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Convolutional neural networks are a class of deep neural networks that leverage
spatial information, and they are therefore well suited to classifying images for a range of
applications. These networks use an ad hoc architecture inspired by our understanding of
processing within the visual cortex. Convolutional neural networks (or CNNs) provide
an interesting method for representing and processing image information and form a
link between general feed-forward neural networks and adaptive filters. Two-dimensional
CNNs are formed by one or more layers of two-dimensional filters, with possible non-linear
activation functions and/or down-sampling. CNNs possess key properties of translation
invariance and spatially local connections (receptive fields). Given this, deep learning
using convolutional neural networks (CNNs) has quickly become the state of the art for
challenging computer vision applications.

Image quality is critical for many applications. CNNs have a key role to play in directly
dealing with low-quality images or in image enhancement applications. Tchendjou et al. [1]
presented a new objective method incorporating a CNN for the estimation of visual per-
ceiving quality without the need for a reference image or assumptions on the image quality.
Wang et al. [2] explored the effect of geometric disturbance corresponding to attitude jitter
using a GAN to explore the usefulness for jitter detection, revealing the enormous poten-
tial of GAN-based methods for the analysis of attitude jitter from remote sensing images.
Han et al. [3] proposed a deep supervised residual dense network, which uses residual dense
blocks to enhance features along with an encoder and decoder to reduce the differences be-
tween the features for underwater degraded images. Xiao et al. [4] focused on blur detection
as an image segmentation problem where a multi-scale dilated convolutional neural network
(MSDU-net) extracts features with dilated convolutions and a U-shape architecture fuses the
different-scale features, supporting the image segmentation task. Yang et al. [5] proposed a
novel deeply recursive low- and high-frequency fusing network for single-image super-
resolution (SISR) tasks which adopts the structure of parallel branches with a focus on
reducing computational and memory resources.

CNNs can play a leading role in environmental applications. For example, pollution
in the form of litter in the natural environment is one of the great challenges of our
times. Cordova et al. [6] developed an automated litter detection system that can help
assess waste occurrences in the environment. A comparative study involving state-of-
the-art CNN architectures highlights the role CNNs can play to support this. Similarly,
Wei et al. [7] developed models for predicting the wind speed and wave height near the
coasts of ports during typhoon periods, where gated recurrent unit (GRU) neural networks
and convolutional neural networks (CNNs) were combined and adopted to formulate
the typhoon-induced wind and wave height prediction models. Wu et al. [8] targeted
the detection of specific crop types from crowdsourced road-view photos and clearly
demonstrated the superior accuracy of this approach. Xu et al. [9] presented an accurate
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and robust detection of road damage that is essential for public transportation safety, and
Chou et al. [10] developed a smart dredging construction site system using automated
techniques to automate the audit work at the control point, which manages trucks in river
dredging areas.

Healthcare is an important application area that AI and CNNs, in particular, can have
an impact on. Specifically, the role of 5G-IoT plays a crucial part in e-health applications,
and to this end, Anand et al. [11] proposed a new deep learning model to detect malware
attacks based on a CNN. In contrast, Barros et al. [12] presented a hybrid model to classify
lung ultrasound videos captured by convex transducers to diagnose COVID-19 with an
average accuracy of 93% and sensitivity of 97%. The Clock Drawing Test (CDT) is a rapid,
inexpensive, and popular screening tool for cognitive functions. Park et al. [13] presented
a mobile phone application, mCDT, and suggested a novel, automatic, and qualitative
scoring method and deep learning that provides the ability to differentiate dementia
disease. Alsamadony et al. [14] applied DCNNs to improve the quality of rock CT images
and reduce exposure times by more than 60% simultaneously. The approach is applicable to
any computed tomography technology. Ankita et al. [15] presented an approach in which
convolutional layers are combined with long short-term memory (LSTM) for human activity
recognition (HAR); providing an accuracy of 97.89%, this has applications in assistive living
and healthcare.

Robotics is an important application area for CNNs, and to help robots grasp specific
objects in multi-object scenes, the powerful feature extraction capabilities of CNNs have been
proposed. Different from anchor-based grasp detection algorithms, Li et al. [16] successfully
developed a keypoint-based scheme demonstrating that a robot can grasp the target in single-
object and multi-object scenes with overall success rates of 94% and 87%, respectively.

This Special Issue provides a forum for high-quality peer-reviewed papers that
broaden the awareness and understanding of recent CNN developments, applications
of CNNs for computer vision tasks, and associated developments in CNN architectures,
processing components, connective structures, and learning mechanisms, and in dealing
with CNN constraints in respect to data preparation and training.
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