
Citation: Du, Z.; Liu, F.; Yan, X.

Sparse Adversarial Video Attacks via

Superpixel-Based Jacobian

Computation. Sensors 2022, 22, 3686.

https://doi.org/10.3390/s22103686

Academic Editors: Biswanath

Samanta and Zahir M. Hussain

Received: 30 March 2022

Accepted: 6 May 2022

Published: 12 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Sparse Adversarial Video Attacks via Superpixel-Based
Jacobian Computation
Zhenyu Du *, Fangzheng Liu and Xuehu Yan

College of Electronic Engineering, National University of Defense Technology, Hefei 230037, China;
liufangzheng17@nudt.edu.cn (F.L.); yanxh17@nudt.edu.cn (X.Y.)
* Correspondence: dzy17@nudt.edu.cn

Abstract: Adversarial examples have aroused great attention during the past years owing to their
threat to the deep neural networks (DNNs). Recently, they have been successfully extended to video
models. Compared with image cases, the sparse adversarial perturbations in the videos can not only
reduce the computation complexity, but also guarantee the crypticity of adversarial examples. In this
paper, we propose an efficient attack to generate adversarial video perturbations with large sparsity
in both the temporal (inter-frames) and spatial (intra-frames) domains. Specifically, we select the
key frames and key pixels according to the gradient feedback of the target models by computing
the forward derivative, and then add the perturbations on them. To overcome the problem of
dimensional explosion in the video, we introduce super-pixels to decrease the number of pixels that
need to compute gradients. The proposed method is finally verified under both the white-box and
black-box settings. We estimate the gradients using natural evolution strategy (NES) in the black-box
attacks. The experiments are conducted on two widely used datasets: UCF101 and HMDB51 versus
two mainstream models: C3D and LRCN. Results show that compared with the state-of-the-art
method, our method can achieve the similar attacking performance, but it pollutes only <1% pixels
and costs less time to finish the attacks.

Keywords: adversarial examples; video classification; temporal sparsity; spatial sparsity

1. Introduction

The development of DNNs brings significant convenience to people’s lives. However,
recently, researchers have found that DNNs are vulnerable to adversarial examples [1]. The
works have shown that an image with small perturbations can fool a classification system
trained by DNNs. These images with imperceptible perturbations are called adversarial
examples AEs.

The low-cost adversarial examples will make the DNNs return the wrong output,
and they thus bring great damage and harm to the applications based on DNNs. Adding
perturbations to the road signs would cause the auto-driving system to make a wrong
decision [2]. Wearing adversarial glasses [3] or hats [4] would enable a person to pretend to
be someone else when passing the surveillance systems. Dressing in adversarial T-shirts
would make criminals disappear from the surveillance systems [5]. These AEs cause great
inconvenience and harm to people’s lives.

The concerns about the video models’ security cause the focus of AEs to turn to adver-
sarial video examples (AVEs). Recently, the key applications based on video classification
models have begun to be applied to some critical systems. Those AI systems are directly
related to personal safety and property security. For example, they are widely used in the
fields of smart home [6], automatic driving [7], elderly care [8], and property protection.
However, the harm brought by AEs would cause a great threat to those critical systems.
Therefore, it is crucial to study the adversarial examples of video models and thus further
improve the robustness of those models.

Sensors 2022, 22, 3686. https://doi.org/10.3390/s22103686 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22103686
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s22103686
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22103686?type=check_update&version=1

Sensors 2022, 22, 3686 2 of 19

According to the number of perturbations added to the inputs, the current attacks by
AVEs can be divided into two classes according to their settings. One is the sparse AVEs ,
and the other is dense AVEs. The sparse AVEs only add perturbations on several frames [9],
not all the frames. However, the dense AVEs add perturbations on each frame among a
video (similar to [10,11]). At the beginning of the research on AVEs, people were focused
on breaking through the boundary between AVEs and AEs. They tried to convert the AEs
generation methods, such as FGSM [1], and other methods [12,13] to AVEs. However, these
methods have lower fooling rates. Then, some researchers generated more effective AVEs
based on the video feature (such as [10,11]). However, these methods cost great resources to
generate one AVE because they need to add the perturbations on each frame among a video.
Therefore, the work [9] proposes a method that only adds perturbations on several sparse
frames to decrease the number of perturbed frames and acquire a better performance on
the fooling rate.

In the sparse AVEs, they use spatial sparsity and temporal sparsity to define the num-
ber of perturbed frames and pixels. Specifically, temporal sparsity means the proportion of
clean frames versus all frames of a video. The spatial sparsity means the proportion of clean
pixels versus all pixels of a video. A higher temporal sparsity and spatial sparsity mean
fewer frames and pixels being perturbed. The detailed definitions of them are described in
the following section.

Compared to the dense AVEs, the sparse AVEs avoid the redundancy of the adversarial
perturbations and have the following advantages: (1) Sparse video attack can reduce the
computational complexity. Sparse video attack only adds perturbations on several frames
and has a lower total value of adversarial perturbations. There is no need to take the
computational cost to generate complex perturbations. According to our experimental
results, our sparse attack costs less time to generate adversarial videos compared with
other sparse attacks; (2) Sparse video attack can improve the imperceptibility to human
observers. Our sparse attack has higher spatial sparsity and temporal sparsity than other
sparse adversarial video attacks. This means that it only needs to perturb fewer pixels
of videos to generate adversarial videos. Meanwhile, for human observers, it has better
invisibility; (3) Sparse video attack gives a better interpretation of adversarial video attack.
The perturbation positions reveal which frame and which part of that frame are important
but also vulnerable for the prediction by the video classifier; (4) Sparse video attack can
decrease the queries of adversarial video attack under black-box settings. Sparse video
attack generates adversarial videos in a low-dimensional manifold. It decreases the high
dimension of videos. Compared to dense attacks, the more the sparsity of the adversarial
video attack, the fewer queries it needs to query the results from the black-box models.

However, the current sparse video attack is not sparse enough. First, they only focus
on generating AVEs with temporal sparsity and ignore the spatial sparsity. Specifically,
they only consider how to decrease the number of perturbed frames and do not consider
how to decrease the number of perturbed pixels among the perturbed frames. However,
different from images, the video has two-dimensional features: the temporal and the spatial
features. Therefore, it is crucial to consider the temporal sparsity and spatial sparsity
simultaneously. Second, the temporal sparsity is not enough. Current sparse AVEs still
need to perturb nearly half of the video frames to acquire a successful attack. However,
with the development of video classification models, they need to input more frames to
obtain better performance, such as increasing inputs from 16 frames as input to 48 frames
extracted from a video. Therefore, the cost would significantly increase, and current sparse
AVEs still need great cost to generate successful AVEs. Therefore, there still is a gap between
the temporal sparsity and the real requirements, and the key point in a sparse attack is
working out how to increase the temporal and spatial sparsity of an adversarial video
simultaneously as much as possible. Figure 1 shows one of the AVEs generated by our
algorithm. In Figure 1, the last line is the adversarial perturbations that we add to the
original videos. We can only perturb one frame and several pixels to generate the AVEs
with better spatial sparsity and temporal sparsity.

Sensors 2022, 22, 3686 3 of 19

Figure 1. Examples of adversarial frames generated by our algorithm with only one frame disturbed.
The first line is the original image, the second line is the image with super-pixels, the third and fourth
lines are the adversarial image and difference, respectively. To see clearly, the noise is circled by red
circle. The original and adversarial labels are signed under the first and third line. The label 12 is
“BlowDryHair” and 5 is “BandMarching”.

Therefore, in this paper, we present a method to generate sparse adversarial videos,
which can significantly improve both the temporal and spatial sparsity at the same time.
We are motivated by the physical meaning of the forward derivative. According to its
definition, the forward derivative of each pixel can reflect the contribution of that pixel to
the output of video models. Thus, we calculate the forward derivative of the frames. It can
also reflect the contribution of that frame to the output. We select the key frames and key
pixels according to their forward derivative, respectively, and then only add perturbations
on the selected key frames and pixels. The method of selecting key frames and pixels can
significantly improve the temporal sparsity and spatial sparsity.

However, compared with image data, video data have the problem of dimension
explosion when computing the forward derivative. To solve this problem, we introduce
the super-pixels [14], and compute the gradients based on the super-pixels, i.e., the pixels
within one super-pixel share the same gradients. In this way, we can reduce the number of
pixels to be computed.

Moreover, different from other adversarial generation methods that can only adapt to
one setting, either the white-box setting or the black-box setting, we also devise a framework
to generate adversarial examples under the two settings. In the white-box video attack,
the attacker knows all the knowledge of a model, while in the black-box video attack, the
attacker can only access the model’s outputs.

Specifically, in the white-box attack, we first use the super-pixels to reduce the dimen-
sion of a video and compute each super-pixel’s forward derivative as the contribution.
Then we sum that value within a frame as the contribution of that frame and search for the
key frames, key super-pixels, and key pixels by ranking those contributions. Lastly, we can
acquire the adversarial videos by only perturbing these key pixels. We can find the closest
adversarial videos to the original sample, which has the lowest number of disturbed pixels,
through this method.

Sensors 2022, 22, 3686 4 of 19

In the black-box attack, we cannot directly calculate the contribution of frames or
pixels due to the lack of models’ details. Therefore, we choose to estimate the forward
derivative based on natural evolution strategy (NES) [15]. However, this value’s accuracy
and total resource consumption are directly proportional to the number of pixels needed to
be calculated. Therefore, different from the white-box attack, we first select the key frames
by the output of every single frame to reduce the dimension of the video and then use
super-pixels to reduce the dimension of the key frames, which can decrease the number of
objects needed to be estimated to as few as possible. After that, we select the key pixels
by the estimated contribution. Finally, we add perturbations on the selected key pixels.
Using iterative computations, we will generate an adversarial video with the smallest
perturbations in a short time.

Our major contributions can be summarized as follows:

• We propose a novel method to generate adversarial videos with large sparsity in both
the temporal and spatial domains. It adds perturbations only on the key pixels of the
key frames and finally generates an adversarial video with fewer pixels disturbed in a
short time.

• We introduce super-pixels to solve the dimension explosion problem that exists
in attacking video data. This method can decrease the number of pixels whose
gradients need to be computed , and thus improve the efficiency of generating
adversarial examples.

• Our algorithm can work in different two settings: the white-box attack and the black-
box attack. We test its attacking performance against two mainstream models on
two public datasets. Results show that compared with the state-of-the-art video
attacking methods, our method can achieve a similar attacking performance, but it only
pollutes <1% pixels and costs less time.

The rest of this paper is organized as follows: In Section 2, we briefly review the
related work. In Section 3, we describe our algorithm in detail. In Section 4, we present
our experimental results and compare them with other methods. Finally, we conclude our
paper in Section 5.

2. Related Work
2.1. Adversarial Attack on Image Models

Many works have focused on generating adversarial samples for images in recent
years. These works can be divided into two categories due to their attacking condition:
white-box and black-box attacks.

White-box attack assumes that the structure and parameters of a target model are
known to the attacker. In white-box attack, it is easy to perform attacks according to the
gradient of objective function of attack or the forward derivative of model computed via
backpropagation. Various types of attacks have been proposed. For example, L-BFGS [16],
fast gradient sign method (FGSM) [1], deep fool [7], Jacobian-based saliency map attack
(JSMA) [17], basic iterative method (BIM) [12], C&W attack [18], and universal attack [19]. In
the JSMA attack, the attackers use the forward derivatives of input to sort the contributions
of each element of inputs to the output. Specifically, the forward derivative refers to the
partial derivative of each output of the last layer of the neural network to each input, as
shown in Equation (1).

∇F(X) =
∂F(X)

∂X
=

∂ f j(X)

∂xi
i∈1...N, j∈1...M (1)

In Equation (1), Fj(X) represents the score of the output of the classifier F on the jth
category when inputting X, and xi represents the ith input feature. The forward derivative
gives an instruction of the input that has the greatest impact on the specific output of the
classifier. Therefore, adding perturbations to that input can significantly influence the
output and help to generate effective AEs.

Sensors 2022, 22, 3686 5 of 19

Contrarily, the black-box setting remains the model with information unknown to at-
tacker, which makes generation of adversarial samples more challenging. Existing works in
this setting include zeroth-order optimization (ZOO) [20], autoencoder-based zeroth-order
optimization method (AutoZOOM) [21], decision-based attack [22], and opt-attack [23].

These adversarial attacks can generate AEs for image models, and they would bring
much harm to the systems based on the models. For example, the work [8] proposes a
dataset to help to estimate the risk of falls of the people. If generating the AEs for the
models based on that dataset, researchers cannot give an exact prediction of the fall, and
bring risk to the older people. In addition, the work [24] proposes a software engine to
simulate the links delivering a video flow from a video source. If generating the AEs for
the video flow, it would make the videos contaminated and risk the security of the links.

2.2. Adversarial Attack on Video Models

In 2019, some works focused on how to generate adversarial samples of video models.
In a white-box attack, an l2,1-norm regularization-based optimization is the first method
to compute the sparse adversarial perturbations for video recognition [9]. After that,
the work [10] utilized generative adversarial networks (GANs) to generate 3D universal
perturbation offline. In a black-box attack, the work [11] achieves good performance
in generating adversarial videos based on tentative perturbations and partition-based
rectifications. Furthermore, the work [25] heuristically searches a subset of frames and adds
perturbations only on those frames separately. The works mentioned above needed too
many pixels modified to generate an adversarial video, and the spatial sparsity is too small.

Unlike the algorithms mentioned above, our method computes key frames based on
forward derivatives and only adds perturbations on key pixels among the key frames to
generate adversarial videos. Our method can generate adversarial videos with fewer pixels
perturbed. Finally, we successfully implement it both in black-box and white-box settings.

3. Methodology

Our sparse attack of video models can be implemented both in white-box and black-
box conditions, and generate the target and non-target AVEs in the two conditions. Figure 2
overviews the proposed method. The algorithm is divided into two parts: one is the
white-box attack shown at the top and the other one is the black-box attack at the bottom.
In the white-box attack, we can access the structure and parameters of the threat classifier
F, but in the black-box attack, the only knowledge of the model we have is the outputs.

Clean video frames

White-box attack

Black-box attack

Reduce dimension

Calculate forward

derivative for video

Keyframes

Keypixels

Keyframes
Reduce dimension

Keypixels

Estimate forward

derivative for key

frames

Calculate model’s

output of each

frame

1 2

1
2

3 4

Add

perturbations

Adversarial

video frames

Figure 2. The overall framework. We illustrate the frameworks in the white-box attacks and black-box
attacks, respectively. The top part is the white-box attack pipeline and the bottom part is the black-box
attack pipeline.

Sensors 2022, 22, 3686 6 of 19

In the the white-box setting, it calculates the super-pixels to reduce dimension of input
video, and then it calculates the forward derivative of each super-pixel as the contribution
of video to the output. According to the forward derivatives of each super-pixel, it can
calculate the contribution of the frames when all derivatives in total are among a frame.
The forward derivative is the contribution of a frame to the output. Then, we construct
the saliency map to show the different inputs that have the greatest impact on the specific
output of the classifier. Through the saliency map, we select the key frames, key super-
pixels, and key pixels. Finally, it adds adversarial perturbations to the key pixels to
generate effective AVEs. Through this method, we can generate the AVEs close to the
original example.

In the black-box attack, we first select the key frame according to the output of each
frame. Then, it uses super-pixels to reduce the dimension of the key frame, and due to the
parameters being inaccessible, we estimate the forward derivative based on NES instead.
Finally, we select the key pixels according to the forward derivative and add adversarial
perturbations to the key pixels.

Above all, the key differences of the algorithm between the two conditions are how to
acquire the forward derivative of the super-pixel among a video and the node for dimension
reduction. We detail the difference in the following section.

3.1. White-Box Attack

Denotation: In this setting, we define the classifier function of the threat model as
F, a clean video input as X ∈ RT×W×H , where T, W, andH denote the number of frames,
frame width and frame height, respectively. The ground-truth label of X is defined as
y ∈ {1, . . . , C}, where C is the number of classes. X = {xi|i = 1, . . . , T}, xi ∈ RW×H is the
i-th frame of X. We use ψij as the j-th super-pixel of frame xi, and pijk as the k-th pixel
within the ψij. Thus, xi = {ψij|j = 1, . . . , M}, and ψij = {pijk|k = 1, . . . , K}. An adversarial
video Xadv ∈ RT×W×H makes F(Xadv) 6= y in the non-target attack while F(Xadv) = g in
the target attack, where g is the target label. If a frame xi, a pixel pijk, and a super-pixel
Pij are labeled as x∗i , p∗ijk, and ψ∗ij, it means that they are the key frame, key pixel, and key
super-pixel, respectively. We also define X ∗ as the set of key frame and P∗ as the set of key
super-pixels.

The main flow of the algorithm under the white-box setting is

• Determine the label of attack target.
• Reduce dimension for the video.
• Compute forward derivative and saliency map.
• Search for key frames and key pixels.
• Add perturbations.

3.1.1. Determine the Label of Attack Target

The first step of the algorithm is to determine the label of attack target, which can be
specified by the attacker. When it is the non-target attack, the algorithm can automatically
calculate the category closest to the original sample as the target category g. Compared
with selecting a label as target randomly, it can cost the minimum resources to generate the
AVEs that can make the model give a wrong label. The equation is Equation (2). The loss is
the cross-entropy function.

g = arg min loss(i, y)
i 6=y

s.t. y = F(X)
(2)

3.1.2. Reduce Dimension for the Video

Super-pixels algorithms group pixels into perceptually meaningful atomic regions
which can be used to replace the rigid structure of the pixel grid. They capture image
redundancy and greatly reduce the complexity of subsequent image processing tasks [14].

Sensors 2022, 22, 3686 7 of 19

We first reduce dimension of a video by introducing SLIC, a state-of-the-art super-pixels
algorithm. It is used to adapt K-means clustering to generate super-pixels. Ideally, after
this process, if it combines the ε pixels around one pixel in the frame into the same pixel,
the number of pixels whose derivative need to be computed will decrease from T×W × H
to (T ×W × H)/ε. We denote the video after super-pixel calculation as Ψ, Ψ = SLIC(X).

3.1.3. Compute Forward Derivative and Saliency Map

After reducing the dimension of the video, the algorithm needs to acquire the contri-
bution of each super-pixel to perform the selection step.

We thus compute the forward derivative of that processed video Ψ, under the output
of classifier F(Ψ) as∇ΨF(Ψ). ∇ΨF(Ψ) is a tensor, which describes the contribution of each
super-pixel among that video to the score of classifier under all C classes. Each element λcij
of that cube Λ is the first-order partial derivative of jth super-pixel ψij within ith frame xi
under the cth class. That value is positively correlated to the contribution of that super-pixel
to the score of the current class. We compute ∇ΨF(Ψ) by Equation (3).

Specifically, according to the physical meaning of the forward derivatives [26], the
forward derivative tells us which input regions are unlikely to yield minor perturbations.
When the forward derivative of super-pixel ψij bigger than 0, that is λcij > 0, it means
that when adding minor perturbations to that super-pixel, the output of target class Fc
would increase. Meanwhile, the bigger the λcij, the more influence the super-pixel gives
to the output of the model. Therefore, the value of Equation (3) shows the influence of
super-pixels.

λcij =
∂Fc(Ψ)

∂ψij
(3)

The Fc(Ψ) means the output on cth class of that video after being a reduced dimen-
sion. According to that cube, we can acquire the forward derivative of each super-pixel
corresponding to C classes. Specifically, in the classification model, the final output of the
classification model depends on the output scores of the video in all C classes. Therefore,
in order to measure the criticality of a super-pixel, the algorithm needs to comprehensively
consider both its contribution to the target class and its contribution to other categories. If a
super-pixel can make a positive contribution to the target category but a negative contri-
bution to other categories, that super-pixel would play a major role when it is disturbed.
Therefore, in order to generate more effective AVEs, we need to find a super-pixel with the
positive value of the forward derivative of the target class but a negative value of the other
class. To successfully search for the super-pixels with those features, we thus construct the
saliency map S by the forward derivative computed before as Equation (4).

The saliency map S is a sparse array, that is, its element has effect value only when a
super-pixel has a positive value of the forward derivative of the target class while a negative
value of the other classes, but in other cases, the value is 0. We call a super-pixel with a valid
value an effective super-pixel, which means that super-pixel ψij will contribute more to
generate the adversarial video than other super-pixels. Adding appropriate perturbations
to that super-pixel can move the video to the target class more easily. Equation (4) shows
the saliency map.

Sij =

 0, otherwise
λ(c=g)ij ∑

c 6=g
|λcij|, if λ(c 6=g)ij > 0 && λ(c=g)ij > 0 (4)

3.1.4. Search for Key Frames and Key Pixels

With the help of Sij, the algorithm can measure the effectiveness of each super-pixel.
However, suppose we filter the key super-pixels directly in the whole video by Sij. In
that case, it may cause the final generated perturbations to spread among all the frames
of a video sample, and it will result in a very low temporal sparsity of the generated

Sensors 2022, 22, 3686 8 of 19

adversarial videos. Therefore, to improve temporal sparsity, we should control the number
of disturbing frames. We should first filter the key frames x∗i and then select the key
super-pixels ψij

∗ among those frames.
In order to search for the key frames, the algorithm calculates the saliency map for each

frame Si by Equation (5). Similar to the physical meaning of Sij, Si means the criticality
of each frame of the input video. Therefore, the algorithm selects a frame xi with the
maximum Si as the key frame x∗i and a super-pixel with the largest saliency map value Sij
as the key super-pixels ψ∗ij of x∗i .

x∗i = arg max
1≤i≤T

(Si)

s.t. Si =
M

∑
j=1
Sij

(5)

However, in that part, we should solve two problems: one is how to select more
key frames and super-pixels effectively; the other is that adding perturbations to the key
super-pixels brings redundancy. We show the details in the following words.

First, it does not work well when only selecting one key frame and one key super-pixel.
In most cases, for an effective attack, we should choose more than one key frame and
key super-pixels to add perturbations to them. It means that adding perturbations on a
single key frame or key super-pixel alone is not enough to cause models to misclassify
the modified input. Therefore, we define n as the number of key super-pixels selected in
each iteration to make the attack successful. There is no need to set a variable to define the
number of key frames such as n, though we also need to search more than one key frame.
The reason is that the maximum Si would change with different n. Therefore, the index of
key frame will change automatically with the key super-pixels in the experiment.

We rank the saliency map of the selected key frame, and select the super-pixels with
top n values to construct the set of key super-pixels P∗ of key frame x∗i , and when the
algorithm is to the end, we collect the index i of key frame x∗i selected in each iteration and
integrate them as the set of key frames X ∗.

Second, it brings redundancy if directly adding perturbations to the key super-pixels.
The super-pixels contain lots of real pixels of a video. If adding perturbations on all pixels
belonging to super-pixels directly, the perturbations will be more perceptible to human
eyes. Moreover, these pixels do not share the same forward derivative in the real video, so
their real contributions to output are not the same. Therefore, adding perturbations on key
super-pixels will cause pixels waste. We select only n pixels of those super-pixels as key
pixels p∗ij, and only add perturbations on these key pixels.

Lastly, the algorithm should set an appropriate value of n. When n is small, the
algorithm will drop into an “endless loop” quickly. The reason is that the perturbed key
pixels reach the boundary value and cannot be modified anymore, so the algorithm will
compute the same saliency map, select the same key frame and the same key super-pixels
in each iteration, and finally still modify the same pixels of those super-pixels.

To solve this problem, one trick is to change n into a larger one and the other is to
change the boundary value of each pixel into a larger one. However, if we choose the
second trick, perturbations of key pixels will become larger, which leads to larger total
distortion of key frame so that more perceptible perturbations are shown in an adversarial
video. Considering that the number of disturbed pixels and perturbations of each pixel
are contrary variables, we should find a balance between them under the constraints of a
successful attack. In our algorithm, we dynamically change n to find that balance, keeping
the pixel boundary value maxp, minp unchanged. Specially, considering the global time
consumption, we set n as a small value in the beginning of the algorithm and gradually
increase its value when all the key pixels reach to the boundary, and the algorithm will
double n when it falls into an “endless loop”.

Above all, in the process of selecting the key super-pixel, we first rank the saliency
map S and initially set n = 1, and then select n key frames, key super-pixels, and key

Sensors 2022, 22, 3686 9 of 19

pixels. If the perturbations are not enough to make a successful attack, the algorithm will
double n and then repeat the process.

3.1.5. Add Perturbations

Finally, we add perturbations to these key pixels within key frames by Equation (6).
The perturbations should be able to move the video as close as possible to the target class
in target attack or as far as possible to the ground class in non-target attack. Therefore,
the direction of perturbations should be the same as the sign of forward derivative of

that pixel under the target class, which is sgn(∂Fg(X)
∂p∗ijk

). η is the basic value of disturbance,

means the one added to each key pixels in each iteration, and the sgn(∂Fg(X)
∂p∗ijk

) is the same

as sgn(∂Fg(X)
∂ψ∗ij

), the direction of the super-pixel that the key pixel belongs to.

p∗ijk
′ = p∗ijk + ηsign(

∂Fg(X)

∂p∗ijk
) (6)

The whole algorithm in the target attack is summarized in Algorithm 1, where maxe is
the maximum iteration number, and maxp and minp are the boundary value of pixels in
the video.

Algorithm 1 Crafting the White-Box Attack in the Target Mode

Input X, F(·)
Input Parameters g, C, y, maxe, n, η, maxp, minp
Output Xadv
1: Let Xadv ← X, X ∗ = {}, iter = 1.
2: Set the target label g 6= y.
3: Reduce the dimension of X using SLIC: Xadv ← SLIC(Xadv).
4: while F(Xadv) 6= g and iter 6= max e do
5: Compute forward derivative ∇Xadv F(Xadv) by Equation (3).
6: Construct Sij by Equation (4).
7: Compute Si by Equation (5).
8: x∗i = arg max

1≤i≤T
(Si)

9: if x∗i /∈ X ∗ then
10: Add x∗i to the set of key frame X ∗.
11: end if
12: Rank Sij, j ∈ [1, M].
13: Select super-pixels with top n value of Sij as key super-pixels ψ∗ij of key frame x∗i .
14: Select n key pixels p∗ijk, k ∈ [1, n] within ψ∗ij of x∗i .

15: p∗ijk = p∗ijk + ηsgn(∂Fg(X)
∂p∗ijk

).

16: if all the value of key pixels /∈ [minp, maxp] then
17: n← n× 2.
18: end if
19: iter ← iter + 1.
20: end while
21: return Xadv

3.1.6. Analysis of the Algorithm under the White-Box Setting

This section analyzes the computational complexity and the implementation cost of
the AVEs generation method under the white-box setting. First, according to the work [14],
the computational complexity of the algorithm SLIC is O(N), where N is the number of
pixels needs to calculate super-pixels. In that algorithm, under the white-box setting, it
needs to calculate super-pixels for all the videos. Therefore, N = T ×W × H, and thus

Sensors 2022, 22, 3686 10 of 19

the complexity is O(T ×W × H). In addition, in the algorithm’s loop, the key step is
computing the forward derivatives of the video. The complexity of that step is also O(n),
where n is the number of objects needed to calculate forward derivatives. It is the number of
super-pixels of the video. Therefore, the complexity of computing the forward derivatives
is O((T ×W × H)/ε). Because the maximum number of the loop is maxe, the worst
complexity is O(maxe× (T ×W × H)/ε), and the best complexity is O((T ×W × H)/ε).

However, according to that, the algorithm uses DNNs to compute related parameters
and the parameters of the DNNs model are too many to be used to calculate the complexity
exactly. Therefore, in our paper, we use the metric time to evaluate the time complexity of
that algorithm. The detailed results are shown in Section 4.1.3.

3.2. Black-Box Attack

In the black-box setting, we can only access the output of a video model. Therefore,
different from the white-box attack, we estimate the forward derivative of the model based
on NES [15] instead of computing it directly.

However, the computational cost positively correlates to the number of super-pixels
that need to be estimated. In a black-box attack, if we use the same method of white-box
attack that selects the key frame according to the forward derivative, we should estimate
the forward derivative of all the super-pixels of a video. That step is time-consuming. In
addition, the more the derivatives need to estimate, the lower their accuracy. Therefore, it
is necessary to reduce the number of estimated objects.

The main flow of the algorithm under the white-box setting is

• Determine the label of attack target.
• Search for key frames.
• Compute forward derivative and reduce dimension for the key frames.
• Estimate the forward derivative and saliency map.
• Search for key pixels.
• Add perturbations.

The difference between the flow of white-box setting and black-box setting are sections
“search for key frames”, “estimate the forward derivative and saliency map”, and “search
for key pixels”. We thus detail the difference as follows.

3.2.1. Search for Key Frames

We know that the key frames contribute more to the output than ordinary frames.
Therefore, we compute the output of the target class g of each frame. The key frame will
take the largest one of that value. Specifically, we defineM, a length T vector, where all
elements of it are 0 initially. Then, we change ith element ofM from 0 to 1, then compute
the Fg(X×M) as the contribution of that frame xi to the target class. We construct a list F
to record that value, where each element F of it is the contribution of frame xi. Finally, the
frame with the largest value in the list is the key frame x∗i of that iteration. It can be shown
as Equation (7).

Fi = Fg(X×M(M[i] = 1))

x∗i = arg max
i
Fi

(7)

3.2.2. Estimate the Forward Derivative and Saliency Map

In black-box attack, as we cannot access the full knowledge of the model, we cannot
compute the forward derivative directly, so we consider another method to acquire it.
We estimate the forward derivative λcij of super-pixels ψij within key frame x∗i based on
NES as the contribution of that super-pixel to the output. Different from maximizing the

Sensors 2022, 22, 3686 11 of 19

expected value of the loss function [27], we maximize that of the output under the searching
distribution π(θ|x∗i). For a frame x∗i , we compute it as Equation (8) [15]:

∇x∗i
Eπ(θ|x∗i)[F(X)] = Eπ(θ|x∗i)[F(X)∇xi log(π(θ|x∗i))] (8)

With a trick similar to [15], we choose the antithetic searching distribution of random
Gaussian noise around x∗i as π(θ|x∗i), where θ = x∗i +σB, σ is a constant, and B has
the same size as x∗i . For sampling, we set Bo ∼ N (0, I), o ∈ {1, 2, . . . , T

2 }. And it sets
Bs = −BT−s+1, where s ∈ {(T

2 + 1), . . . , T}. Each element of Bo and Bs are defined as boj
and bsj, respectively, j ∈ {1, 2, . . . , M}, and M is the number of super-pixels of x∗i . Lastly,
the forward derivative of key frame x∗i can be estimated with Equation (10):

∇xi F(X) =
1

Mσ

M

∑
j=1

δjF(xi + σδj) (9)

λcij =
1

Tσ

T

∑
u=1

bujFc(x∗i + σBu) (10)

The buj is jth element of Bu. Similar to the white-box attack, we then construct a
saliency map Sij of the key frame x∗i .

3.2.3. Search for Key Pixels

In white-box attack, we change n when the algorithm drops into the “endless loop”, a
trick that will automatically adjust the key frame’s index. However, in black-box attack, we
should change the key frame index manually. The reason is that the perturbations added to
each key pixel are so small that it cannot change the contribution value Fi of that frame
with these modified pixels. Therefore, the algorithm will select the same key frame in the
following iteration, and if we let that situation continue, the frame chosen will continue
to be disturbed, which leads to more perceptible noise. Moreover, the selected frame will
choose other pixels that contribute less to the output to disturb, decreasing the perturbation
effect. Hence, we should change a frame and spread these perturbations over different
frames. We implement that trick by setting an iteration boundary ende so that the algorithm
will change the frame index when the iteration reaches that value.

Indeed, changing the index of the key frame manually by changing n can bring another
advantage, that users can set different n according to different situations. For example, if
an application scene focuses on the perturbation of each frame but does not constrain the
number of disturbing frames, we can set n to be large, but if an application scene can only
change fewer frames but has a higher tolerance for per-frame disturbances, we should set
n to be minor but the boundary value of disturbed pixels maxp large and minp minor.

The whole algorithm in the targeted attack of a black-box attack is summarized in
Algorithm 2. Parameters of a black-box attack are only two more than those of white-box.
They areM and ende.

3.2.4. Analysis of the Algorithm under the Black-Box Setting

This section analyzes the computational complexity and the implementation cost of
the AVEs generation method under the black-box setting. In the algorithm’s loop under
the black-box setting, the key step uses SLIC for the key frames and estimates the forward
derivative of the super-pixels of the key frame. According to the work [14] and the work [15],
the complexity of SLIC and NES algorithms are O(n) and O(q × m), respectively. n is
the number of objects that are needed to calculate super-pixels, the q is the number of the
forward derivatives, and the m is the sampled points to help estimate forward derivatives.
In that algorithm, the number of pixels that are needed to calculate super-pixels is H ×W,
the super-pixels of a key frame, and the number of the forward derivatives is (H ×W)/ε,
which is the number of super-pixels. Because the maximum number of the loop is maxe, the
worst complexity is O(maxe× ((W × H)/ε + m× (H ×W)/ε), and the best complexity

Sensors 2022, 22, 3686 12 of 19

is O((W × H)/ε + m× (H ×W)/k). According to the definition of infinite frequency, the
complexity can be simplified as O(m× (H ×W)/ε).

Algorithm 2 Crafting the Black-Box Attack in the Target Mode

Input X, F(·)
Input Parameter g, C, y, maxe, n, maxp, η, minp,M, ende
Output Xadv
1: Let Xadv ← X, X ∗ = {}, iter = 1.
2: Set the target label g 6= y.
3: while F(Xadv) 6= g and iter 6= max e do
4: for i← 1 to C do
5: Mi = 1
6: Fi = Fg(Xadv ×mask).
7: end for
8: x∗i ← arg max

i
Fi.

9: if x∗i /∈ X ∗ then
10: Add x∗i to the set of key frame X ∗.
11: end if
12: Reduce the dimension of x∗i using SLIC: x∗i ← SLIC(x∗i)
13: Estimate forward derivative ∇x∗i

F(x∗i) by Equation (10).
14: Construct Sij for key frame x∗i by Equation (4).
15: Select super-pixels with top n value of Sij as key super-pixels ψ∗ij of key frame x∗i .
16: Select n key pixels p∗ijk, k ∈ [1, n] within ψ∗ij of x∗i .
17: p∗ijk = p∗ijk + ηsgn(λgij).
18: if all key pixels /∈ [minp, maxp] or iter/ende == 0 then
19: Fi = 0.
20: n← n× 2.
21: end if
22: iter ← iter + 1
23: end while
24: return Xadv

However, the algorithm under the black-box setting needs to query the DNNs model
frequently. Therefore, in our paper, we use the metric queries to evaluate the time complex-
ity of that algorithm. The detailed results are shown in Section 4.1.3.

4. Experiments

In this section, we use two state-of-the-art video attack methods to compare with our
proposed method on two video threat models with two widely used datasets. We also
show the performance of our method in different settings: black-box and white-box attacks.
We focus on the overall perturbations, the number of the frames and pixels disturbed, and
the time consumed in our experiment. A comprehensive evaluation of our method will be
presented in this section.

4.1. Experimental Setting
4.1.1. Datasets and Threat Models

We use two widely used datasets of video recognition: UCF101 [28] and HMDB51 [29],
and two mainstream video recognition models: long-term recurrent convolutional networks
(LRCN) [30] and C3D [31]. We use 16-frame snippets evenly sampled from each video as
input. Table 1 summarizes the test accuracy with the two models. We randomly sample
videos from UCF101 and HMDB51, which can be classified rightly, as the test video sample.
We use Inception V3 [32] to extract features from frames and LSTM for video classification
in LRCN.

Sensors 2022, 22, 3686 13 of 19

Table 1. Test accuracy of threat models.

Models
Datasets

UCF101 HMDB51

C3D 85.88% 59.57%
LRCN 64.92% 37.24%

4.1.2. Metrics

• Fooling rate (FR): the percentage of adversarial videos that are successfully misclassi-
fied [19]. A larger value means a better attack.

• Perceptibility (mean absolute perturbation, MAP): the perceptibility score of an ad-
versarial video, as MAP = 1

Z ∑k |rk|, where Z is the total number of pixels in a video
and rk is the perturbation added on the kth key pixel. A smaller value means better
imperceptibility.

• Temporal sparsity (TS): the proportion of clean frames versus all frames of a video [9].
TS = 1− L/T, where L is the number of perturbed frames, which is length of the set
of the key frames X ∗. A larger TS means better temporal sparsity.

• Spatial sparsity (SS): the proportion of clean pixels versus all pixels of a video.
SS = 1 − PN/H, where PN is the number of perturbed pixels. A larger SS or a
smaller PN means better temporal sparsity.

• Query (Q): in black-box attack, the number of queries of the threat model. A small
value means fast attack.

• Time (Ti): in white-box attack, the time consumed when attacking a video. A small
value means fast attack.

4.1.3. Parameter Setting

In this section, we set the parameters used in two algorithms. We show the different
performance of different parameters in Figure 3.

According to Figure 3, the first picture (Figure 3a) shows the results of different
maximum iteration number maxe when keeping the number of key super-pixels n = 2, the
ratio of perturbations alpha = 0.1, and the parameter of super-pixels k = 0 constant. It
shows that when the maxe is close to 800, the metrics of FR trend to be stable, while other
metrics still have a little increase. Therefore, when maxe = 800, it has a better performance.
Then, we figure the difference of those metrics under different n with setting maxe = 800
while other variables keep consistent as per Figure 3b. It shows that with n increases, the
effect on FR of different n is small, but the other metrics will increase, and the line shows
that n = 3 is a tipping point. The trend is sharp after that line. Therefore, we set n = 3 to
have a better performance. The picture in Figure 3c is the difference of different ℵ, and the
line ℵ = 0.03 is the turning point. We pursue the higher FR and lower other metrics, so
the appropriate value is ℵ = 0.03. Figure 3d shows the differences under different k with
the parameters selected above, and when k = 500, it has an appropriate performance than
other k. That analysis is under the normal pursuit of better FR, and when the pursuit is
different, it can set different parameters. If the environments require less time, the pursuit
of smaller Ti is the first, and then n = 5 will perform better than n = 3.

Above all, we know that there will be a better performance when maxe = 800, n = 3,
and K = 500 in HCF101, and K = 1000 in HMDB51 initially; η = α × (maxp − minp),
where α = 0.03, and set maxe, minp as the maximum and minimum value of pixels in
each frame, respectively, in white-box condition. In black-box condition, the difference is
maxe = 5000,M = [0]16, and ende = 600.

Sensors 2022, 22, 3686 14 of 19

100

80

60

40

20

。

|n=2,aIpha=0.1,k=01 -----FR
• PNI10
.__ PM*10
T--Ti

0 500 1 000 1500

maxe

(a)

90

80

70

60

50

40

30

|maxe=800,a|pha=0.1,k=01 ------FR
• PNI10
.&:------ PM*10
T--Ti

.

0

。2

 2

4 6 8 10

n

(b)

0

5

0

5

0

5

0

5

0

5

0

5

0

5

0

5

0

0

9

9

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

|maxe=800,n =3,k=01 -----FR
• PNI10
.__ PM*10
T--Ti

0.0 0.1 0.2 0.3

alpha

(c)

5

0

5

0

5

0

5

0

5

0

5

0

5

0

5

0

5

0

5

0

9

9

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

|maxe=800,aIpha=0.03,n=31-----FR
• PNI10
.__ PM*10
T--Ti

。 500

k

1000 1500

|white/C3DIUCF101|

(d)

Figure 3. The result of different parameters. In order to keep uniform all metrics and keep the
segment of x-axis consistent, we set PN/10 and PM*10. PN is the number of perturbed pixels and
PM is short for MAP. All the performances are tested in white-box setting, C3D model with UCF101
dataset. (a) performances of different maxe; (b) performances of different n; (c) performances of
different ℵ; (d) performances of different k.

4.2. Experimental Results

Table 2 shows the results of white-box attack. In the four experiments that were
implemented under different models and datasets, we know that an adversarial video
can be generated with only hundreds of pixels modified, and the fooling rate can be 100%
in three of the results. When attacking C3D model with HMDB51, we find it is hard to
attack. The fooling rate decreases to 96%, and the MAP and PN increase to 9.76 and 800.2,
respectively, which are higher than others, obviously. We suppose that the features of it
should be more robust [33]. Moreover, from the result, we can see that these metrics show
the same trend of change, which correspond to the difficulty of adversarial attack of model
and dataset. We found that the C3D model is more difficult to attack than LRCN, but the
dataset of the different model shows a different trend. The HMDB51 dataset shows that it
is more difficult to attack when the model is C3D, but it is easier to attack for LRCN.

Table 2. Experimental results of white-box attack.

Target Model Dataset
Metrics

FR(%) TS(%) PN Ti(s) MAP

C3D
UCF101 100 25 211.5 29.5 2.67

HMDB51 96 12.5 800.2 123.8 9.76

LRCN
UCF101 100 37.5 187.4 26.8 1.23

HMDB51 100 50 170.8 32.5 1.70

Table 3 shows the result of black-box. Compared with white-box attack, we need
thousands of pixels modified to attack the C3D model, and the PN of LRCN is also
increased. The main reason is that the forward derivatives we estimated in the black-box

Sensors 2022, 22, 3686 15 of 19

setting are not accurate enough to search the real key pixels and frames. The estimated
gradient is not completely consistent with the real gradient. The PN are increased; the
reason is that the estimated forward derivatives are not the same as the real ones. Moreover,
we can see that, although the other metrics show poor performance in the black-box attack,
the TS is higher than the white-box attack. It benefits from the trick that the number of key
frames can be adapted by ourselves according to the boundary of iterations that we set
to change the index of key frame. In this experiment, we set it to ende = 600 so that the
maximum number of key frames is 9 and the minimum TS is 43.75%. Similarly, the trend of
difficulty of the model and dataset is the same as that in the white-box attack. This feature
belongs to the model and dataset themselves, whether generating adversarial videos in
black-box attack or in white-box attack.

Table 3. Experimental results of black-box attack.

Target Model Dataset
Metrics

FR(%) TS(%) PN Q

C3D
UCF101 88 43.75 3830.4 41584.9

HMDB51 84 43.75 5940.3 52606.7

LRCN
UCF101 84 81.25 437.3 19677

HMDB51 95.9 81.25 263.8 14776

Figures 4 and 5 show the results of other adversarial videos generated by our algorithm.
In Figure 4, it is generated in white-box attack. As shown, the original video with label 90
(TaiChi) can be misclassified by threat model into label 32 (GolfSwing) with only one frame
perturbed, which is circled by a red line. Figure 5 shows the adversarial video generated
in black-box attack, with two frames perturbed, which are circled by a red line, similarly.
After being disturbed, the original video with label 42 (HulaHoop) can be misclassified into
label 46 (JumpingJack). We notice a gap of disturbed pixels between the black-box and the
white-box attack. It is obvious that the pixels that need to be perturbed in black-box attack
are more than those in white-box attack. The main reason for that phenomenon is that there
is also a gap between the real forward derivative and the estimated forward derivative. In
other words, we cannot estimate the forward derivative absolutely.

Figure 4. Other examples of adversarial frames generated by our algorithm in white-box adversarial
attack. The clean video (left) can be classified correctly. The adversarial video (middle) with only
one disturbed frame is misclassified, and the difference is shown as (right). The label 90 is “TaiChi”,
while the label 32 is ‘GolfSwing’. The red square is the perturbed frame of that AVEs.

Sensors 2022, 22, 3686 16 of 19

Figure 5. Other examples of adversarial frames generated by our algorithm in black-box adversarial
attack. The clean video (left) can be classified correctly. The adversarial video (middle) with two
disturbed frames is misclassified. The difference is shown as (right). The label 42 is “HulaHoop”,
while the label 46 is ‘JumpingJack’. The red square is the perturbed frame of that AVEs.

4.3. Performance Comparison

In the white-box setting, we compared our method with the sparse attack [9] which
used l2,1-norm regularization-based optimization to generate sparse adversarial video.
In the black-box setting, we compared our method with the V-BAD attack [11], which
estimated the projection of an adversarial gradient on a selected subspace. The evaluations
were performed on two video threat models with two public datasets.

Table 4 lists the different results of the sparse attack [9] and our method of white-box
attack on LRCN model with two datasets. Table 5 shows the different results of the V-BAD
attack [11] and our method of attacking LRCN model with two datasets in black-box setting.
According to the evaluations, we have the following observations. In the white-box setting,
our method improves the spatial sparsity of the attack, which means we can generate
adversarial videos with fewer pixels modified, and we can generate an adversarial video
faster than [9]. In the same temporal sparsity, our fooling rate is the same as [9]. Our
method focuses on modifying fewer pixels to attack a model but these key pixels probably
appear in different frames. In a word, these key pixels will spread over more frames, which
leads to more frames perturbed and then a lower temporal sparsity sometimes. However,
from the result, we can see that the temporal sparsity performs the same as other methods.
Therefore, our method does not compensate spatial sparsity at the expense of temporal
sparsity. From Table 5, in a black-box setting, our method can perform a temporally and
spatially sparse attack with only few frames and pixels modified, and costing fewer queries.
We have a better performance not only in temporal sparsity but also in spacial sparsity, and
we improve the fooling rate to a new point.

Sensors 2022, 22, 3686 17 of 19

Table 4. Results of LRCN model on UCF101 and HMDB51 datasets in white-box setting.

Dataset

Method Metrics
FR(%) TS(%) SS(%) Ti

UCF101 [9] 100 37.5 37.5 28.32
Our 100 37.5 99.893 26.8

HMDB51 [9] 100 50 50 33.7
Our 100 50 99.880 32.5

Table 5. Results of LRCN model with UCF101 and HMDB51 datasets in black-box setting.

Dataset

Method Metrics
FR(%) TS(%) SS(%) Q

UCF101 [11] 76 0 0 40265
Our 96 81.25 99.860 19677

HMDB51 [11] 90 0 0 24120
Our 96 81.25 99.840 14776

5. Ablation Study

In this section, we test the difference between our algorithm with SLIC and that
without SLIC. The results are shown in Table 6.

Table 6. Results of the algorithm with SLIC and without SLIC. The “white” in the table means it is
tested under the white-box setting and the “black” means it is tested under the black-box setting.

Dataset

Metrics SLIC No SLIC

FR(%) TS(%) SS(%) Ti/Q FR(%) TS(%) SS(%) Ti/Q

UCF101 LRCN(white) 100 37.50 99.893 26.80 100 37.50 99.977 74.632
LRCN(black) 84 81.25 99.860 19677 84 81.25 99.946 26674

HMDB51 LRCN(white) 100 50.00 99.880 32.5 100 50.00 99.979 127.6
LRCN(black) 96 81.25 99.840 14776 94 81.25 99.968 15443

As Table 6 shows, the SLIC can help to decrease the time in the white-box attack and
also decrease the queries of the model in the black-box attack. The SLIC can help to decrease
the number of pixels that need to calculate the forward derivatives in the white-box setting
and that to estimate the forward derivatives in the black-box setting. However, the SLIC
also decreases the spatial sparsity (SS) under the different two settings. The reason is that
the super-pixels share the same forward derivatives and they would be perturbed at the
same time.

6. Conclusions

In this paper, we propose an algorithm to generate sparse adversarial videos in both
black-box setting and white-box setting. In order to improve the temporal and spatial
sparsity, we search for key pixels and key frames and only add perturbations on these
selected pixels. In addition, to solve the problem of dimension explosion, we utilize
super-pixels to decrease the number of pixels needed to be computed in white-box while
estimated in black-box. Our algorithm can adapt to multiple video models and datasets.
The experimental results show that our algorithm can attack a model with only <1%
polluted pixels in a shorter time. However, though the sparse attack has many advantages,
as discussed before, it cannot be generalized to the physical world. The reason is that it is
hard to realize adding sparse perturbations in the physical world. In the future, we will

Sensors 2022, 22, 3686 18 of 19

explore the adversarial attack in the physical world to help to evaluate the robustness of
the models.

Author Contributions: Supervision, F.L. and X.Y.; Writing—review & editing, Z.D. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and harnessing adversarial examples. In Proceedings of the ICLR 2015, San

Diego, CA, USA, 7–9 May 2015; pp. 1–11.
2. Eykholt, K.; Evtimov, I.; Fernandes, E.; Li, B.; Rahmati, A.; Xiao, C.; Prakash, A.; Kohno, T.; Song, D. Robust Physical-World

Attacks on Deep Learning Models. 2017. Available online: http://xxx.lanl.gov/abs/1707.08945 (accessed on 5 May 2022).
3. Sharif, M.; Bhagavatula, S.; Bauer, L.; Reiter, M.K. Accessorize to a crime: Real and stealthy attacks on state-of-the-art

face recognition. In Proceedings of the ACM Conference on Computer and Communications Security, Vienna, Austria,
24–28 October 2016; pp. 1528–1540. [CrossRef]

4. Komkov, S.; Petiushko, A. AdvHat: Real-world adversarial attack on ArcFace Face ID system. arXiv 2019, arXiv:1908.08705.
5. Xu, K.; Zhang, G.; Liu, S.; Fan, Q.; Sun, M.; Chen, H.; Chen, P.Y.; Wang, Y.; Lin, X. Adversarial T-shirt! Evading Person Detectors

in A Physical World. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020.
6. Fawzi, A.; Fawzi, O.; Frossard, P. Analysis of classifiers’ robustness to adversarial perturbations. Mach. Learn. 2018, 107, 481–508.

[CrossRef]
7. Moosavi-Dezfooli, S.M.; Fawzi, A.; Frossard, P. DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks. In

Proceedings of the CVPR, Las Vegas, NV, USA, 27–30 June 2016; pp. 2574–2582.
8. Romeo, L.; Marani, R.; Petitti, A.; Milella, A.; D’Orazio, T.; Cicirelli, G. Image-Based Mobility Assessment in Elderly People from

Low-Cost Systems of Cameras: A Skeletal Dataset for Experimental Evaluations. In Proceedings of the Ad-Hoc, Mobile, and
Wireless Networks, Bari, Italy, 19–21 October 2020; pp. 125–130.

9. Wei, X.; Zhu, J.; Yuan, S.; Su, H. Sparse Adversarial Perturbations for Videos. In Proceedings of the AAAI Conference on Artificial
Intelligence, 27 January–1 February 2019; Volume 33, pp. 8973–8980.

10. Li, S.; Neupane, A.; Paul, S.; Song, C.; Krishnamurthy, S.V.; Chowdhury, A.K.R.; Swami, A. Adversarial Perturbations Against
Real-Time Video Classification Systems. arXiv 2018, arXiv:1807.00458.

11. Jiang, L.; Ma, X.; Chen, S.; Bailey, J.; Jiang, Y.G. Black-box adversarial attacks on video recognition models. In Proceedings of the
ACMMM, Nice, France, 21–25 October 2019; pp. 864–872.

12. Kurakin, A.; Goodfellow, I.; Bengio, S. Adversarial examples in the physical world. arXiv 2016, arXiv:1607.02533.
13. Dong, Y.; Liao, F.; Pang, T.; Su, H.; Zhu, J.; Hu, X.; Li, J. Boosting Adversarial Attacks with Momentum. In Proceedings of the 2018

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 9185–9193.
[CrossRef]

14. Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC superpixels compared to state-of-the-art superpixel
methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2281. [CrossRef] [PubMed]

15. Wierstra, D.; Schaul, T.; Glasmachers, T.; Sun, Y.; Peters, J.; Schmidhuber, J. Natural evolution strategies. J. Mach. Learn. Res. 2014,
15, 949–980.

16. Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing Properties of Neural Networks.
2013. Available online: http://xxx.lanl.gov/abs/1312.6199 (accessed on 5 May 2022).

17. Papernot, N.; McDaniel, P.; Swami, A.; Harang, R. Crafting adversarial input sequences for recurrent neural networks. In
Proceedings of the IEEE Military Communications Conference, Baltimore, MD, USA, 1–3 November 2016; pp. 49–54. [CrossRef]

18. Carlini, N.; Wagner, D. Towards Evaluating the Robustness of Neural Networks. In Proceedings of the IEEE Symposium on
Security and Privacy, San Jose, CA, USA, 22–24 May 2017; pp. 39–57. [CrossRef]

19. Moosavi-Dezfooli, S.M.; Fawzi, A.; Fawzi, O.; Frossard, P. Universal adversarial perturbations. In Proceedings of the CVPR,
Honolulu, HI, USA, 21–26 July 2017; pp. 86–94. [CrossRef]

20. Chen, P.Y.; Zhang, H.; Sharma, Y.; Yi, J.; Hsieh, C.J. ZOO: Zeroth order optimization based black-box atacks to deep neural
networks without training substitute models. In Proceedings of the AISec, Dallas, TX, USA, 3 November 2017; pp. 15–26.
[CrossRef]

http://xxx.lanl.gov/abs/1707.08945
http://doi.org/10.1145/2976749.2978392
http://dx.doi.org/10.1007/s10994-017-5663-3
http://dx.doi.org/10.1109/CVPR.2018.00957
http://dx.doi.org/10.1109/TPAMI.2012.120
http://www.ncbi.nlm.nih.gov/pubmed/22641706
http://xxx.lanl.gov/abs/1312.6199
http://dx.doi.org/10.1109/MILCOM.2016.7795300
http://dx.doi.org/10.1109/SP.2017.49
http://dx.doi.org/10.1109/CVPR.2017.17
http://dx.doi.org/10.1145/3128572.3140448

Sensors 2022, 22, 3686 19 of 19

21. Tu, C.; Ting, P.; Chen, P.; Liu, S.; Zhang, H.; Yi, J.; Hsieh, C.; Cheng, S. AutoZOOM: Autoencoder-based Zeroth Order Optimization
Method for Attacking Black-box Neural Networks. In Proceedings of the AAAI Conference on Artificial Intelligence, 27 January–1
February 2019; Volume 33.

22. Brendel, W.; Rauber, J.; Bethge, M. Decision-based adversarial attacks: Reliable attacks against black-box machine learning
models. In Proceedings of the ICLR, Vancouver, BC, Canada, 30 April–3 May 2018; pp. 1–12.

23. Cheng, M.; Zhang, H.; Hsieh, C.J.; Le, T.; Chen, P.Y.; Yi, J. Query-efficient hard-label black-box attack: An optimization-based
approach. In Proceedings of the ICLR, New Orleans, LA, USA, 6–9 May 2019; pp. 1–12.

24. Bacco, M.; Cassarà, P.; Gotta, A.; Puddu, M. A Simulation Framework for QoE-Aware Real-Time Video Streaming in Multipath
Scenarios. In Proceedings of the Ad-Hoc, Mobile, and Wireless Networks, Bari, Italy, 19–21 October 2020; pp. 114–121.

25. Wei, Z.; Chen, J.; Wei, X.; Jiang, L.; Chua, T.S.; Zhou, F.; Jiang, Y.G. Heuristic Black-box Adversarial Attacks on Video Recognition
Models. In Proceedings of the IJCAI, Macao, China, 10–16 August 2019; pp. 864–872.

26. Papernot, N.; Mcdaniel, P.; Jha, S.; Fredrikson, M.; Celik, Z.B.; Swami, A. The limitations of deep learning in adversarial settings.
In Proceedings of the 2016 IEEE European Symposium on Security and Privacy, EURO S and P 2016, Saarbruecken, Germany,
21–24 March 2016; pp. 372–387. [CrossRef]

27. Eyas, A.; Engstrom, L.; Athalye, A.; Lin, J. Black-box adversarial attacks with limited queries and information. In Proceedings of
the ICML, Stockholm, Sweden, 10–15 July 2018; pp. 3392–3401.

28. Soomro, K.; Zamir, A.R.; Shah, M. UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild. In Proceedings of
the CoRR, Bertinoro, Italy, 19 September 2012.

29. Kuehne, H.; Jhuang, H.; Garrote, E.; Poggio, T.; Serre, T. HMDB: A Large Video Database for Human Motion Recognition H. In
Proceedings of the HLRS, Hamburg, Germany, 17–21 January 2011; pp. 311–324. [CrossRef]

30. Tran, D.; Bourdev, L.; Fergus, R.; Torresani, L.; Paluri, M. Learning spatiotemporal features with 3D convolutional networks. In
Proceedings of the ICCV, Santiago, Chile, 7–13 December 2015; pp. 4489–4497. [CrossRef]

31. Hara, K.; Kataoka, H.; Satoh, Y. Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet? In Proceedings of
the CVPR, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6546–6555. [CrossRef]

32. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In
Proceedings of the CVPR, Las Vegas, NV, USA, 27–30 June 2016, pp. 2818–2826. [CrossRef]

33. Engstrom, L.; Gilmer, J.; Goh, G.; Hendrycks, D.; Ilyas, A.; Madry, A.; Nakano, R.; Nakkiran, P.; Santurkar, S.; Tran, B.; et al.
Adversarial Examples Are Not Bugs, They Are Features. Distill 2019, 32, 125–136. [CrossRef]

http://dx.doi.org/10.1109/EuroSP.2016.36
http://dx.doi.org/10.1007/978-3-642-33374-3
http://dx.doi.org/10.1109/ICCV.2015.510
http://dx.doi.org/10.1109/CVPR.2018.00685
http://dx.doi.org/10.1109/CVPR.2016.308
http://dx.doi.org/10.23915/distill.00019

	Introduction
	Related Work
	Adversarial Attack on Image Models
	Adversarial Attack on Video Models

	Methodology
	White-Box Attack
	Determine the Label of Attack Target
	Reduce Dimension for the Video
	Compute Forward Derivative and Saliency Map
	Search for Key Frames and Key Pixels
	Add Perturbations
	Analysis of the Algorithm under the White-Box Setting

	Black-Box Attack
	Search for Key Frames
	Estimate the Forward Derivative and Saliency Map
	Search for Key Pixels
	Analysis of the Algorithm under the Black-Box Setting

	Experiments
	Experimental Setting
	Datasets and Threat Models
	Metrics
	Parameter Setting

	Experimental Results
	Performance Comparison

	Ablation Study
	Conclusions
	References

