Results

Making the key input parameters as accurate as possible is an important way to reduce
the uncertainty of model prediction. As the largest source of uncertainty, climate parameters
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can be obtained from weather databases in most parts of the world. These climate data are
exact sensor data and are beneficial to the model’s accuracy. However, the internal parameters
of data centers are hard to obtain, and the specific internal settings of the data center, such
as the UPS efficiency, may be difficult to determine. The accuracy of the method was assessed
by the bootstrapping method using 100 sample replacements to calculate the 95% confidence in-
terval of the sensitivity indicator [43]. Results of all sensitivity indices are shown in the attached
Table A1, and factors greater than 0.01 are shown in the following Figure 3:

Figure 3. Total order sensitivity indices greater than 0.01.

To show the interaction effect of the variables, we divided the sum of the total order
sensitivity indices (∑k

i=1 STi ) by the sum of the first order sensitivity indices (∑k
i=1 Si). The

ratio was 1.96, which proves that the total order sensitivity should be used, because the
global sensitivity analysis takes the interactions between parameters into account, making
it more robust than the local sensitivity analysis, while the first order sensitivity index can
only reflect the effect of a single variable [44].

This section discusses the sensitivity analysis results obtained under Chinese climatic
conditions (Section 3.1). When applying the model to other regions, a sensitivity analysis
based on the climatic characteristics unique to that region would need to be performed.

4.2. Annual PUE Estimation Analysis

Based on the annual PUE values obtained from hourly meteorological data, we drew
boxplots by season. Figure 4 lists the results for Guangzhou, Guiyang, and Mohe.

(a) Guangzhou (b) Guiyang (c) Mohe

Figure 4. Annual PUE estimation in 3 cities.
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Figure 4 shows that the average PUE value is smaller in places where the average
annual temperature is lower. The uncertainty range of the annual simulation results is
large. Therefore, it is more intuitive to distinguish by season: a higher PUE in summer
(S2) and a lower PUE in winter (S4). Figure 5 shows scatter plots of the estimated PUE
values for Nanjing and Harbin by quarter. Overall, Nanjing’s estimated PUE is higher
than Harbin’s. Obviously, the temperature is higher in summer, and the PUE values
of the two cities in summer are relatively high, while those in the first quarter are lower.
In the fourth quarter, the difference in PUE estimates between the two cities is even more
pronounced, indicating that the large-scale air-cooled data center built in Harbin has better
cooling conditions while utilizing free cooling sources. This can also be applied to other
regions, which means that in regions with relatively higher temperatures and humidity
levels, the energy consumption required by data centers is greater. In fact, reports of PUE
values measured in existing data centers confirm this issue. Lei et al. [37] compared and
evaluated models using 17 HDCs data from Google and Facebook. Most of the model
prediction results controlled the prediction interval within 50%, and almost all values were
within the 90% prediction interval, ensuring the accuracy of the PUE prediction model.
Chinese data centers usually adopt a cooling method that combines a cooling tower and a
plate heat exchanger. However, since real-time or hourly tracking PUE data from Chinese
data centers has not been released, the prediction results of the annual PUE (WEC) value
in this paper were compared with actual data reported from different places to confirm
the accuracy of this model.

(a) Naning, CN (b) Harbin, CN

Figure 5. Typical annual PUE estimation of 2 cities in China by season.

The model has been verified with data from several countries, but no one has applied
it to the Asia-Pacific region. We predicted annual PUE values for some cities in Australia,
Japan, and Russia. Taking Adelaide and Sapporo as examples in Figure 6, we modified
the parameters according to the actual local conditions, and the results are in line with
the reported values and our expectations.

(a) Adelaide, AU (b) Sapporo, JP

Figure 6. Typical annual PUE estimation of 2 cities worldwide by season.
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We also conducted experiments on some regions in the US not mentioned in [37].
All scatter plots are shown in Appendix A.

4.3. Carbon Emissions Prediction

This subsection and Section 4.4 discuss China as an example. The analysis method
for other regions is the same.

Table 3 was taken from the “Research Report on China’s Carbon Neutrality Before 2060“
released by the Global Energy Interconnection Development Cooperation Organization
(GEIDCO) [45]. Assuming that the proportion of energy used by the data center is similar
to the data in the table, the carbon emissions can be roughly estimated. If the CEF of biomass
and other energy sources is considered to be 10 gCO2eq× kWh−1, and the carbon emissions
of oxygen-fired units are considered, then in 2020, 2030, and 2060, the estimated CUE
of the data center will be 506.705x, 311.739x, 53.738x PUE respectively.

Table 3. Installed power generation and structure in China from 2020 to 2060 (in 100 million kWh).

Energy
Type

2020 2030 2060

Generation Proportion Generation Proportion Generation Proportion

Wind 2.8 12.7% 8 21% 25 31.2%
Solar 2.5 11.3% 10.25 27% 38 47.4%

Hydro 3.7 16.8% 5.54 14.6% 7.6 9.5%
Coal 10.8 49% 10.5 27.6% 0 0.0%
Gas 0.98 4.5% 1.85 4.9% 3.2 4.0%

Nuclear 0.5 2.3% 1.08 2.8% 2.5 3.1%
Biomass 0.67 3% 0.82 2.2% 1.8 2.2%
Oxygen 0 0% 0 0% 2 2.5%

Total 22 38 80

It can be inferred that the estimated carbon emission of data centers in China in 2030
will be about 60% of that in 2020, and emissions are expected to reduce by nearly 90% CO2
by 2060 without the consideration of climate change and the optimization of energy saving
technology in data centers. By substituting the predicted PUE values of different regions,
it is also possible to carry out a comparative analysis of different regions.

COVID-19 has highlighted the important roles of digital technology, the digital indus-
try, and digital services in the operation of the economy and society. In the postepidemic
era, people’s production and lifestyles have undergone profound changes. The numbers
of data centers and racks have increased dramatically, and electricity demand has grown
rapidly. Ensuring an increase in clean energy installations and making them generate
as much power as possible are essential to decarbonize the entire electricity industry.
The spatiotemporal controllability of part of the power load in HDCs is conducive to the
promotion of renewable energy consumption. Coal power harms the environment and
contributes to climate change, and its economic benefits are not very good. Therefore,
coal removal is the most direct and effective measure for greening and the attainment of a
low-carbon power structure.

4.4. Electricity Cost Estimation

In order to simplify the calculation, we used general industrial and commercial sales
prices under 10 kV form various provinces and cities in 2019 as the electricity fee calculation
parameters (Table 4). The data were collected from the local Development and Reform
Commission, the Price Bureau, and other departments.

Assuming that the total annual energy consumption of IT equipment in the precon-
structed data center was 100 million kWh, the calculation was performed using the esti-
mated PUE for each region in 2019. For situations where new HDCs are built in various
places, the estimated electricity costs are shown in Table 5. The top 5 regions in descending
order are presented here, and the full dataset is presented in Table A2 in Appendix A.
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Table 4. Current electricity prices for general industrial and commercial use in various regions.

Area Current Electricity Price 1/$× kWh−1

Jilin 0.1183
Beijing 0.1138

Shanghai 0.1126
Hubei 0.1116
Hunan 0.1106

1 “$“ here is the price of USD in 2022.

Table 5. Top 5 estimated average annual electricity cost of data centers in various regions.

Area Electricity Cost 1/$1M per Year

Delinha 8.1376
Xining 8.1429

Kashgar 8.1903
Karamay 8.2474
Yinchuan 9.6742

1 “$“ here is the price of USD in 2022.

As shown in Table 5, even if some areas consume less energy, the calculated electricity
cost is relatively high due to the higher electricity price. The top 5 regions in ascending
order are shown here, the full dataset is presented in Table A3.

5. Conclusions

This study proposed a framework to predict the overall energy consumption of HDCs
with air-cooled IT equipment. According to the PUE predicted from the location and
the internal structure of data centers from the point of view of IT equipment energy
consumption, the total energy consumption can be calculated, and the carbon emissions
and electricity costs can be forecast. Using the hourly meteorological data in the NOAA
Integrated Surface Database (ISD) as climate parameters, the annual PUE values and the
electricity cost of data centers to be built in 49 regions in China were analyzed. We also
conducted an experiment involving 11 regions in other countries to extend the generality
of our framework. Compared with the data presented in actual reports, our framework
performed well. Our results show that climate is an important factor that impacts the energy
consumption of data centers with consideration of free cooling. Generally, building HDCs
in areas with lower temperatures takes advantage of free cooling and could save energy
costs and improve the economic efficiency. The UPS efficiency also has a large impact
on the results of the model. Data centers can improve their overall energy efficiency
by increasing the efficiency of the UPS. Compared with [37], we found that when some
parameters are modified according to the characteristics of regions, the sensitivity indices
and their sequence will change. This reflects the impact of location factors on data center
construction.

According to the results, some regions have low annual PUE values with high elec-
tricity costs and unreasonable energy structures. This means that PUE should not be seen
as the only criterion for measuring the quality of data centers. With the improvement of poli-
cies and people’s awareness of environmental protection, the cost of carbon trading and
climate change need to be considered in the construction of data centers as well. Therefore,
it is necessary to coordinate the cost factors when considering the construction of HDCs
and consider the comprehensive benefits, social impact, and environmental friendliness
in general.

Author Contributions: Conceptualization, J.L.; methodology, Y.Z. and J.L.; formal analysis, Y.Z.;
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Appendix A

Table A1. Sobol Sensitivity Index (WEC).

Total Sensitivity Index
Input Index

Outdoor Dry Bulb Temperature 7.17 × 10−1

Outdoor Relative Humidity 3.07 × 10−1

UPS efficiency 2.02 × 10−1

Supply air dry bulb set point 4.38 × 10−2

Chiller partial load factor 2.64 × 10−2

Heat exchanger effectiveness (CRAC cooling coils) 2.05 × 10−2

Approach temperature (cooling tower) 1.53 × 10−2

Percentage of power loss in power transformation and distribution system 8.27 × 10−3

Temperature difference (supply/return facility system water) 7.04 × 10−3

COP relative error to regressed value 3.72 × 10−3

Fan pressure (CRAC) 3.60 × 10−3

Temperature difference (supply/return CRAC) 3.29 × 10−3

Fan efficiency (CRAC) 2.39 × 10−3

Temperature difference (supply/return cooling tower water) 1.65 × 10−3

Fan pressure (cooling tower) 1.51 × 10−3

Liquid–gas ratio (cooling tower) 1.43 × 10−3

Atmospheric pressure 1.30 × 10−3

Approach temperature (economizer heat exchanger) 1.06 × 10−3

Pump pressure (cooling tower) 7.36 × 10−4

Pump efficiency (cooling tower) 3.84 × 10−4

Sensible heat ratio (SHR) 2.05 × 10−4

Pump pressure (waterside economizer pump) 1.42 × 10−4

Fan efficiency (cooling tower) 1.31 × 10−4

Lighting power to IT power ratio 7.94 × 10−5

Pump efficiency (waterside economizer pump) 7.43 × 10−5

Pump pressure (chiller pump) 1.42 × 10−5

Pump efficiency (chiller pump) 7.12 × 10−6

Pump efficiency (humidification pump) 3.09 × 10−8

Pump pressure (humidification pump) 1.50 × 10−8

Total 1.369

First Order Sensitivity
Input Index

Outdoor Dry Bulb Temperature 4.20 × 10−1

UPS efficiency 2.02 × 10−1

Outdoor Relative Humidity 4.29 × 10−2

Supply air dry bulb set point 8.15 × 10−3

Percentage of power loss in power transformation and distribution system 8.06 × 10−3

Fan pressure (CRAC) 3.56 × 10−3

Fan efficiency (CRAC) 2.51 × 10−3

Chiller partial load factor 2.38 × 10−3

Heat exchanger effectiveness (CRAC cooling coils) 2.23 × 10−3

Temperature difference (supply/return facility system water) 2.08 × 10−3

Temperature difference (supply/return cooling tower water) 1.77 × 10−3

Fan pressure (cooling tower) 1.44 × 10−3

Atmospheric pressure 1.08 × 10−3

COP relative error to regressed value 9.52 × 10−4

Liquid–gas ratio (cooling tower) 7.90 × 10−4

https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00532
https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00532
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Table A1. Cont.

Pump pressure (cooling tower) 7.72 × 10−4

Pump efficiency (cooling tower) 3.14 × 10−4

Sensible heat ratio (SHR) 2.67 × 10−4

Temperature difference (supply/return CRAC) 1.92 × 10−4

Lighting power to IT power ratio 1.61 × 10−4

Approach temperature (economizer heat exchanger) 1.47 × 10−4

Pump pressure (waterside economizer pump) 1.26 × 10−4

Pump efficiency (waterside economizer pump) 4.67 × 10−5

Pump efficiency (chiller pump) 1.28 × 10−5

Pump pressure (chiller pump) 1.14 × 10−5

Pump pressure (humidification pump) 4.24 × 10−8

Pump efficiency (humidification pump) −1.68 × 10−8

Fan efficiency (cooling tower) −6.52 × 10−5

Approach temperature (cooling tower) −1.63 × 10−3

Total 0.700

Table A2. Current electricity price for general industrial and commercial use in various regions.

Area Current Electricity Price 1/$× kWh−1

Jilin 0.1183
Beijing 0.1138

Shanghai 0.1126
Hubei 0.1116
Hunan 0.1106

Heilongjiang 0.1088
Zhejiang 0.1086

Inner Mongolia (East) 0.1084
Hainan 0.1076
Tianjin 0.1074

Liaoning 0.1070
Guangdong 0.1061

Sichuan 0.1057
Guangxi 0.1049
Jiangsu 0.1045

Chongqing 0.1023
Anhui 0.1020
Jiangxi 0.1007
Shaanxi 0.0985
Gansu 0.0976

Shandong 0.0970
Henan 0.0948
Fujian 0.0937

Guizhou 0.0926
Hebei (South) 0.0844

Inner Mongolia (West) 0.0853
Shanxi 0.0835
Yunnan 0.0835

Hebei (North) 0.0831
Ningxia 0.0805
Xinjiang 0.0688
Qinghai 0.0687

1 “$“ here is the price of USD in 2022.



Sensors 2022, 22, 3704 16 of 21

Table A3. Estimated average annual electricity cost of data centers in various regions.

Area Electricity Cost 1/$1 M per Year

Delinha 8.1380
Xining 8.1433

Kashgar 8.1907
Karamay 8.2478
Yinchuan 9.6746
Datong 10.0073

Zhangjiakou 10.0087
Kunming 10.0599
Chengde 10.1136

Jining 10.1335
Hohhot 10.2079

Tengchong 10.2222
Guiyang 11.5760
Yumen 11.5923
Yulin 11.7599

Zhengzhou 11.8100
Weifang 12.0848
Qingdao 12.0895
Fuzhou 12.1301
Lhasa 12.5513
Turi 12.8846

Fuyang 12.9170
Mohe 12.9731
Gian 13.0884

Nenjiang 13.1002
Chaoyang 13.1083
Ganzhou 13.1305

Benxi 13.1563
Qiqihar 13.1922
Xuzhou 13.1992
Dalian 13.2328
Harbin 13.2465
Nanjing 13.2875
Yingkou 13.2930
Tianjin 13.3773

Neijiang 13.5718
Guilin 13.7005

Hengyang 13.7051
Hangzhou 13.9360

Baise 14.0683
Beijing 14.0985

Zaoyang 14.1248
Guangzhou 14.1670

Dunhua 14.2605
Wuhan 14.2751
Shantou 14.2795
Shanghai 14.3534

Changchun 14.4077
Shenzhen 14.4802

1 “$“ here is the price of USD in 2022.

Figure A1. Cont.
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Figure A1. Annual PUE estimation.
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