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Abstract: The hysteretic nonlinearity of pneumatic artificial muscle (PAM) is the main factor that
degrades its tracking accuracy. This paper proposes an efficient hysteresis compensation method
based on the active modeling control (AMC). Firstly, the Bouc–Wen model is adopted as the reference
model to describe the hysteresis of the PAM. Secondly, the modeling errors are introduced into the
reference model, and the unscented Kalman filter is used to estimate the state of the system and
the modeling errors. Finally, a hysteresis compensation strategy is designed based on AMC. The
compensation performances of the nominal controller with without AMC were experimentally tested
on a PAM. The experimental results show that the proposed controller is more robust when tracking
different types of trajectories. In the transient, both the overshoot and oscillation can be successfully
attenuated, and fast convergence is achieved. In the steady-state, the proposed controller is more
robust against external disturbances and measurement noise. The proposed controller is effective
and robust in hysteresis compensation, thus improving the tracking performance of the PAM.

Keywords: pneumatic artificial muscle; active model; hysteresis compensation; trajectory tracking

1. Introduction

Pneumatic artificial muscle (PAM) is a widely-utilized bionic flexible actuator. PAM
is mainly composed of a hollow rubber tube, a fiber woven mesh and metal connectors.
PAM-driven robots are more flexible than hydraulic or motor-driven robots. In addition,
PAM features a higher power-to-mass ratio and good compliance with the human body.
Therefore, it has been widely used in the medical and rehabilitation fields. PAM is used
in the exoskeleton system, and a terminal sliding mode control was adopted to higher
trajectory tracking accuracy [1]. Although PAMs feature good application prospects, the
inherent nonlinear hysteresis characteristic has become one of the main obstacles affecting
the precise trajectory tracking control of PAM-driven robots. Currently, hysteresis modeling
and compensation have gradually become significant areas of research focus [2–6].

From the mathematical point of view, dynamic models for PAMs can be briefly divided
into physics-based and phenomenon-based models [7]. The physics-based model mainly
analyzes the geometric relationship and material properties of the PAM. For example, C.
Kothera et al. considered the thickness of the rubber tube and used the force balance
method to derive a static model of a PAM [8]. Because the physics-based model involves
very complex mathematical derivation and a large number of model parameters, it creates
great difficulties for the design of the controller and adds a very large calculation cost.

Alternately, models based on phenomenology are obtained through experimental
data, making the description of the model simpler. For example, in the research work
of R. Colbrunn et al., the PAM is regarded as a structure composed of a damping unit,
a spring unit and a Coulomb friction unit in parallel [9]. In previous studies, many
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phenomenological hysteresis models have been proposed and applied to PAMs. The
popular hysteresis models can be briefly classified into integral models and differential
models. The integral hysteresis model is also called the operator hysteresis model. Common
integral hysteresis models include the Maxwell model [10], Preisach model, Krasnosel’skii–
Pokrovskii model and Prandtl–Ishlinskii model [11,12]. Differential hysteresis models use
nonlinear differential equations to describe hysteresis. Common differential hysteresis
models are the Dahl model, LuGre model, Leuven model, Duhem model and Bouc–Wen
model [13–16]. Among them, the Bouc–Wen model can provide acceptable modeling
accuracy with fewer parameters. The differential model is attractive in that its formulation
can facilitate the modeling, optimization and controller design.

An accurate model is necessary, whereas an increase in the model accuracy often leads
to an increase in the model complexity. The model-based closed-loop control strategy can
effectively improve the control accuracy. The proportional–integral–derivative (PID) con-
troller is the most widely-used closed-loop controller. Many compensation methods have
been proposed to enhance the robustness of PID. For example, T. Nuchkrua proposed a
fuzzy self-tuning PID control [17], which generates fuzzy rules based on expert knowledge
to adjust the PID gains. T. Thanh combined the traditional PID controller with a neural net-
work, so that the proposed controller featured a strong ability to learn, adapt and deal with
nonlinearities [18]. Compared with traditional PID controllers, it is suitable for the control
of various objects including linear and non-linear processes. In addition, other control
methods have also been proposed for PAMs. For example, W. Zhao designed an extended
agent-based sliding mode controller. Experiments verified that the proposed method can
effectively reduce jitter [19]. Q. Ai designed a model-free adaptive iterative learning con-
troller. The dynamics of PAM were transformed into a dynamic linearized model in the
iterative process to achieve rapid convergence of the tracking errors [20]. Single-neuron
adaptive control is also proposed for the hysteresis compensation of nonlinear systems [21].

This paper proposes a hysteresis compensation scheme based on active model control
(AMC), where the Bouc–Wen model is used to describe the hysteresis characteristics of the
PAM. Firstly, the genetic algorithm is used to identify the Bouc–Wen model parameters.
Secondly, the extended state vector is used to actively estimate the system state and
modeling error. The unscented Kalman filter (UKF) is used as an estimator for the active
estimation [22–24]. Ultimately, the active estimator is combined with a nominal controller
(the PID controller) to form an actively enhanced PID controller. The experimental results
of the nominal controller with and without the AMC verify that the control accuracy
can be effectively improved with the help of AMC. Both the transient and steady-state
tracking performances have been significantly improved when tracking continuous and
noncontinuous trajectories.

The structure of the rest of this paper is arranged as follows. Section 2 introduces
the hysteresis characteristics of the PAM and the Bouc–Wen hysteresis model. Section 3
illustrates the active modeling technique. Section 4 shows the architecture of the AMC
based control strategy. The experimental results are presented and analyzed in Section 5.
The conclusion to this paper is presented in Section 6.

2. Bouc–Wen Hysteresis Modeling
2.1. Hysteretic Nonlinearity of the PAM

PAMs generate contraction displacement and force based on changes in the inner
pressure. When the PAM is not pressurized, i.e., the initial state, the length and diameter
of the PAM do not change. When the pressure inside the PAM increases, the inner rubber
tube produces radial expansion. However, the outer braided mesh hinders the radial
movement of the rubber tube, making the length of the PAM shorter in the axial direction,
i.e., generating a contraction force. As shown in Figure 1a, with the increment of the inner
pressure, the length of the PAM (model DMSP-20-200N from Festo) gradually contracts.
When the inner pressure decreases, the PAM gradually returns to its initial state under
the action of the outer braided mesh. Due to the friction between the rubber tube and the
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braided mesh, there is strong hysteretic nonlinearity between the inner pressure and the
output displacement and force.
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Figure 1. Characteristics of the PAM: (a) the contraction of the PAM at different inner pressures, and
(b) the measured hysteresis loops of the PAM at different frequencies.

For instance, for the PAM utilized in Figure 1a, the control voltage to the proportional
pressure regulator is adopted as the input and the displacement of the PAM is adopted
as the output. Figure 1b shows the measured input–output hysteresis loops of the PAM.
It can be observed that the hysteresis loop of the PAM is not symmetric, and the loop
shape is influenced by the frequency of the control input, i.e., the rate-dependence. These
characteristics increase the difficulty of precisely modeling the hysteresis.

2.2. Bouc–Wen Hysteresis Model

In this paper, the Bouc–Wen model is used to describe the hysteresis characteristics of
the PAM. The Bouc–Wen model was originally proposed for nonlinear vibration mechan-
ics [25], while currently it is a popular hysteresis model. In the Bouc–Wen model, a state
variable h is used to characterize the hysteresis relationship of the system. The relationship
between the input and the state variable h can be described in the following form:

dh
dt

= α
du
dt
− β

du
dt
|h|m − γ

∣∣∣∣du
dt

∣∣∣∣|h|m−1h (1)

where u is a generalized input, h is the hysteresis state variable, α, β and γ are the gains
controlling the shape of the hysteresis loop and m controls the smoothness of the transition
from elastic to plastic response. In applications, m can be set to 1 so as to simplify the
model structure. This is also adopted in this paper. For the PAM investigated in this paper,
the control voltage applied to the proportional pressure regulator valve is the input of the
overall system. As a result, the control voltage is adopted as the input in the Bouc–Wen
model. Therefore, the Bouc–Wen model for the PAM can be expressed as follows:{

Y(t) = kρu(t) + b + k(1− ρ)h(t)
dh
dt = α du

dt − β du
dt |h| − γ

∣∣∣du
dt

∣∣∣h (2)

where Y(t) is the PAM’s output displacement, u is the control voltage, ρ ≤ 1 is the weight
coefficient, and k is the stiffness coefficient of the PAM [26]. The schematic diagram of the
hysteresis model is shown in Figure 2, where the parameters of the Bouc–Wen model are
shaded in grey background.
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3. Active Modeling for PAM

In this paper, the Bouc–Wen model defined in (2) is adopted as the reference model in
describing the PEA’s hysteresis. Compared with the operator-based hysteresis models, the
Bouc–Wen model requires fewer parameters, which is beneficial to the controller design.
However, the modeling accuracy of the Bouc–Wen model is limited, especially when it is
used to describe the hysteresis characteristics at different pressure ranges or at different
frequencies. In order to improve the modeling accuracy, we introduce modeling errors into
the reference model. The state and modeling error of the reference model are taken as the
extended state vector and a UKF is used to estimate it in real time. Equation (2) can be
rewritten as: {

Y(t) = kρu(t) + b + k(1− ρ)h(t) + V(t)
dh
dt = α du

dt − β du
dt |h| − γ

∣∣∣du
dt

∣∣∣h + U(t)
(3)

where U(t) and V(t) are the process noise and the observation noise of the system.
Due to interference and unmodeled uncertainties, there are modeling errors between

the actual system and the Bouc–Wen model. We use fh(t) to depict this modeling error, and
thus the model of the actual system can be described as:

.

h̃(t) = α
.
u(t)− β

.
u(t)

∣∣∣h̃(t)∣∣∣− γ
∣∣ .
u(t)

∣∣h̃(t) + fh(t) + U(t)

Ỹ(t) = kρu(t) + b + k(1− ρ)h̃(t) + V(t)
(4)

where h̃(t) and Ỹ(t) are the state of the actual dynamics of the PAM and the output
displacement of the system.

Currently, closed-loop systems often run at a high sampling rate, typically 1 kHz or
above. For this high sampling rate, the model error fh(t) can be treated as a slowly changing
parameter and it can be approximated as:

fh(t) =
.

h̃(t)−
.
h(t)

.
f h(t) =

→
0 + p(t)

(5)

where h(t) is the state of the reference model in (2) and p(t) is assumed to be the process
noise actuating the model errors. Subsequently, the discrete description of (4) is obtained:

h̃k+1 = h̃k +
[
αuδ(k) − βuδ(k)

∣∣∣h̃k

∣∣∣− γ
∣∣∣uδ(k)

∣∣∣h̃k + fh(k)

]
Ts + Uk

fh(k+1) = fh(k) + pk

Ỹk = kρuk + b + k(1− ρ)h̃k + Vk

(6)

where uδ(k) = (u(k) − u(k−1))/Ts is the discrete expression of the derivative of the input
voltage, Ts is the sample time,h̃k, hk, uk, fh(k) and Ỹk are the discrete expressions of h̃(t),
h(t), u(t), fh(t) and Ỹ(t), respectively and Uk and Vk are the sampling value of U(t) and
V(t), respectively.
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In this paper, the “joint estimation” technique is adopted [27]. The discrete extended
state is defined as follows:

Xk = [
~
hkfh(k)]

T
(7)

In order to use UKF, we rewrite (7) as:

Xk+1 = F(Xk) + Uk
Yk = H(Xk) + Vk

(8)

where F and H are the state update function and the measurement function described as:

F(Xk) =

[
Fh̃k

(
~
hk)

F fk
(fk)

]
=

 ~
hk + [αuδ(k) − βuδ(k)

∣∣∣∣~hk

∣∣∣∣− γ
∣∣∣uδ(k)

∣∣∣~hk + fh(k)]Ts

fh(k)


H(Xk) = kρuk + b + k(1− ρ)h̃k

(9)

Due to the nonlinear characteristics of the Bouc–Wen model in (2), UKF can be used as
the estimator. UKF is a well-developed filter widely used for estimation, as in our previous
work [22]. Combined with the Bouc–Wen model, UKF includes the following steps.

The first step is to calculate the sampling points based on the estimated mean
and covariance:

χk−1 = [Xk−1 · · ·Xk−1]n×(2n+1) −
[

0n×1 −
√
(n+λ)Pk−1|k−1

√
(n+λ)Pk−1|k−1

]
(10)

where n is the state dimension, λ is a constant and χk−1 is the matrix after sampling
expansion, calculating from the estimated mean and covariance calculated on the state
vector Xk−1.

The second step is the prediction:

χk|k−1= F(χk−1)

PX(k|k−1)=
2n+1

∑
i=1

[
Wc(i)(χk|k−1(i)−Wmχk|k−1) (χk|k−1(i)−Wmχk|k−1)

T
]
+ Qk

(11)

where χk|k−1 is obtained by the nonlinear conversion of sampling points χk−1, Qk is
the covariance matrix of process noise and the process noise is added to the covariance
prediction step to obtain the weighted covariance matrix in the state space PX(k|k−1).

The third step is the update:

Υχ(k|k−1)= H(χk|k−1)

PΥ(k|k−1)=
2n

∑
i=0

[
Wc(i)(Υχ(k|k−1)(i)−WmΥχ(k|k−1)) (Υχ(k|k−1)(i)−WmΥχ(k|k−1))

T
]
+ Rk

PXΥ(k|k−1)=
2n

∑
i=0

[
Wc(i)(χk|k−1(i)−Wmχk|k−1) (Υχ(k|k−1)(i)−WmΥχ(k|k−1))

T
]

Kk= PXΥ(k|k−1)P
−1
Υ(k|k−1)

Xk|k= Wmχk|k−1 + Kk(Yk −WmΥχ(k|k−1))

Pk|k= PXΥ(k|k−1) − KkPT
χΥ(k|k−1)

(12)

where Rk is the covariance matrix of the measurement noise, Υχ(k|k−1) is the measurement
prediction of χk−1 from time k − 1 to time k, Kk is the Kalman gain, Xk|k is the estimation
of state vector based on confidence field χk|k−1 and Pk|k is the update of confidence matrix
Pk−1|k−1. Wc(i) and Wm(i) are described below:
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Wm(0)= Wc(0) =
1

2(n + λ)

Wm(i)=
λ

n + λ

Wc(i)=
λ

n + λ
+ n + ϑ− σ2

(13)

where λ = σ2(n + κ), κ is the scale factor and its value only needs to ensure that the covariance
matrix is non-negatively definite, σ controls the range of sampling points distribution and
the tuning of ϑ can improve the approximate accuracy of the covariance. The tuning of the
parameters is straightforward. The range of σ is 10−4 ≤ σ ≤ 1. A larger σ value helps to
increase the noise suppression, whereas the robustness might become weaker. As a result,
σ is usually set to be a smaller value. For Gaussian distribution, ϑ can usually be set to 2.
Based on related research [23,28], κ + n = 3, σ = 10−3 and ϑ = 2 are adopted in this paper.

4. Active-Model-Based Control Strategy

The closed-loop controller proposed in this paper can be divided into two parts. As
shown in Figure 3, the first part is the nominal controller. In this paper, the widely-utilized
PID controller is selected as the nominal controller. The other part is the state estimation of
the system through UKF. For the proposed AMC-based controller, the estimated state of
the system is used to compensate the error of the nominal controller via the compensation
strategy unit. In this way, the uncertainties of the nominal controller are compensated, and
the control performance of the overall system can be improved. In this control strategy,
the requirement on the accuracy of the reference model does not need to be too high,
because the UKF and compensation strategy will estimate and compensate for the model
uncertainty in real time.
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The block diagram of the control strategy is shown in Figure 3. The total control
voltage of the controller is

u(k) = un(k) + uc(k) (14)

where u is the final control voltage applied to the PAM, un and uc are the control voltages
generated by the nominal controller and the compensation strategy, respectively. The
control objective is expressed as:

Yd(k) − Ỹk = 0 (15)
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where Ỹk and Yd(k) are the actual and desired trajectories, respectively, and the estimated
tracking error is defined as ek = Yd(k) − Ỹk. In this paper, the PI controller is adopted as the
nominal controller, which can be expressed in the following form:

un(k) = kpek + ki

k

∑
i=0

ei (16)

where kp and ki are the proportional and integral gains.
Based on the control voltage of the nominal controller and the result of the UKF

estimation, the estimated value of ˆ̃Yk+1 can be obtained, which can be expressed as follows:
ˆ̃hk+1 = h̃k + [αunδ(k) + βunδ(k)

∣∣∣h̃k

∣∣∣− γ
∣∣∣unδ(k)

∣∣∣h̃k + fh(k)]Ts

ˆ̃Yk+1 = kρun(k) + b + k(1− ρ) ˆ̃hk+1

(17)

where unδ(k) = [un(k) − un(k−1)]/Ts is the discrete expression of the derivative of the nominal

control input. The predicted tracking error is defined as êk+1 = Yd(k+1) −
ˆ̃Yk+1. In this

paper, after getting the prediction error, we define the compensation strategy as follows

uc(k) = kc êk+1 (18)

where kc a proportional gain. Thus, the final control input u is obtained:

uk = kpek + ki

k

∑
i=0

ei + kc êk+1 (19)

5. Experimental Results and Analyses
5.1. Experimental Setup

In order to verify the actual performance of the proposed control method, multiple
sets of trajectory tracking experiments are implemented on an in-house built testbench for
PAMs. The experimental setup is shown in Figure 4, where different PAMs are installed on
a linear rail. The Novotechnik displacement sensor is used to measure the displacement of
the PAM with an accuracy of 0.001 mm. In this paper, the nominal stroke of the selected
PAM (model DMSP-20-200N from Festo) is 40 mm at a maximum pressure of 0.8 MPa. The
proportional pressure regulator valve (model VPPM-6L-L from Festo) is used to control the
inner pressure of the PAM. The data acquisition and closed-loop control are implemented
on a real-time target machine (Model Mobile from Speedgoat) at a sampling rate of 1 kHz.
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5.2. Identification of the Bouc–Wen Model

As shown in (2), there are six parameters to be identified in the Bouc–Wen model, i.e.,
k, ρ, b, α, β and γ. Genetic algorithm (GA) is adopted as the identification algorithm. In
the open-loop condition, a sinusoidal signal of u0(t) = 2.9 sin (0.2πt) + 0.2 is applied to the
pressure regulator valve as the control voltage. The displacement of the PAM is measured
and used for parameter identification. We use the mean square error (MSE) in the following
form as the fitness function for the GA:

MSE =
1
N

N

∑
i=1

[Yactual(i)−Ymodel(i)]
2 (20)

where N is the number of sampling point, i is the sampling index, Yactual is the measured
displacement and Ymodel is the Bouc–Wen model output.

The identified results are k = 6.835, ρ = 0.987, b = −0.569, α = −0.188, β = 1.106 and
γ = 0.838. The measured displacement and the model output are plotted in Figure 5a. The
model output can match the measurement, whereas the modeling accuracy is not very high.
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In order to verify the modeling accuracy of the identified Bouc–Wen model, a further
two sinusoidal control signals with different amplitudes and frequencies are used to excite
the PAM, i.e., u1(t) = 1.4 sin (0.2πt) + 0.2 and u2(t) = 2.9 sin (0.1πt) + 0.2. The measured
displacements and model outputs are presented in Figure 5b,c. In Figure 5b, the amplitude
of u1 is different from u0, leading to a significant drop on the modeling accuracy of the
Bouc–Wen model. In Figure 5c, the frequency of u2 is different from u0. In this case, the
modeling accuracy is comparable to u0. The following root mean square error (RMSE) is
used to quantitatively evaluate the modeling errors:

RMSE =

√√√√ 1
N

N

∑
i=1

[Ymodel(i)−Yactual(i)]
2 (21)

As listed in the first row of Table 1, the RMSE values are calculated to be 2.012 mm,
3.687 mm and 2.282 mm for u0, u1 and u2, respectively.

Table 1. The RMSE values with and without the active model error estimation. (Unit: mm).

u0(t) u1(t) u2(t)

Reference model 2.012 3.687 2.284
With active model 1.482 × 10−4 1.379 × 10−4 1.397 × 10−4
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5.3. Active Model Error Estimation

We define the expansion vector in (8) using the actual state of the system and the
modeling error. Next, the expansion vector is introduced into the reference model. We use
the UKF defined by (9) to estimate the expansion vector in real time, that is, to estimate the
actual state and the modeling error of the system at the same time. The modeling accuracy of
the active modeling is also investigated and plotted in Figure 5 as a comparison. Compared
with the reference model, the system output estimated by the UKF almost coincides with
the measured displacement of the system. Similarly, the RMSE is also adopted to evaluate
the modeling accuracy of the active model. The RMSE values for u0(t), u1(t), and u2(t) are
calculated to be 1.4822 × 10−4 mm, 1.379 × 10−4 mm and 1.3974 × 10−4 mm, respectively.
Because the resolution of the displacement sensor is 0.01 mm, such small magnitude errors
can be approximated to zero. The RMSE of the active model is also listed in the second row
of Table 1.

Based on the above experimental results, we can conclude that the reference model,
i.e., the Bouc–Wen model, can better account for the frequency variation than the amplitude
variation. However, it is difficult to maintain high modeling accuracy. By contrast, with
the help of the expansion vector, UKF is effective in estimating the modeling errors. The
modeling accuracy can be significantly improved using the proposed active model.

5.4. Extended State Observer Based Controller for Comparison

The AMC-based PI controller was established in Section IV. In order to test the perfor-
mance of the proposed controller, trajectory tracking performances with and without active
modeling were experimentally compared. For the purpose of comparison, an extended
state observer (ESO) was also integrated with the nominal PID controller, i.e., PID + ESO.
In order to use the state observer, the state equation of the system is expressed as follows:

.
x1 = x2.
x2 = uESO + τ
y = x1

(22)

where uESO is the control input, y is the actual measured value of the system, x1 and x2
are the state variables of the system and τ is treated as a total distribution including the
unmodeled nonlinearities and external disturbance. The value τ can be extended as an
additional state variable, i.e., x3 = τ. The derivative of x3 is represented by p0. Equation (22)
can be rewritten as: 

.
x1 = x2.
x2 = uESO + x3.
x3 = p0
y = x1

(23)

The extended system model described in (23) is observable. A ESO proposed in [29] is
used to estimate system states, which can be constructed as follows:

e= x̂1 − x1
.
x̂1= x̂2 − β1 · e
.
x̂2= uESO + x̂3 − β2 · fal(e, 1/2, δ) · e
.
x̂3= −β3 · fal(e, 1/4, δ) · e

fal(e, a, δ)=

{
e

δ(1−a) , |e| ≤ δ

sign(e)|e|a, |e| > δ

(24)
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where x̂ = [x̂1, x̂2, x̂3]
T is the state estimate and β1, β2, β3 and δ are constants. The ESO

defined in (24) is combined with the PID controller, the final control voltage is expressed as:

uESO = un − x̂3 (25)

where un is the control voltage of the nominal PID controller and x̂3 is the estimated state of
the total disturbance of the system. The block diagram of PID + ESO is shown in Figure 6.
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5.5. Experimental Results

The triangular trajectory is a widely utilized continuous signal. In this section, a
0.1 Hz, 0.2–30 mm triangular trajectory is adopted as the desired trajectory so as to tune
the parameters of the controllers. The gains of the nominal PI controller are tuned to be
kp = 0.1 and ki = 0.15 for a better balance between the transient and steady-state tracking
performances. The following parameters are initialized for the UKF in the active model:

P0 =

[
10 0
0 10

]
, Q0 =

[
10 0
0 10

]
, R0 = 0.001 (26)

The gains of the compensation strategy are set to kp = 0.1 and ki = 0.15, kc = 0.06. For
the PID + ESO, the same nominal PI controller is adopted, and the parameters in ESO are
tuned to β1 = β2 = β3 = 100, δ = 500.

The tracking performance of the nominal PID controller, PID + AMC and PID + ESO
are shown in Figure 7a. For the open-loop system, the tracking performance is poor due
to the influence of the hysteresis nonlinearity. For the nominal PI controller, the PAM can
follow the desired trajectory well, except for the slight overshoots at the turning points
of the trajectory. For the PID + AMC and PID + ESO controllers, the overshoots at the
turning points can be suppressed. Because this trajectory is a slow-varying trajectory, the
steady-state performances of the controllers are comparable. Similar to the evaluation of the
modeling accuracy, the RMSE is utilized to quantitively evaluate the tracking performance
of the controllers. The RMSEs of the PID, PID + ESO, and PID + AMC controllers are
calculated to be 0.3461 mm, 0.3243 mm and 0.3209 mm, respectively.

The hysteresis compensation performances are illustrated in Figure 7b. Compared
with the open-loop system, the hysteresis loop of the closed-loop system stays close to
the 45◦ line. This demonstrates that all the controllers can successfully compensate the
PAM’s hysteresis. Figure 7c shows the control voltages from the nominal controller and
the compensation unit. It can be found that the with the help of active modeling and
compensation, the control input at the turning points can be compensated.

Based on the above results, we can conclude that the parameters of all the controller
have been well tuned. In order to test the robustness of the controllers, all the parameters are
fixed, and tracking experiments of different trajectories are performed. Sinusoidal trajectory
with varying amplitude is a very good choice for evaluating the hysteresis compensation
performance as it can show both the major and minor loops of the PAM’s hysteresis.

The tracking results of a 0.05 Hz sinusoidal trajectory with descending amplitude are
shown in Figure 8a. Similar to the performance of the triangular trajectory, the tracking
performance of the closed-loop system can be significantly improved by the controllers.
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However, for the nominal controller, there are obvious overshoot and oscillations in the
transient. For the PID + ESO controller, the overshoot and oscillation were successfully
suppressed. For the proposed PID + AMC controller, the overshoots and oscillations in
the transient were further attenuated. The RMSEs of the PID, PID + ESO, and PID + AMC
controllers are calculated to be 0.2450 mm, 0.2005 mm and 0.1934 mm, respectively.
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Figure 8. Tracking of a 0.05 Hz sinusoidal trajectory with descending amplitude: (a) time plot,
(b) hysteresis compensation performances and (c) the control voltages from the nominal controller
and the compensation unit.

For the hysteresis compensation, as shown in Figure 8b, the nominal controller is
efficient at hysteresis compensation, whereas the obvious overshoot and oscillations are
not desired in real implementations. It can also be clearly observed in Figure 8b that the
proposed PID + AMC controller can improve the transient performance. Figure 8c shows
the effect of the active modeling. In the transient, based on the estimated tracking error, the
compensation unit can immediately compensate for the nominal controller.
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Experiments were further conducted on tracking another 0.1 Hz sinusoidal trajectory
with descending amplitude to test the performances of the controllers for trajectories at
different frequencies. The experimental results are provided in Figure 9. Similar to the
results in Figure 8, the nominal controller can compensate the hysteresis and the transient
tracking performances can be further improved with active modeling.

Sensors 2022, 22, 364 13 of 16 
 

 

 
Figure 9. Tracking of a 0.1 Hz sinusoidal trajectory with descending amplitude (a) time plot, (b) 
hysteresis compensation performances and (c) the control voltages from the nominal controller and 
the compensation unit. 

It must be pointed out that triangular and sinusoidal trajectories are continuous, i.e., 
no sudden change occurs in the trajectory. In this case, the hysteresis compensation is 
relatively simple. In order to test the performance of the controllers in tracking discontin-
uous trajectories, square wave and sawtooth trajectories are adopted as the desired trajec-
tories. Generally, the controller parameters need to be further tuned for a better perfor-
mance. In order to test the robustness of the proposed controller, the same controller pa-
rameters are inherited. The experimental results are shown in Figure 10.  

Figure 10a shows the tracking performance of the square wave trajectory. For the 
nominal controller, the transient performance is very poor. For instance, on the forward 
motion of the PAM, the nominal controller is fast, whereas large overshoot (~17.3%) is 
observed before the system enters into the steady-state. The settling time was found to be 
approximately 0.8 s. PID + ESO reduces the overshoot to approximately 5.7%. The pro-
posed PID + AMC can track the square wave signal with negligible overshoot and it can 
converge within 0.5 s. On the backward motion of the PAM, the performances of all the 
controllers are comparable, whereas the proposed PID + AMC can still converge quickly 
without overshoot. The sawtooth trajectory is another popular discontinuous trajectory. 
As shown in Figure 10b, the nominal controller responds slowly at the turning point of 
the trajectory. Similar to Figure 10a, the proposed PID + AMC controller offers the best 
transient performance. For discontinuous trajectories, the sudden change in the trajectory 
might degrade the transient performance of the nominal controller. It can be seen from 
the compensation voltage in Figure 10 that the compensation effect of the proposed con-
troller is more obvious at the sudden change of the trajectory. 

Figure 9. Tracking of a 0.1 Hz sinusoidal trajectory with descending amplitude (a) time plot,
(b) hysteresis compensation performances and (c) the control voltages from the nominal controller
and the compensation unit.

The statistics on the tracking errors of the controllers in the above experiments are
summarized in Table 2. In each case, the proposed controller can further improve the
performance of the nominal controller.

Table 2. The maximum and RMSE of the controllers (Unit: mm).

Open-Loop
(Max/RMSE)

PID
(Max/RMSE)

PID + ESO
(Max/RMSE)

PID + AMC
(Max/RMSE)

0.05 Hz triangular 10.978/6.395 1.097/0.3461 1.100/0.3243 0.924/0.3209
0.05 Hz sinusoidal 10.357/6.873 3.769/0.2450 2.322/0.2005 1.323/0.1934
0.1 Hz sinusoidal 10.046/6.592 3.272/0.4670 2.010/0.3911 1.922/0.3803

It must be pointed out that triangular and sinusoidal trajectories are continuous, i.e., no
sudden change occurs in the trajectory. In this case, the hysteresis compensation is relatively
simple. In order to test the performance of the controllers in tracking discontinuous
trajectories, square wave and sawtooth trajectories are adopted as the desired trajectories.
Generally, the controller parameters need to be further tuned for a better performance. In
order to test the robustness of the proposed controller, the same controller parameters are
inherited. The experimental results are shown in Figure 10.

Figure 10a shows the tracking performance of the square wave trajectory. For the
nominal controller, the transient performance is very poor. For instance, on the forward
motion of the PAM, the nominal controller is fast, whereas large overshoot (~17.3%) is
observed before the system enters into the steady-state. The settling time was found to
be approximately 0.8 s. PID + ESO reduces the overshoot to approximately 5.7%. The
proposed PID + AMC can track the square wave signal with negligible overshoot and it
can converge within 0.5 s. On the backward motion of the PAM, the performances of all the
controllers are comparable, whereas the proposed PID + AMC can still converge quickly
without overshoot. The sawtooth trajectory is another popular discontinuous trajectory.
As shown in Figure 10b, the nominal controller responds slowly at the turning point of
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the trajectory. Similar to Figure 10a, the proposed PID + AMC controller offers the best
transient performance. For discontinuous trajectories, the sudden change in the trajectory
might degrade the transient performance of the nominal controller. It can be seen from the
compensation voltage in Figure 10 that the compensation effect of the proposed controller
is more obvious at the sudden change of the trajectory.
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Further, a payload of approximately 40 N was used to test the robustness of the
controllers against external disturbances. It is exerted to the hook when the closed-loop
system enters into the steady-state. In this case, it can be regarded as a constant external
disturbance. The experimental results are shown in Figure 11. It can be observed that the
proposed PID + AMC can quickly converge to its steady-state value, showing excellent
disturbance rejection capability. By contrast, it takes longer for PID and PID + ESO to
converge. As a result, the proposed controller is more robust against external disturbances.
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In the above experimental results, the most important improvement to the proposed
controller appears in the transient performance. For the nominal controller, it is difficult to
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suppress the overshoot and oscillations in tracking different trajectories while maintaining a
fast response capability. For the proposed AMC-based controller, due to the high-precision
estimation of the modeling error, the tracking performance of the nominal controller can
be further improved. During the transient, no obvious overshoot and oscillation exists,
and the controller converges faster. We can conclude that high hysteresis compensation
efficiency and high robustness are achieved using the proposed controller.

6. Conclusions

How to model and compensate the strong hysteresis nonlinearities of the PAM has
become one of the main obstacles to the high-precision motion control of PAMs. This paper
presents an efficient hysteresis compensation strategy, in which the Bouc–Wen model is
adopted as the reference model and a UKF is utilized to estimate the state and the modeling
error of the reference model. The estimated error is then utilized as a compensation to the
nominal controller so as to improve the performance of the nominal controller.

Currently, the sampling rate of the closed-loop system can be set high, e.g., 1 kHz
or above. In this case, in the steady-state, the estimated tracking error at the next time
interval is close to the current tracking error, especially when the PAM is tracking slow
and continuous trajectory. However, if the PAM is confronted with a discontinuous trajec-
tory or disturbance, the discrepancy between the estimated tracking error and the current
measurement is large. This might lead to poor transient performance. The experimen-
tal results demonstrate that for continuous and discontinuous trajectories, the transient
performances can be improved by the proposed controller. The proposed controller can
successfully eliminate the overshoot and oscillation of the nominal controller and fast
convergence is achieved. For the steady-state performance, the proposed controller can
better suppress the influence of the measurement noise. Therefore, the effectiveness of the
proposed AMC-based hysteresis compensation strategy is verified.
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