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Abstract: Pixel-level image fusion is an effective way to fully exploit the rich texture information
of visible images and the salient target characteristics of infrared images. With the development
of deep learning technology in recent years, the image fusion algorithm based on this method has
also achieved great success. However, owing to the lack of sufficient and reliable paired data and
a nonexistent ideal fusion result as supervision, it is difficult to design a precise network training
mode. Moreover, the manual fusion strategy has difficulty ensuring the full use of information,
which easily causes redundancy and omittance. To solve the above problems, this paper proposes a
multi-stage visible and infrared image fusion network based on an attention mechanism (MSFAM).
Our method stabilizes the training process through multi-stage training and enhances features by
the learning attention fusion block. To improve the network effect, we further design a Semantic
Constraint module and Push–Pull loss function for the fusion task. Compared with several recently
used methods, the qualitative comparison intuitively shows more beautiful and natural fusion results
by our model with a stronger applicability. For quantitative experiments, MSFAM achieves the best
results in three of the six frequently used metrics in fusion tasks, while other methods only obtain
good scores on a single metric or a few metrics. Besides, a commonly used high-level semantic task,
i.e., object detection, is used to prove its greater benefits for downstream tasks compared with single-
light images and fusion results by existing methods. All these experiments prove the superiority and
effectiveness of our algorithm.

Keywords: deep learning; image fusion; attention mechanism

1. Introduction

Image fusion outputs a single image with rich information through the complemen-
tarity between multiple images of different illumination [1], sensors [2], and focuses [3] in
the same scene. Among them, one of the most widely studied tasks is the image fusion of
different sensors, especially visible light and infrared [4]. Owing to the difference in acqui-
sition bands, each type of image has significant differences in characteristics. Visible image
acquisition through light reflection obtains more abundant detailed texture information
but less common contrast. An infrared image shows the temperature of the object with
obvious global contrast with only the approximate edge contour of the object [5]. There
is a certain complementarity between the two types of images. Through fusion, several
targeted algorithms can effectively combine the advantages of both and retain the detailed
texture and significant target characteristics in the same image.

The current fusion algorithm, whether based on the traditional algorithm or deep
learning, primarily contains parts of image feature extraction and multi-feature fusion
and image reconstruction. Among these, the traditional fusion algorithm realizes the
entire algorithm flow through manual design, which can be roughly divided into sparse
representation-based [3], multi-scale transform-based [6], and saliency-based design [7].
Deep learning algorithms replace some or all of the progress with a neural network.
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According to the difference of training methods, this paper divides them into three modes:
“no training”, “reconstruction training”, and “fusion training”, the last two of which are
the main focus of this paper.

Although existing algorithms have achieved certain results, they are not ideal in
specific scenarios. The “reconstruction training” method reduces the training difficulty
in a fake supervised way. However, its manually designed dual-light fusion module
easily causes underutilization of features owing to its incompatibility with deep neural
networks. NestFuse [8] is a recently published method that uses a hand-designed attention
fusion module to combine dual-light features. However, owing to the weighted average
calculation, the fusion function is much more inclined toward high-amplitude features,
like a brighter region, which may result in undesirable feature filtering. This problem is
shown in the first line of Figure 1, where the high intensity of the sign region in an infrared
image suppresses the corresponding visible area, causing NestFuse to lose the visible
texture structure information. The other type of mode, called “fusion training”, uses an
end-to-end network to complete the entire fusion task, with a fuller utilization of features
but greater difficulty in unsupervised training. In particular, when using Generative
Adversarial Network (GAN) architecture on a small sample training set, artifacts and
unnatural phenomena occur in the fusion result [9]. In the middle of Figure 1, the fusion
result output by Perceptual FusionGAN [10] shows an unnatural grayscale distribution
with a certain amount of streak noise, which affects the overall fusion effect seriously. In
other ways, owing to the unsupervised training pattern of the fusion task, the loss function
completely dominates the training process of the model. However, the current existing
loss function simply relies on the L1 and L2 loss design of the intensity and gradient, and
the weight ratio relies on the human setting; this cannot ensure that the network learns a
truly reasonable fusion strategy, resulting in a biased fused image or an improper grayscale
distribution. To highlight the target, STDFusion [11] sets the different ratios of pixels and
gradient loss for the foreground and background area by a pre-labeled mask. However, as
shown in the last line of Figure 1, the manual hyperparameter is not appropriate for all the
scenarios, which may cause excessive highlighting of the target; this results in less detailed
information, which makes the fused image close to the binary image as a whole.
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To solve the above problems, in this paper, a multi-stage visible and infrared image
fusion network based on the attention mechanism (MSFAM) is proposed that mainly consists
of two aspects: model structure and training strategy. For the aspect of model structure,
the “reconstruction training” and “fusion training” modes have their advantages. Existing
algorithms do not integrate them, which leaves potential room for improvement. The relative
independence of the two modes mainly stems from the mismatched dimensions of the input
feature of the reconstruction module. Therefore, the primary motivation of this paper is to
design a fusion model that can satisfy the requirements of multi-stage training and achieve a
combination of advantages to enhance the final fusion effect. To further improve the accuracy
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of feature utilization, a well-designed attention mechanism was integrated in our fusion
model. In addition, for the training strategy, we addressed the difficulty of unsupervised
training from two different perspectives. First, without ideal image labels, the network cannot
learn the data distribution of the real fusion, leading to instability in learning. Fortunately,
neural networks can be used to fit the data distribution to a certain extent. GANMcC [12] uses
a discriminator in the GAN to predict the input image data characteristics, constraining the
output to meet both visible and infrared data distribution simultaneously. Considering the
instability of GAN model training, we adopted a pre-trained CNN module based on the idea
of deep semantic constraint, which use a specific high-level task to assist the training of low-
level image processes. Second, aiming at the constant bias and inaccurate fusion description
caused by manual setting loss, we designed a loss function called “Pull–Push Loss” that
automatically adjusts the weights to fine-tune the training trend of the model according to the
current learning status, ensure its training balance, and fully learn the dual-source information.
By combining the above design, the MSFAM algorithm can output fused images conforming
to human eye standards or a quantitative index with visible detail information and infrared
salient features.

The main contributions of this paper are as follows:

1. We present a multi-stage training pattern of the fusion model, as well as a feature
fusion module based on an attention mechanism to prove its feasibility. The model
combines the advantages of the two existing training methods, which effectively
improves the quality of fused images.

2. To improve the amount of information contained in the output results while reducing
the difficulty in model training, we designed a Semantic Constraint module and
Pull–Push loss function for training assistance.

3. By combining the above methods, the proposed MSFAM achieves a better performance in
several evaluation metrics of public datasets, including TNO [13] and RoadScene [14,15];
we hope it can provide a novel pattern for future image fusion tasks.

The rest of this paper is organized as follows: Section 2 presents some of the research
background related to this paper. In Section 3, we detail the proposed MSFAM model. In
Section 4, we illustrate the experimental details related to the model, including an ablation
study and comparisons. Section 5 provides the conclusions and outlook for the work.

2. Related Work

In this section, we provide an overview of the literature relevant to this paper. We
first outline the existing deep-learning-based infrared and visible image fusion algorithms
to illustrate its recent development. In the following sections, several related ideas and
techniques for the attention fusion module and Semantic Constraint module are described.

2.1. Deep-Learning-Based Image Fusion Methods

We analyzed the existing deep-learning-based fusion algorithms and classified them
into three categories according to the training mode: “no training”, “reconstruction train-
ing”, and “fusion training”.

The “no training” mode only uses a pre-trained CNN, such as Resnet [16] or Densenet [17],
as a generic feature extractor by removing the final fully connected layer. Afterward, the final
fused image is obtained by processing the original images with a weight map generated by a
hand-designed computation method on the neural network features.

Based on CNNs used for feature extraction, the “reconstruction training” model
leaves the reconstruction task to the network similarly. It uses two different computational
approaches in the training and prediction phases. During training, the network only
includes the feature extraction part and the image reconstruction part [8,18–20]. Through
the reconstruction training of single-light images, the model is given the ability of feature
extraction and reconstruction. In the prediction stage, the human-designed fusion module
is used to achieve effective fusion of dual-light features. It ensures that the input feature
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dimensions of the reconstruction part are the same as in the training phase so that the
trained reconstruction module can be used to output fused results.

Compared to the above two types of approaches, “fusion training” is the most intuitive
fusion mode, in which a well-designed end-to-end fusion model outputs fusion results
directly from the input dual-light images. In contrast to the “reconstruction training”
mode, the feature fusion part is usually designed as dual-light feature concatenation,
and the interaction is implicitly implemented in the subsequent image reconstruction
process [11,14,21]. In addition, for the GAN commonly used in this mode, the fusion model
is always trained simultaneously with the designed discriminators [10,12,22–25]. In the
process of adversarial gaming, it simultaneously improves the respective capabilities of
both sides to achieve the improvement of the fusion effect.

However, the inconsistent input feature dimension of the reconstruction module
causes a gap in the “reconstruction training” and “fusion training” mode. To combine
the advantages of each, a multi-stage fusion approach with a learning fusion module was
designed for this paper, which results in a visible and infrared fused image with rich
structural information and significant target grayscale.

2.2. Attention Mechanism

Owing to the bottlenecks in information processing, humans selectively focus on a
portion of all information while ignoring the rest of it [26]. The above behavior is caused by
the attention mechanism. In recent years, many researchers have realized the importance
of the attention mechanism. It has been studied in various aspects, and some researchers
have tried to introduce it into neural networks to make them more biased toward effective
information to enhance the overall effectiveness of their models [27].

SEnet [28] introduced a channel attention mechanism by achieving the channel-by-
channel weighted vector of features. It enables the network to focus more on the effective
channel and achieve adaptive feature enhancement and decay. Accordingly, CBAM [29]
includes a similar attention mechanism from the spatial location perspective, empowering
networks to focus on the key locations. In addition, multiple attention extraction methods
enable a more accurate representation of the importance, which results in a better effect.
The authors of [30,31] introduced the attention mechanism into a sea-surface ship detection
task and achieved better results by extracting more accurate features.

However, as the convolution is only computed in the adjacent regions, which causes
the loss of some large span associations, non-local neural networks [32] and transform-
ers [33] achieve the interaction of features between different locations by linear operations
to capture the global information and ensure the accuracy of attention calculation.

We designed the attention feature fusion module based on the CBAM module to
enhance the fusion effect. This module uses the attention mechanism to achieve adaptive
fusion of infrared features and visible features, avoiding information loss and redundancy.
Compared with the manually designed method, the learning feature fusion function can
better meet the CNN reconstruction requirements and obtain favorable fusion results.

2.3. Semantic Constraint Method

Low-level image processing tasks, such as image denoising and defogging, mainly
aim to serve high-level tasks, such as pre-processing, to improve classification or detection
performance. In recent years, researchers have found that the training result of low-level
tasks can be effectively improved with the assistance of high-level networks, which is called
semantic constraint.

Liu [34] and Wang [35] jointly trained the denoising model by connecting multiple
frozen high-level networks at the back end of it, similar to the AODNet [36], using a well-
trained Faster RCNN detection model, effectively improving the visual effect of the output
image. TBCNet [37] uses an image segmentation model to achieve saliency extraction for
weak targets, which can still be regarded as a pixel-level low-level task. Therefore, the
detection effect is improved by adding a classification model at the back end for predicting
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the number of targets in the saliency map, constraining the segmentation output to avoid
false detection caused by noise.

The image fusion task studied in this paper also belongs to the field of low-level image
processing, but it is difficult to train a high-level detection or segmentation network due
to the lack of data. Therefore, we designed a novel Semantic Constraint module using
multi-label classification to predict the degree of conformity between the fused image and
the real visible and infrared image data distribution. The training result of the fusion
model is effectively improved through the continuous increase of the information content
contained in the fused image from dual-source images.

3. Approach

This section specifies our proposed MSFAM model. First, we give an overview of
the proposed method in Section 3.1; in Sections 3.2–3.6, we elaborate on the key points
of MSFAM as follows: the overview and details of the network, the multi-stage training
approach, the attention fusion part, the Semantic Constraint module, and the Pull–Push
loss function.

3.1. Overview

Based on the above observations, we propose an image fusion network with multiple
training stages to achieve the effective combination of visible texture information and
infrared salient features (Figure 2). Specifically, the multi-stage training mode effectively
avoids the difficulty of scratch training based on the first-stage training. Through the
second stage, the network—especially the feature fusion module—learns to pay more
attention to the effective dual-light features. To provide feasibility for multi-stage training,
we specially designed a feature fusion module based on the attention mechanism. It
realizes effective attention through the interaction and enhancement of dual-light features.
In addition, to further improve the result of unsupervised training, the Semantic Constraint
module and Pull–Push loss function were designed for the training stage. The Semantic
Constraint module achieves the fitting of infrared and visible data distribution by a multi-
label classification network, which enables the fusion result to satisfy each distribution
directly, ensuring that the output contains as much valid information from both images
as possible. However, the Pull–Push loss forces the output results to oscillate between
infrared and visible images by an adaptive loss weight to extend the effective training so
that it avoids the overfitting caused by small-scale data sets.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 21 
 

 

 
Figure 2. An illustration of our multi-stage training approach, which contains multiple training 
stages, with the encoder, decoder, and feature fusion parts (involved in the second stage). 

3.2. Network Structure 
The overall structure of our MSFAM model is shown in Figure 3. Considering the 

superiority of the NestFuse [8] fusion effect, the Unet++ structure of its backbone was also 
adopted in this paper. Through multiple consecutive encoding modules, the network 
achieves feature extraction at different scales and levels. Subsequently, multiple decoding 
modules are used to realize the image reconstruction work by combining the near skip-
connected operation for the reuse of the earlier feature maps. Among them, the near skip-
connected operation promotes the retention of effective information and improves the de-
tail effect of the overall fused image while avoiding the unexpected result caused by cross-
stage cascading. 

The original encoding module uses successive Conv layers to achieve feature extrac-
tion of the image, and this straight structure is prone to the loss of early texture detail 
information owing to the non-use of the Resnet block structure. In addition, owing to the 
proposed multi-stage training method, the network without a normalization layer may 
lead to unstable model output and reduce the convergence efficiency and effect of the 
network. Therefore, this paper uses HINBlock in HINet [38] instead of the original encod-
ing module, which uses half instance normalization to avoid the performance degradation 
of low-level tasks, such as image denoising and reconstruction, caused by traditional nor-
malization methods, such as Batchnorm and LayerNorm. It effectively improves the fu-
sion effect and convergence speed of the model. 

Besides the basic encoding and decoding structure, an attention fusion module was 
designed similar to the “fusion training” mode. However, to accommodate the multi-
stage training approach proposed in this paper, the designed module is learnable with 
parameters. Details are described in Section 3.4. 

Figure 2. An illustration of our multi-stage training approach, which contains multiple training
stages, with the encoder, decoder, and feature fusion parts (involved in the second stage).



Sensors 2022, 22, 3651 6 of 20

3.2. Network Structure

The overall structure of our MSFAM model is shown in Figure 3. Considering the
superiority of the NestFuse [8] fusion effect, the Unet++ structure of its backbone was
also adopted in this paper. Through multiple consecutive encoding modules, the network
achieves feature extraction at different scales and levels. Subsequently, multiple decoding
modules are used to realize the image reconstruction work by combining the near skip-
connected operation for the reuse of the earlier feature maps. Among them, the near
skip-connected operation promotes the retention of effective information and improves
the detail effect of the overall fused image while avoiding the unexpected result caused by
cross-stage cascading.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 21 
 

 

 
Figure 3. The detail structure of the proposed multi-stage fusion network. 

3.3. Multi-Stage Training Approach 
To make better use of neural networks, we focused on the “reconstruction training” 

and “fusion training” modes. Through the above analysis in Section 1, we can see that 
these two approaches have some complementarity in terms of advantages. “Reconstruc-
tion training” causes less training difficulty and “fusion training” realizes a more full uti-
lization of information. Therefore, to effectively combine the benefits of the two modes, 
we designed a multi-stage fusion model training method, including both “reconstruction 
training” and “fusion training,” which is shown in Figure 2. 

In the first “reconstruction” phase, we train the above-designed encoding and decod-
ing part of the model with a single visible or infrared image to achieve feature extraction 
and image reconstruction capability. In this paper, we use L1 loss and SSIM loss to realize 
one-stage training, and the loss function is as follows: 𝐿 (𝐼, 𝑂) = 𝐿 (𝐼, 𝑂) + α1𝐿 (𝐼, 𝑂) = ‖𝐼 − 𝑂‖ + α1 1 − 𝑆𝑆𝐼𝑀(𝐼, 𝑂) , (1)

where α   is the scale factor of SSIM loss, and 0.84 is chosen according to [39]. 
Based on the preliminary training model obtained, the attention fusion module and 

the Semantic Constraint module are added to the model for the second-stage “fusion train-
ing”. The two-stage training loss function is as shown as Equation (2), which includes L1 
loss, Semantic Constraint loss, and Pull–Push loss. The main purpose of this stage is to 
make the added attention fusion module effectively fuse the dual-light features through 
learning to ensure the effect of subsequent reconstruction of the image. Specifically, a 
small number of paired input images are fused through the feature extraction part, fusion 
part, and reconstruction part to achieve end-to-end fusion output, and the corresponding 
loss function was designed to achieve training. 𝐿𝑡𝑤𝑜𝑠𝑡𝑎𝑔𝑒(𝐼, 𝑉, 𝐹) = 𝐿1(𝐼, 𝑉, 𝐹) + α2𝐿 𝑡𝑟𝑎𝑖𝑛𝑡(𝐹) + 𝛽𝐿 (𝐼, 𝑉, 𝐹), (2)

where α   is the scale factor of Semantic Constraint loss, 𝛽 is the factor of Pull–Push loss, 
and the specific details regarding Semantic Constraint loss and Pull–Push loss are de-
scribed in Sections 3.5 and 3.6, respectively. 

To avoid the loss of the first-stage training effect, it is necessary to freeze the param-
eters in the second-stage fusion training, which include the encoding part and the decod-
ing part. However, considering the difference between the fused features and the original 
ones, completely freezing the decoding module will affect the effect of image reconstruc-
tion. Therefore, for the decoding module, the learning rate is reduced by half instead of 

Figure 3. The detail structure of the proposed multi-stage fusion network.

The original encoding module uses successive Conv layers to achieve feature extrac-
tion of the image, and this straight structure is prone to the loss of early texture detail
information owing to the non-use of the Resnet block structure. In addition, owing to the
proposed multi-stage training method, the network without a normalization layer may lead
to unstable model output and reduce the convergence efficiency and effect of the network.
Therefore, this paper uses HINBlock in HINet [38] instead of the original encoding module,
which uses half instance normalization to avoid the performance degradation of low-level
tasks, such as image denoising and reconstruction, caused by traditional normalization
methods, such as Batchnorm and LayerNorm. It effectively improves the fusion effect and
convergence speed of the model.

Besides the basic encoding and decoding structure, an attention fusion module was
designed similar to the “fusion training” mode. However, to accommodate the multi-
stage training approach proposed in this paper, the designed module is learnable with
parameters. Details are described in Section 3.4.

3.3. Multi-Stage Training Approach

To make better use of neural networks, we focused on the “reconstruction training”
and “fusion training” modes. Through the above analysis in Section 1, we can see that
these two approaches have some complementarity in terms of advantages. “Reconstruction
training” causes less training difficulty and “fusion training” realizes a more full utilization
of information. Therefore, to effectively combine the benefits of the two modes, we designed
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a multi-stage fusion model training method, including both “reconstruction training” and
“fusion training,” which is shown in Figure 2.

In the first “reconstruction” phase, we train the above-designed encoding and decod-
ing part of the model with a single visible or infrared image to achieve feature extraction
and image reconstruction capability. In this paper, we use L1 loss and SSIM loss to realize
one-stage training, and the loss function is as follows:

Lonestage(I, O) = L1(I, O) + α1LSSIM(I, O) = ‖I −O‖+ α1(1− SSIM(I, O)), (1)

where α1 is the scale factor of SSIM loss, and 0.84 is chosen according to [39].
Based on the preliminary training model obtained, the attention fusion module and

the Semantic Constraint module are added to the model for the second-stage “fusion
training”. The two-stage training loss function is as shown as Equation (2), which includes
L1 loss, Semantic Constraint loss, and Pull–Push loss. The main purpose of this stage is to
make the added attention fusion module effectively fuse the dual-light features through
learning to ensure the effect of subsequent reconstruction of the image. Specifically, a small
number of paired input images are fused through the feature extraction part, fusion part,
and reconstruction part to achieve end-to-end fusion output, and the corresponding loss
function was designed to achieve training.

Ltwostage(I, V, F) = L1(I, V, F) + α2LConstraint(F) + βLPull−Push(I, V, F), (2)

where α2 is the scale factor of Semantic Constraint loss, β is the factor of Pull–Push loss, and
the specific details regarding Semantic Constraint loss and Pull–Push loss are described in
Sections 3.5 and 3.6, respectively.

To avoid the loss of the first-stage training effect, it is necessary to freeze the parameters
in the second-stage fusion training, which include the encoding part and the decoding
part. However, considering the difference between the fused features and the original ones,
completely freezing the decoding module will affect the effect of image reconstruction.
Therefore, for the decoding module, the learning rate is reduced by half instead of freezing
so that the network has a certain adjustment ability to better use the fused features to
achieve image reconstruction while retaining the pre-training effect.

3.4. Attention Fusion Block

To give feasibility to the two-stage training approach while improving the interaction
effect of features as much as possible, we drew on the CBAM [29] to design the attention
fusion block, which contains the channel attention module and the spatial attention module,
as shown in Figure 1. First, we concatenate the visible features

(
Fvis ∈ RC×H×W) with

the infrared features (Fir ∈ RC×H×W) for subsequent processing as joint features. For
the feature Fconcat ∈ R2C×H×W, the channel attention module and the spatial attention
module are used in turn to achieve effective information enhancement and ineffective
feature suppression in different aspects.

The channel attention module (see left part of Figure 4) is based on CBAM with a
certain difference. In the conventional CBAM, the filter and fusion of the input features
are not involved, so the output feature dimension is kept the same as the input, that is,
FCA ∈ R2C×H×W. In contrast, for the image fusion task in this paper, it is required that we
ensure that the output features are in the same dimension as the single-light ones, that is,
FCA ∈ RC×H×W, to input to the subsequent pre-training reconstruction module. Therefore,
the original channel attention module is modified to obtain the feature fusion and filtering
ability besides its basic attention mechanism. First, the channel of vector output by the
attention Conv (CBAM uses a fully connected layer to get the attention vector, which can
be replaced by a 1 × 1 Conv layer) is set to half of the input, that is, the same as that of the
single-light feature, as shown in Equations (4) and (5). On this basis, a 1 × 1 fusion Conv is
used to modify the dimension of the input feature. After pointwise multiply and addition,
as Equation (3), the concat feature can be enhanced from channel aspect. In addition, by
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sharing the parameters of two Conv layers, the correlation between the attention vector
and the features is achieved, ensuring the effectiveness of the attention calculation.

FCA = MCA−max(F)⊗ Conv1×1,2C→C
max (F) + MCA−avg(F)⊗ Conv1×1,2C→C

avg (F), (3)

MCA−max = Sigmoid
(

Conv1×1,2C→C
max (MaxPool(F))

)
, (4)

MCA−avg = Sigmoid
(

Conv1×1,2C→C
avg (AvgPool(F))

)
, (5)
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attention module and right part is that of spatial attention module.

The spatial attention module (see right part of Figure 4) is similar to the traditional
CBAM, with the adjustment of some hyperparameters. Its operations are as same as the
original module, as shown as Equations (6) and (7). To better adapt to the different input
scale of the four attention modules in our model, the size of the convolution kernel is
modified correspondingly to 7, 5, 5, and 3 from the uniform 7 × 7, respectively, enabling
the network to better understand the contextual information and obtain more accurate
attention results.

FSA = MSA(FCA)⊗ FCA, (6)

MSA = Sigmoid(Conv([AvgPool(F), MaxPool(F)])), (7)

In each attention module, two methods, average pooling and maximum pooling, are
used to extract information in parallel and fuse the calculation results, which can avoid
information omission to a certain extent and improve the overall attention quality.

3.5. Semantic Constraint Module

In GANMCC [12], a dual classification discriminator is used to constrain the output
result, ensuring the information balance degree of the fused images. However, considering
the training difficulty and instability of GAN networks, we achieved a similar aim by a
pre-trained multi-label classification network. Unlike the discriminator, the network’s
parameters are frozen after training, ensuring the original discriminative ability of the
module without affecting the validity of the prediction result probability.

The structure of the Semantic Constraint module has four Conv layers and a fully
connected layer, as shown in Figure 5. Its structure is simple but effective. After training, it
can achieve an accuracy of more than 99%, which is sufficient to complete the dual-light
discrimination task required in this paper.
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According to the task requirements, we train the constraint module as a multi-label
classification model using BCE loss, which is used to determine the probability of an input
image belonging to a single-light image based on its data distribution.

In the training phase, we use the original visible and infrared single-source images as
part of the data, with the corresponding probability of 1 in the output label, to train the
ability to discriminate the distribution difference between the dual-light data. The other
part of the input uses the fusion results of some existing algorithms to train the multi-label
prediction capability, whose output labels are all set to 1 for the probability of both.

In the usage phase, the fused output image is fed into the Semantic Constraint module.
By optimizing corresponding loss, we can effectively ensure that the output image meets
the data distribution of both visible and infrared information and increase the information
of both simultaneously to achieve an effective improvement for the quality of the fusion
result. The Semantic Constraint loss is as follows:

LConstrain = LBCE(MConstrain(F), label) = 1·log(pvis) + 1·log(pir), (8)

where pvis, pir are the visible probability and infrared probability of the Semantic Constraint
model output, respectively.

3.6. Pull–Push Loss Function

Considering the unsupervised task mode of the second “fusion training” stage, the
design of the loss function plays a crucial role in the training effect of the model.

To prevent the training bias caused by manual weighted loss functions, we designed
a novel Pull–Push loss function based on the weighted edge information evaluation in-
dex [40], combined with the widely used SSIM loss function [41]. It can determine the
dual-light scaling coefficients adaptively according to the current learning status of the
fusion model and realize a more flexible training process to ensure that the output results
effectively fuse multi-light information without information omission.

Concretely, when the fused image is more similar to the visible one, its information
preserving value is relatively high, which leads to an increase of visible loss in the loss
function after weighting. To reduce the total loss, the fused model is more focused on the
visible part, which will push away from visible information and move closer to infrared
information during optimization. When the fusion image has a high similarity to the
infrared information, it will pull the fusion image to the visible light and away from
the infrared information. In the continuous Pull–Push process, the network can keep
continuously learning to achieve full fusion of dual-source images.

The weighted edge information can measure the preserving degree of edge structure
information in the fused image, which is used to indicate the similarity between the current
fusion result and each source image in this paper. The specific calculation is shown in
Algorithm 1. After obtaining the weighted edge information preserving value of the
fused image with visible and infrared respectively, the final Pull–Push loss is obtained by
weighting the SSIM loss function jointly through normalization, as shown in Algorithm 2.
As can be seen, we use the weighted edge information preserving value to calculate the
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visible and infrared loss weights in the Push–Pull loss. To avoid large numerical oscillations,
which lead to unstable network training, we use the Softmax operation to normalize the
weights to reduce their disparity.

Algorithm 1 Compute Weighted Edge Information Preserving Value

Input: Single source image Ia; fusion result of MSFAM IF
Output: Edge information preserving value Qab; Edge intensity weight wa
1: Calculate the x and y direction gradients of each image:
sx

a = Sobelx(Ia) sy
a = Sobely(Ia)

sx
b = Sobelx(Ib) sy

b = Sobely(Ib)
2: Calculate the edge intensity and direction for each image:

ga =

√
sx2

a + sy2

a αa = arctan
(

sy
a

sx
a

)
gb =

√
sx2

b + sy2

b αb = arctan
(

sy
b

sx
b

)
3: Calculate the relative intensity and orientation of the fused image and the single source image:

Gab =

{ ga
gb

, ga < gb
gb
ga

, gb ≤ ga
Aab = ||αa − αb| − π/2|

π/2

4: Calculate edge intensity preserving value and edge direction Preserving value:
Qab

g =
ΓgK

1 + exp[κg(Gab − σg)]
Qab

α = ΓαK
1 + exp[κα(Aab − σα)]

5: Calculate edge information preserving value:
Qab = Qab

g ·Qab
α

6: Calculate edge intensity weight: wa = (ga)
L

7: Return Qab and wa

Algorithm 2 Compute Pull–Push Loss Value

Input: visible image Ivis; infrared image Iir; fusion result IF
Output: Pull–Push loss value LPush−Pull_SSIM
1: Calculate the weighted edge information preserving value of fused image and each image:
Qvis, wvis = Compute Weighted Edge information Preserving Value (Ivis,IF)
Qir, wir = Compute Weighted Edge information Preserving Value (Iir,IF)
2: Calculate normalized weighted edge information preserving values:

Qvis = ∑ Qvis∗wvis
∑(wvis + wir)

Qir = ∑ Qir∗wir
∑(wvis + wir)

3: Calculate the scale factor of Pull–Push loss:

αvis,αir = Softmax
(

Qvis

Qvis + Qir , Qir

Qvis + Qir

)
4: Calculate the structural similarity between the fused image and the single-source image:
SSIMvis = MS_SSIM(Ivis, IF) SSIMir = MS_SSIM(Iir, IF)
5: Calculate Pull–Push Loss Value:
LPush−Pull_SSIM = αvis(1− SSIMvis) + αir(1− SSIMir)
6: Return LPush−Pull_SSIM

4. Experiments

The purpose of this section is to demonstrate the superiority of our algorithm through
experimental data. First, the module effectiveness of each design is demonstrated through
several ablation studies. Based on this, the MSFAM method of this paper is compared
with existing fusion algorithms to show that the proposed algorithm can achieve better
performance in both qualitative and quantitative evaluation.

4.1. Implementation Details

All experiments were based on the Pytorch deep learning framework, implemented on
a computer configured with Intel (R) Xeon (R) Silver 4110 CPU @ 2.10 GHz and RTX2080Ti
GPU. If not otherwise specified, we trained the network using the Adam optimizer with a
fixed 1 × 10−4 learning rate.

Training. Our training was divided into two phases. In the first stage, we connected
the encoding part to the decoding part with separate infrared images or visible images to
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ensure feature extraction and reconstruction ability. We chose the FLIR data set for this
phase, which contained 9676 visible images and 10,501 infrared images. We grayed visible
images because of their multiple colors. We trained two epochs to ensure the completeness
of the training. In the second stage, we added the attention feature fusion part between the
pre-trained encoding and decoding parts and connected the Semantic Constraint network
at the back of the whole model. The aligned pairs of visible and infrared images were
fed into the network for the fusion training. We fused the TNO data set with the Road
Scene data set, which contained a total of 273 image pairs, and we used 90% for training
and 10% for fusion testing. During training, we ensured that the learning rate of the
encoding part and Semantic Constraint network was 0; that is, we fixed the weights and
guaranteed the original function. The learning rate of the decoding part was decayed to
50% of default to ensure that it had a certain degree of adaptive adjustment function. We
trained 20 epochs and selected the best model for preservation. In addition, we trained
the Semantic Constraint network to learn various image data distributions using visible
and infrared images alone with fused images from some existing algorithms as inputs. The
input images in the training phase were fixed at 320 × 256, with a batch size of 4 for the
fusion model and 16 for the Semantic Constraint model. We used random horizontal and
vertical flips for data enhancement to increase the scale of the data set.

Inference. We tested the model’s effectiveness using the remaining 10% of images from
the fused TNO and Road Scene data set. We used the above two-stage fusion model without
the Semantic Constraint module to achieve end-to-end fusion output of pairs of visible and
infrared images. For testing, we used the original image size as input. For the output result,
we normalized it to 0–255 according to the maximum and minimum data values to ensure
the quality of visualization. For speed testing with other algorithms, we set the batch size
to 1. We used six metrics—information entropy (EN), multi-scale institutional similarity
(MS_SSIM), mutual information (MI), difference correlation (SCD), correlation coefficient (CC),
and visual fidelity (VIF)—to quantitatively evaluate the quality of fused images. EN is used
to characterize the richness of information contained in the fusion image; MS_SSIM, MI, SCD,
and CC calculate the similarity or difference between the fusion result and the original image
to show the retention degree of the original information in fused image; VIF realizes image
quality evaluation based on natural scene statistics and human visual system. The detailed
information and calculation of each metric can be found in related papers [42–45]. The larger
the value of these metrics, the better the fusion results. Different from part of the original
metrics that need a reference image for calculation, we use the mean value of two metrics,
which are separately calculated by the fused result and two single-light images because there
is no ideal reference. This is shown in the following formula.

Metric(F, V, I) =
Metric′(F, V) + Metric′(F, I)

2
, (9)

where F, V, I mean fusion result, visible image, and infrared image, respectively; Metric
and Metric′ indicate the metrics in our paper and original metrics, respectively. Besides, we
also provided three parameters for model complexity: Frame Per Second (FPS) and Giga
Floating-point operations (GFlops) for time complexity and Parameters (Params) for spatial
complexity. A larger FPS with fewer GFlops and Params indicates a more concise model.

4.2. Ablation Studies
4.2.1. Effectiveness of Multi-Stage Training

To verify the effectiveness of our multi-stage training approach, we trained the same
network using two existing training methods. To complete the experiments, minor modi-
fications were made to our MSFAM model. For the “reconstruction training” mode, we
only trained the encoding and decoding parts of the MSFAM model, similar to our first
stage. For prediction, we used the hand-designed fusion module in NestFuse for visible
and infrared feature fusion, whose manual attention fusion method is somewhat similar
to ours and can be compared to some extent. For the “fusion training” mode, we trained
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our MSFAM network model using the traditional unsupervised training method without
first-stage training. For the sake of comparison, we did not introduce the Pull–Push loss
and Semantic Constraint modules, and only used the basic L1 loss and SSIM loss for
training. The experimental results, shown in Table 1, demonstrate that the multi-stage
training approach proposed in this paper could effectively improve the training effect
of the model and ensure the final fused image quality from various aspects. The results
show that the first stage enabled the network to obtain more accurate feature extraction
and reconstruction capability through supervised training and reduced the difficulty of
subsequent training. The second stage was fine-tuned based on the pre-trained model,
which effectively ensured a better fusion ability for the dual-light feature compared with
the manual method.

Table 1. Ablation study on the effectiveness of the multi-stage training approach compared with
existing single phases. Bold represents for the best result in comparison.

Training Stage
Quality Metrics

EN MSSIM MI SCD CC VIF

Rec 6.97 0.54 13.93 1.83 1.03 0.79
Fusion 6.97 0.54 13.93 1.82 1.04 0.93

Rec and Fusion 7.04 0.55 14.07 1.84 0.97 0.95

4.2.2. Effectiveness of Attention Mechanisms

We then demonstrated the effectiveness of the designed fusion module based on the
attention mechanism. For comparison, we replaced the module with 5 × 5 Conv layers to
achieve the fusion of dual-light features. We also used the designed multi-stage approach
for training. Table 2 shows that our designed attention fusion module could more effectively
achieve the interaction and enhancement of dual-light features to meet the image fusion
task to obtain a high-quality fusion result.

Table 2. Ablation study on the effectiveness of attention mechanisms in the feature fusion module.
Bold represents for the best result in comparison.

Fusion Mode
Quality Metrics

EN MSSIM MI SCD CC VIF

w/o attention 6.98 0.54 13.94 1.82 1.04 0.89
w/ attention 7.04 0.55 14.07 1.84 0.97 0.94

We visualized the features of the attention fusion module, as shown in Figure 6, to
show the effectiveness more intuitively. Each image shows the attention level of visible,
infrared, and fused features to different regions, respectively. The single-light features
directly output by the encoder module possessed their attention characteristics.

Similar to our analysis, the visible feature maps focused on the detailed information,
such as the edge texture inside the ship and slight waves, while the infrared features focused
more on the prominent targets with strong contrast, for the whole ship and the brightness
background. We also found that the different layers had their attention regions, which
also showed the effectiveness of feature reuse during reconstruction. Through the feature
fusion enhancement process, it was obvious that the module achieved the effective fusion
of dual-light features and achieved attention to the significant regions and the detailed
edges simultaneously. In addition, we found that the infrared features paid a great degree
of attention to the aerial spot region, which was unnecessary. Fortunately, it was reduced
to a certain extent through the dual-light information interaction by the attention fusion
module. This correction phenomenon indicated the effectiveness of the feature fusion
module designed in this paper in another way.
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Based on the multi-stage attention fusion model, we compared the effect of introducing
the Pull–Push loss function and Semantic Constraint module (or not introducing it) to
demonstrate the effectiveness of the relevant improvements. Based on the pre-trained
model that completes the first stage, we used four approaches to train the second-stage
fusion. The experiments demonstrated that the introduction of the Pull–Push loss function
and Semantic Constraint module alone could improve the image quality to some extent
compared to the baseline, proving the effectiveness of the two types of improvements.
Furthermore, the joint introduction enhanced the fusion effect more significantly. Table 3
shows that the introduction of constraint ideas from image content and deep semantic
perspectives could effectively raise the training quality, and different components worked
as a coherent module.
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4.2.4. Analysis on Factors of Loss

We further analyzed the effects of different loss factors on the fusion result. There are
two major factors in our training stage, including the factor of Semantic Constraint loss
α2 and the factor of Pull–Push loss β, so we ablate them in a two-stage method. We first
keep a proper factor of Semantic Constraint loss unchanged, α2 = 1, and adjust the factor of
Pull–Push loss β. Then, we maintain the factor of Pull–Push loss corresponding to the best
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result of above, i.e., β = 2, and change α2. The experimental results are shown in Tables 4
and 5. Studies show that modifying both of the two factors can affect the final fusion effect
to a certain extent. Finally, we choose α2 = 0.84 and β = 2 as the default by combining the
results of multiple quality metrics.

Table 4. Ablation studies on changing loss factor β while maintaining α2 = 1. Bold represents for the
best result in comparison.

Loss Factor Quality Metrics

α2 β EN MSSIM MI SCD CC VIF

1 1 7.01 0.52 13.97 1.71 1.01 0.99
1 2 7.04 0.53 14.08 1.66 1.02 1.13
1 3 7.03 0.51 14.05 1.64 1.00 1.10

Table 5. Ablation studies on changing loss factor α2 while maintaining β = 2. Bold represents for the
best result in comparison.

Loss Factor Quality Metrics

α2 β EN MSSIM MI SCD CC VIF

0.5 2 6.98 0.54 14.12 1.73 1.03 0.96
0.84 2 7.09 0.55 14.16 1.87 1.04 1.10

1 2 7.04 0.53 14.08 1.66 1.02 1.13

4.3. Comparison with Recently Published Methods

We compared our models with existing state-of-the-art algorithms both in qualitative
and quantitative aspects. We selected 10 methods in total for comparison, including three
traditional algorithms (e.g., Hybrid_MSD [46], TIF [7], and NSCT_SR [6]), and seven
deep learning models (e.g., DenseFuse [20], U2Fusion [15], SEDRFuse [21], PMGI [47],
DualBranch [18], DIDFuse [19], and NestFuse [8]).

4.3.1. Qualitative Comparison

Figures 7–9 show the fusion results of each algorithm on part of the images. It can
be clearly seen that compared with the existing algorithms, the proposed algorithm could
ensure the contrast saliency of each object and balance the brightness difference between the
target and the background. At the same time, the texture edge information of the original
visible light was retained more completely, which could achieve the complement of the
infrared detail information with a natural combination and without obvious artifacts. On
the surface, our fusion result may not be significantly different from an existing algorithm
in a single scene, such as Hybrid-MSD in Figure 7 and PMGI in Figure 9. However, it can be
seen that MSFAM can output the most natural and beautiful fusion image in each of them.
Thanks to the learnable attention fusion module, our model has a strong scene adaptability
compared with others, which could be an effective improvement.

As for Figure 7, our algorithm better preserved the internal information of the signage,
thanks to the multi-stage training approach we designed, which better realized feature
extraction, fusion, and reconstruction. When there is a great pixel value difference of
single object between two images, e.g., the ship in Figure 8, our model can effectively
keep the high salient of target by adaptively discarding some low grayscale information.
Besides, compared with several existing algorithms, our fusion result appears more natural
because it solves the problem of floodlight in the sky area to a certain extent. In addition,
as shown in Figure 9, the algorithm in this paper was able to highlight the infrared high-
brightness targets such as houses adaptively, and it simultaneously was able to attenuate
the background grayscale to a certain extent without losing texture information, realizing
the distinction of the foreground and background automatically, owing to the attention
mechanism in our feature fusion module.
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4.3.2. Quantitative Comparison

In Table 6, the quantitative evaluation metrics of different fusion algorithms are used
to show the superiority of the model in this paper more objectively. Besides the six quality
metrics mentioned above, the computational cost, including Parmas, GFlops, and FPS, was
also counted in this paper to describe the complexity of each fusion algorithm. From the
table, it can be seen that our MFSAM algorithm achieved the best results in three of the
six quality metrics, i.e., EN, SCD, and CC. Compared with the existing algorithms, which
only obtained good scores on a single metric or a few metrics, our method ranked among
the top three in all metrics. Specifically, MSFAM surpassed its baseline, NestFuse, in all
metrics thanks to our multi-stage training mode with improved loss functions. DIDFuse
was second only to ours in term of quality metrics. It used a UNet-like model structure
with a targeted training idea for visible and infrared image fusion task. It had a certain
degree of similarity with ours, and its superiority also shows the effectiveness of our
research direction. In terms of model complexity, although our model has larger Params
and GFlops, it still guarantees a high inference speed based on its compact structure. The
speed of proposed two-stage model was in the middle and upper level of the existing
“reconstruction training” and “fusion training” modes, which was much higher than the
traditional fusion algorithms. In summary, while ensuring a certain degree of real-time
performance, the algorithm proposed in this paper could output high-quality visible and
infrared fusion images with a certain improvement compared to the existing algorithms,
achieving start-of-the-art performance of several quality metrics on published datasets.

Table 6. Comparison results on the TNO and RoadScene data with several recently published
methods. Bold represents for the best result in comparison. ↑ indicates the larger value the better
and ↓ means the opposite.

Methods
Quality Metrics Model Complexity

EN (↑) MSSIM (↑) MI (↑) SCD (↑) CC (↑) VIF (↑) Params (↓) GFlops (↓) FPS (↑)

Hybrid_MSD 7.0089 0.5274 14.0005 1.6165 0.8805 0.9063 - - 0.12
TIF 6.7003 0.5413 13.3833 1.6498 1.0028 0.8476 - - 8.32
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Table 6. Cont.

Methods
Quality Metrics Model Complexity

EN (↑) MSSIM (↑) MI (↑) SCD (↑) CC (↑) VIF (↑) Params (↓) GFlops (↓) FPS (↑)

NSCT_SR 6.6012 0.5378 13.1853 1.6202 1.0105 0.7534 - - 0.14
U2Fusion 7.0228 0.5235 14.0284 1.8064 1.0270 1.0041 0.6 M 108 50.25

PMGI 7.0597 0.5206 14.1022 1.7197 1.0121 0.9162 0.04 M 25 99.00
SEDR 7.0882 0.5216 14.1792 1.8507 1.0339 1.0019 3.4 M 407 4.78

DenseFuse 7.0172 0.5071 14.0173 1.6199 0.9141 0.7864 0.1 M 57 19.57
DIDFuse 7.0780 0.4862 14.1988 1.8068 0.9889 1.2053 0.3 M 21 53.05

DualBranch 6.5897 0.5580 13.1622 1.6675 1.0205 0.4519 0.5 M 11 163.93
NestFuse 7.0767 0.5186 14.1363 1.7088 0.9388 0.8903 2.7 M 95 22.88

MSFAM (Ours) 7.0924 0.5502 14.1675 1.8775 1.0448 1.1048 3.8 M 106 37.17

4.4. Performance on a High-Level Task

Other than low-level image process tasks, the main purpose of image fusion is to
improve the performance of subsequent high-level tasks, such as detection, tracking, or
segmentation. As mentioned above, our fusion model achieved more effective information
fusion and could improve the salience of the target and the detailed texture information at
the same time. Thus, it can provide a more reliable judgment basis for the subsequent tasks
and thus improve the effectiveness of the high-level perception result. To demonstrate the
expressiveness of the fusion image obtained in this paper, we experimented with it on the
object detection task.

Commonly used detection datasets, such as MS COCO and Pascal VOC, only cover
visible images without paired infrared images. Thus, we experimented on the KAIST
Multispectral Pedestrian Detection Benchmark [48], which consists of 95,000 color-thermal
pair images with campus, road, and downtown scenarios in the day and light. Three
categories (person, people, cyclist) were manually annotated, for a total of 103,128 dense
annotations and 1182 unique pedestrians. The benchmark’s rich scenes and substances
enabled us to fully verify the effectiveness of our algorithm in a variety of common cases.

For the detection algorithm, we chose the Generalized Focal Loss V2 framework [49].
This model replaced the specific value regression of the traditional detection method by
fitting a generalized probability distribution, which is more suitable for location subtasks,
especially in a fuzzy boundary and occlusion situation. This model deals better with the
characteristics of the chosen dataset with considerable pedestrian occlusion and a vague
outline in the infrared image.

For comparison, we compared our model with several existing fusion methods that
performed well in qualitative or quantitative experiments. We chose the Hybrid_MSD
method, SEDR for its good qualitative result, DIDFuse for its great qualitative metrics, and
NestFuse because it is our baseline. Besides, we also used single visible and infrared images
to show the effectiveness of general image fusion task. We trained each GFLV2 model
with an ImageNet pretrained Resnet50 backbone for 24 epochs equally. The commonly
used mAP index, calculated by precision and recall, was also chosen to describe the
evaluation result. APS, APM, and APL were the values of small, medium, and large objects,
respectively.

The evaluation measure values are shown in Table 7. The experiment results show
that compared to the single visible or infrared image, the fusion ones obtained better
performance on AP, APS, and APM, with comparable results of APL, which indicates that
our fusion result with rich salience and detail could also improve the performance of the
detection task. Comparing with other fusion methods, the fusion result of MSFAM greatly
improves the accuracy of the detection model. It can achieve better fusion effect in a wider
range of scenes, so as to ensure the input quality of the detection model. Even without
extra experiments, we believe that this conclusion will hold for other high-level perception
tasks, like tracking or segmentation.



Sensors 2022, 22, 3651 18 of 20

Table 7. GFLV2 evaluation result of different types of images on the KAIST Multispectral Pedestrian
Detection Benchmark. Bold represents for the best result in comparison.

Image Type Epoch AP APS APM APL

Visible

24

0.756 0.673 0.754 0.819
Infrared 0.764 0.708 0.762 0.820

Hybrid_MSD 0.765 0.703 0.761 0.821
SEDR 0.764 0.694 0.758 0.823

DIDFuse 0.764 0.700 0.754 0.820
NestFuse 0.766 0.708 0.763 0.815
MSFAM 0.768 0.710 0.764 0.819

4.5. Generality and Limitation

Although our model was designed for the visible and infrared image fusion task, its
two-stage training method could be extended to several multi-source image fusion applica-
tions to enhance training effect, such as multi-focus, multi-exposure, or even multi-band
image fusion. Its generality makes it suitable to any encoder/decoder-like structure in a
fusion task. However, the additional loss function in the second stage, i.e., Semantic Con-
straint loss and Pull–Push loss, needs to be modified or replaced to meet the characteristics
of the corresponding task rather than a simple application.

Besides, our model is only applicable to fusion of paired gray visible and gray infrared
images due to the requirements for consistency of input channel by the model structure
and loss function. It is hard to be directly applied to color visible image with gray infrared
one, i.e., three channels vs. one channel, which could also be an attention direction for our
future exploration.

5. Conclusions

In this paper, we proposed a multi-stage visible and infrared image fusion network
based on the attention mechanism, which can achieve a better performance in several
fusion quality metrics. Unlike the existing single training mode, a two-stage joint training
approach was proposed, which effectively reduced the difficulty of the model training and
provided a new perspective on improving the image fusion effect. Accordingly, the Pull–
Push loss function and Semantic Constraint module were designed for the characteristics of
the fusion task, and their effectiveness was experimentally demonstrated. Our experiments
demonstrated the importance of the training strategy and loss function design in the
unsupervised fusion task, which can be a major research focus in the future.
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