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Abstract: Instruments drifting at the ocean surface are quasi-Lagrangian, that is, they do not follow
exactly the near-surface ocean currents. The currents measured by three commonly-used drifters
(CARTHE, CODE and SVP) are compared in a wide range of sea state conditions (winds up to 17 m/s
and significant wave height up to 3 m). Nearly collocated and simultaneous drifter measurements in
the southwestern Mediterranean reveal that the CARTHE and CODE drifters measure the currents in
the first meter below the surface in approximately the same way. When compared to SVP drogued at
15 m nominal depth, the CODE and CARTHE currents are essentially downwind (and down-wave),
with a typical speed of 0.5–1% of the wind speed. However, there is a large scatter in velocity
differences between CODE/CARTHE and SVP for all wind and sea state conditions encountered,
principally due to vertical and horizontal shears not related to the wind. For the CODE drifter with
wind speed larger than 10 m/s and significant wave height larger than 1 m, about 30–40% of this
difference can be explained by Stokes drift.

Keywords: near-surface ocean currents; drifters; Acoustic Doppler Current Profiler

1. Introduction

Since the advent of satellite positioning and data telemetry in the late 1970s, instru-
mented buoys freely-drifting at the ocean surface have become increasingly popular to
measure meteo-marine properties near the air–sea interface. In particular, they have been
designed with a drogue to measure currents near the ocean surface, with varying levels of
accuracy, by tracking their positions in time in order to investigate upper ocean dynamics
over a wide range of spatial scales, from the global ocean [1,2] to marginal seas [3–5] and
small coastal areas [6,7], and at time scales of hours to decades.

However, drogued drifting buoys, hereafter referred to as drifters, do not exactly
follow the water around them, and the estimation of horizontal velocities from their
displacements is prone to systematic errors. This is especially true in high sea conditions,
when winds, surface waves and vertical shear in the upper water column can produce
significant slippage of the drifters. In addition, being constrained at the sea surface, drifters
are obviously unable to measure vertical velocities. Vertical velocities can, however, be
inferred from surface divergence using the continuity equation (e.g., [8]).

Generally, the cross-section of the surface expression of a drifter above the sea surface
and exposed to winds is minimized with respect to the section of the underwater tether and
drogue to reduce the direct wind drag. Studies have also been conducted on the mechanical
characteristics of the tether and on the shape, size and depth of the drogue in order to limit
the impact of slippage and wave rectification on the drifter (e.g., [9,10]).
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In this paper, we compare the ocean currents measured by three standard drifters:
the Consortium for Advanced Research on Transport of Hydrocarbon in the Environment
(CARTHE), the Coastal Ocean Dynamics Experiment (CODE) and the Surface Velocity
Program (SVP) designs, using data collected in the southwestern Mediterranean with
winds as large as 17 m/s and waves with significant wave height up to 3 m. Since the near-
surface shear associated with the balanced geostrophic flow is usually small, differences
of currents measured by the drifters at different depths in the upper ocean are mainly be
due to windage, i.e., direct wind drag on the portion of the drifter above the water; to
surface wave rectification, a spurious effect; to Stokes drift; to wind-driven Ekman currents;
to Langmuir cells and to any other highly sheared, generally ageostrophic, horizontal
currents that may occur near the surface. Although the water-following capabilities of
the CARTHE, CODE and SVP drifters have already been studied [9–11], the new in situ
measurements in a wider range of wind speed considered here provide new insights on
the comparison between drifter-inferred currents and some practical guidance on how to
use data of different drifters when operated in the same experiment at sea.

Simultaneous observations obtained from collocated pairs of different drifters are used
to compute velocity differences and to relate them to surface wind and wave data from
in situ measurements and climatological products. Additionally, velocity data from an
Acoustic Doppler Current Profiler (ADCP) mounted on a CODE drifter are exploited to
measure the velocity shear in the upper water column below the drifter. The main goal of
this study is to quantify the differences between drifter velocity measurements as a function
of wind speed and surface wave height.

A brief description of the CARTHE, CODE and SVP drifters is provided in Section 2,
along with details about their deployments in the Alboran Sea (southwestern Mediter-
ranean) and the ADCP measurements of relative currents. This section also includes
information about ancillary in situ data of wind and waves from ship and drifters and
on climatological model products of wind and waves. The methodology used to com-
pare the currents measured by the drifters is also explained. The differences between the
currents measured by the three drifter types and the measurements of relative currents
below a CODE drifter are shown in Section 3, with particular focus on the downwind and
down-wave components. Section 4 contains a discussion of the results, a comparison with
previous findings. Main conclusions are provided in Section 5.

2. Data and Methods
2.1. CARTHE, CODE and SVP Drifters

The CARTHE drifter was developed to be a compact and quasi-biodegradable in-
strument [10]. It includes a top component in the form of a “donut” attached to a rigid
drogue in a cross-shape extending about 60 cm below the sea surface. Tank experiments
have demonstrated that the CARTHE drifter slip with respect to the mean Lagrangian
currents in the first 60 cm below the surface amounts to less than 0.5% of the wind speed
and does not exceed 3 cm/s in wind speed up to 23 m/s [10]. Furthermore, pairs of CODE
and CARTHE drifters deployed together in the open ocean showed that the difference
between the two drifter velocities is bounded by 0.25 cm/s. The drag area ratio is defined
as CwAw/CaAa, where Ca represents the drag coefficient of the elements of the drifter above
the water surface (with cross-section area Aa) and Cw indicates the drag coefficient of the
elements below the water surface (with cross-section area Aw). For the CARTHE drifter, it
is about 12 (Guigand, Personal communication).

The CODE drifter [12] measures the currents within the top meter of the water col-
umn. It is composed of a 1 m-long negatively buoyant tube with four drag-producing
sails extending radially from the tube and four small spherical surface floats to provide
buoyancy [13]. The tube is vertical, and the top of the sails is about 30 cm below the sea sur-
face [14]. Poulain and Gerin [11] demonstrated that CODE drifters follow the currents with
an accuracy of about 3 cm/s, even under strong wind conditions. The slippage produced
by the wind and waves was estimated to be 0.1% of the local wind speed. Wind-driven
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currents measured by CODE drifters were found to be downwind (and also to the right of
the wind vector) with about 1% of the wind speed [15]. The drag area ratio of the CODE
drifter is about 30 [14].

The SVP drifter (see [16] for a recent description) is the standard drifter of the Global
Drifter Program [17]. It consists of a spherical surface buoy (35 cm diameter) tethered to
a weighted holey-sock drogue that allows it to track the horizontal currents in the water
column between 12 and 18 m nominal depths. A strain gauge mounted on the drifter’s
hull measures the tension of the tether connection to monitor the drogue presence. Direct
measurements of the water-following capabilities of the SVP have shown that they follow
the water near 15 m depth to within 1 cm/s in 10 m/s winds [9] when the drogue is
attached. For the data used in this study, corresponding to periods less than a few months
after deployment, we have checked that the drogue was always attached to the surface
buoy. The drag area ratio of the SVP drifter is larger than 40 [9].

All drifters transmit their GPS data (and other ancillary data) via either Iridium (SVP)
or GlobalStar (CODE and CARTHE) satellites, every 5 or 10 min, with typical accuracy of
10 m or better (e.g., [10]).

2.2. Other Drifters

Other drifters were used to provide ancillary in situ data on surface waves and relative
currents in the upper water column.

The Directional Wave Spectrum Drifter (DWSDTM; [18,19]) is essentially an SVP for
which the drogue is replaced by a small (~50 cm) stabilizing chain. It is equipped with a
high-performance GPS engine paired with software algorithms for onboard computation of
the directional wave spectrum of the surface waves. It transmits positions and surface wave
statistics (significant wave height, peak and mean period, etc.) to the Iridium satellites
every hour.

A prototype CODE drifter was fitted with a Nortek Aquadopp acoustic velocimeter
and a Nortek Aquapro ADCP (respectively, at its top and bottom extremities) to measure the
horizontal relative flow around and below the drifter, respectively [11,20]. Both instruments
were programmed to transmit acoustic signals at 2 MHz and with an averaging interval
of 1 s. The Aquapro ADCP at the bottom of the drifter (looking down) was set up with
20 vertical cells of 1 m. It includes ancillary sensors such as a tilt meter to measure its pitch
and roll, a compass to record its orientation, a pressure sensor to measure the depth of the
instrument and a thermistor. This drifter is referred to as the CODE ADCP hereafter.

2.3. Drifter Deployments

A large number of CARTHE, CODE, SVP and DWSDTM drifters were deployed in
the Alboran Sea (southwestern Mediterranean Sea) during two cruises of the Coherent
Lagrangian Pathways from the Surface Ocean to Interior (CALYPSO) program sponsored
by the U.S. Office of Naval Research [21]. The first cruise (CALYPSO 2018) was conducted
in late spring 2018 [22] and involved 84 drifters. In early spring 2019, more than 180 drifters
were deployed during the second cruise (CALYPSO 2019; [23]). Most drifters were deployed
in tight clusters in order to measure the near-surface currents and related differential
kinematic properties (e.g., vorticity and divergence) at scales as small as 1 km [8,24,25].
Several DWSDTM drifters were deployed to measure surface wave characteristics in the
study area. In particular, two units (14670 and 14680) were deployed near the CODE ADCP
drifter during the CALYPSO 2019 experiment.

The CODE ADCP drifter was deployed several times during the CALYPSO 2019
experiment [23]. Unfortunately, the Aquadopp at the top of the drifter did not provide
useful data. Only the data collected by the CODE ADCP on 9 April 2019 are considered in
this study.
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2.4. Drifter and ADCP Data Processing

The drifter position data were processed with standard methods for editing, kriging
interpolation and low-pass filtering and interpolation [26]. Velocities were estimated by
finite differencing of successive interpolated positions (central difference over 1 h). The
position and velocity data are available at 0.5 h intervals. Low-pass filtering (hamming with
cut-off period of 36 h) was applied to remove the high-frequency variability such as tidal
and inertial currents. The filtered data were then sub-sampled every 6 h. Both un-filtered
and filtered data sets are used in this study. Using a GPS position random error of 10 m
and a time interval of 1 h, we estimated an error on the velocity of the order of 1 cm/s. The
error on the low-pass filtered velocities is even less because the filtering removes most of
the high-frequency GPS position errors.

The radial velocities measured by each ADCP beam were combined to estimate the
currents in the upper layer of the sea below the drifter with an accuracy of about 1 cm/s.
The tilt and compass data of the ADCP were then used to convert the data into the two
components (zonal and meridional) of relative horizontal currents at distances from the
drifter ranging in 1.4–20.4 m, with a resolution of 1 m. The tilt data were also used to
convert these distances into depths below the sea surface, assuming that the pitch/roll
motion is with respect to the drifter center of mass approximately at 0.8 m depth. The
center of the deepest cell ranged between 13.6 and 21.7 m. The velocity profiles were finally
interpolated at common depths between 3 m and the depth of the deepest cell (up to 20 m),
with an interval of 1 m.

2.5. Estimation of Stokes Drift from DWSDTM Data

The DWSDTM returns the first five coefficients of the truncated Fourier series of the
surface wave variance spectrum [18] and allows the estimation of the directional variance
spectrum, which is defined as the product of a one dimensional wave spectrum, Evar, and a
directional spread function, Dvar:

Svar( f , θ) = Evar( f )·Dvar( f , θ) (1)

where θ is the direction of the wave vector at a given frequency f and Dvar is approximated
by the order 2 truncated Fourier transform (e.g., [27]). Because of the low order of ap-
proximation, Dvar can assume negative values, and therefore, a weighted form, proposed
by Longuet-Higgins [28], that ensures the power spectral density is always positive, is
considered in this study, although it has the effect of diffusing the wave energy around the
main peaks.

Following Kenyon [29], in absence of breaking waves and for deep water waves, the
Stokes drift can be computed as:

→
u(z) =

16π3

g

x
f 3 (cos(θ), sin(θ)) Svar( f , θ) e

8π2 f 2
g zdθd f (2)

where g is the gravity and z is the water depth, negative downward.
Equation (2) prescribes that the Stokes drift decays exponentially with increasing

depth and is larger for short wavelengths.

2.6. Ancillary Data and Climatological Products

During the CALYPSO 2019 experiment, data of wind speed and direction were col-
lected with a Gill Windsonic anemometer (part of the BATOS meteorological system of
Meteo France) on board the Research Vessel (RV) Pourquoi Pas?. The GPS ship location
and the wind data are available with a sampling rate of 1 Hz.

The European Centre for Medium-Range Weather Forecasts (ECMWF) fifth generation
atmospheric reanalysis of the global climate (ERA5) provides hourly estimates of a large
number of atmospheric, land and oceanic climate variables. ERA5 products were obtained
in the southwestern Mediterranean for the time periods of the CALYPSO 2018 and 2019
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experiments. Winds at 10 m height (zonal and meridional components) and surface waves’
characteristics (significant wave height and mean direction) are available on 0.25◦ and
0.5◦ grids, respectively. As it will be shown later, the ERA5 wind and wave products
are underestimated when compared to direct in situ measurements from ships in the
southwestern Mediterranean Sea. Wind speed is typically underestimated by about 5 m/s,
and significant wave height by 0.5 m. In addition, ERA5 wind speeds and significant wave
heights appeared well correlated, meaning that the surface waves were mainly generated
by the local winds.

2.7. Comparison Methodology

First, the low-pass filtered drifter data (positions and velocities) were considered
along with the ERA5 wind and wave data filtered in the same way. Nearly collocated and
simultaneous pairs of CARTHE-SVP, CODE-SVP and CARTHE-CODE data were searched
in the drifter dataset. The maximum distance between the two drifters in the pair was set to
1 km (see Appendix A for a discussion on this threshold and on the influence of horizontal
shear). The locations of these pairs in the southwestern Mediterranean Sea are shown in
Figure 1. Using 1 km, the number of pairs ranges between 122 and 262 (see Tables 1 and 2
and Figure 1). The low-pass filtered ERA5 wind and wave data were interpolated at the
pair positions. The drifter velocity difference was then projected in the direction of, and
perpendicular to, the wind or waves.

Second, for the period corresponding to the successful deployment of the CODE
ADCP, on 9 April 2019 between 8:45 and 20:47 UTC, the non-filtered drifter data at 0.5 h
intervals were considered. Pairs of CARTHE-CODE ADCP and CARTHE-SVP drifters
near the CODE ADCP and with distance less or equal to 1 km were found. The wind
data collected on the research vessel were used along with the drifter velocity differences.
The distance between the research vessel and the drifters was less than 25 km. The wave
data of two DWSDTM drifters in the vicinity (<17 km) of the CODE ADCP were also
used. As before, the drifter velocity differences were projected in the downwind and
cross-wind directions.

Table 1. Numbers of pairs of drifters with distance less or equal to 1 km using the CALYPSO 2018
and CALYPSO 2019 low-pass filtered datasets.

Experiment Drifters Pairs Dates

CALYPSO 2018 CARTHE-SVP 62 1 June–8 July 2018
CODE-SVP 72 1–5 July 2018

CARTHE-CODE 250 1–17 June 2018
CALYPSO 2019 CARTHE-SVP 154 5–18 April 2019

CODE-SVP 50 31 March–18 April 2019
CARTHE-CODE 12 14–17 April 2019

Table 2. Statistics of the difference between pairs of drifters using low-pass filtered drifter and
wind data.

Experiment Pairs
Downwind (cm/s) Cross-Wind (cm/s)

Mean STD Min/Max Mean STD Min/Max

CARTHE-SVP 216 1.8 7.3 −12.6/21.9 −0.6 4.0 −13.2/8.8
CODE-SVP 122 1.0 4.1 −8.8/15.5 0.4 4.0 −13.5/15.9

CARTHE-CODE 262 0.2 3.9 −25.5/21.1 −0.5 2.9 −11.0/15.8
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Figure 1. Locations of the CARTHE-SVP, CODE-SVP and CARTHE-CODE drifter pairs with separa-
tion distance less than 1 km: CALYPSO 2018 (black dots) and CALYPSO 2019 (circles).

3. Results
3.1. Comparison Using Low-Pass Filtered Data

For the comparison between CARTHE and SVP, the range of wind speed and signif-
icant wave height are 0–14 m/s and 0.0–2.9 m, respectively (Figure 2). The downwind
velocity difference mostly increases with wind speed for wind speed larger than 8 m/s
during CALYPSO 2019. The maximum downwind velocity difference is ~22 cm/s at wind
speed of 13 m/s and significant wave height of ~2.5 m (Figure 2). Considering all wind
speeds, the scatter is rather large with a standard deviation (STD) of ~7 cm/s and a mean
of 1.8 cm/s (Table 2). In the direction perpendicular to the wind, the scatter is slightly
reduced (STD = 4 cm/s), and the maximum difference is ~13 cm/s. The mean of −0.6 cm/s
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indicates some tendency of the CARTHE-SVP velocity difference to go to the left of the
wind and waves (looking downwind). Note that in both directions, the scatter of velocity
differences can be substantial at low wind speed (<5 m/s), especially for CALYPSO 2018.
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top panel for reference.

For the CODE drifters compared to the SVP, the scatter at low winds in 2018 is even
more important, with a maximum velocity difference of ~15 cm/s (Figure 3). However, the
2019 data reveal a general positive trend with increasing wind speed up to ~11 m/s with
a maximum of ~10 cm/s. This relationship is also evident as a function of surface wave
height (Figure 3). In the cross-wind direction the scatter is as large as for the CARTHE
(STD = 4 cm/s) without significant mean or trend (Table 2).
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for reference.

Regarding the direct comparison between CARTHE and CODE drifters, there is no
evidence of dependence on wind speed or surface wave height for the meteo-marine
conditions encountered during the CALYPSO experiments: winds less than 9 m/s and
significant wave height less than 1.3 m (Figure 4). The mean velocity difference in both
down- and cross-wind directions is essentially zero, with an STD of 3–4 cm/s (Table 2).
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top panel for reference.

3.2. Comparison Using Non-Filtered Data on 9 April 2019

On 9 April 2019, a CODE drifter equipped with an ADCP provided data of the relative
currents below the drifters to about 20 m depth. Thus, it is interesting to compare the
drifter velocities around this CODE ADCP during its deployment period (about 12 h) using
the drifter and ship wind data interpolated every 0.5 h. The trajectories of the CODE
ADCP, DWSDTM drifters and RV Pourquoi Pas? track between 08:45 and 20:47 UTC on
9 April 2019 are shown in Figure 5. The positions of the CARTHE-SVP and CARTHE-
CODE ADCP pairs with separation distance less or equal to 1 km are also shown. During
that period, all drifters were moving eastward in the northern limb of the Western Alboran
Gyre with speeds as large as 1 m/s.
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Figure 5. Trajectories of the CODE ADCP drifter (thick black) and positions of the CARTHE-SVP
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The comparison between the drifter velocities, projected in the down- and cross-wind
directions, show results similar to those obtained with the low-pass filtered data. Indeed,
for the CARTHE-CODE pairs, the velocity differences remain bounded by 5 cm/s, and the
downwind component has a slight tendency to increase with wind speed (Figure 6). For the
CARTHE-SVP pairs, the downwind velocity difference increases to ~20 cm/s for winds near
17 m/s (Figure 6). If we consider all the wind speeds (Table 3), there is a significant mean
offset downwind (~5 cm/s) and to the right of the wind (looking downwind; ~2 cm/s).
The scatter is generally higher (STD up to 6 cm/s, see Table 3), presumably due to the
inclusion of high-frequency signals such as inertial and tidal currents.

Table 3. Statistics of the difference between pairs of drifters on 9 April 2019 between 08:45 and
20:47 UTC.

Experiment Pairs
Downwind (cm/s) Cross-Wind (cm/s)

Mean STD Min/Max Mean STD Min/Max

CARTHE-CODE 36 1.0 2.1 −5.5/4.5 −0.5 2.0 −5.7/2.8
CARTHE-SVP 97 5.3 6.2 −6.6/20.0 2.2 3.5 −6.3/9.4

The relative currents measured by the CODE ADCP were interpolated every meter
and were averaged using a 1 h running window and then projected in the down- and
cross-wind directions (Figure 7). In the downwind direction (which is practically eastward),
relative currents are weak and vertically homogeneous around 12:00 UTC, followed by the
increase of the vertical shear to 10–15 cm/s for the velocity difference between 3 and 20 m.
The relative downwind velocity magnitude at 20 m approached 20 cm/s after 18:00 UTC.
In the cross-wind direction, relative velocities are bounded by −10 and 2 cm/s. They are
mostly negative (to the left of the wind) before 19:00 UTC and positive after. Some shear is
evident before 15:00 UTC, but after that time, the cross-wind relative currents are rather
homogeneous over the entire water column above 20 m depth.
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Figure 6. Down- and cross-wind components of velocity difference between CARTHE and SVP
(top panels) and CARTHE and CODE ADCP (bottom panels) drifters versus wind speed on
9 April 2019 between 08:45 and 20:47 UTC.

The downwind drift (or slip) velocity of the CODE ADCP with respect to the velocities
at 3, 15 and 20 m depths, which are the mean depths of the first and last cells and the
nominal depth of the SVP drogue, are depicted versus time in Figure 8, along with the
hourly wind and wave conditions. Both in situ direct measurements and ERA5 products of
wind speed and significant wave height, although affected by an offset, reveal an increase
of wind speed from 10 to 15 cm/s, and from 1 to 2 m in significant wave height, during the
CODE ADCP deployment period. A substantial shear in the horizontal currents dominates
between 13:00 and 19:00 UTC, with relative currents at 20 m exceeding 10 cm/s, while the
speed at 3 m remains bounded by 8 cm/s. The CODE ADCP downwind drift with respect
to the currents at 15 m (20 m) depth reached a maximum of ~15 cm/s (~20 cm/s) after
18:00 UTC.
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Figure 7. Color-coded contour diagrams of the relative currents measured by the CODE ADCP on
9 April 2019, projected in the down- (top) and cross- (bottom) wind directions. Positive is down-wind
and to the right of the wind (looking downwind).

The Stokes drift was estimated using Equation (2) with the directional spectral data
from the DWSDTM drifter 14670. On 9 April 2019 between 09:00 and 21:00 UTC, the
maximum Stokes drift magnitude at the surface is 7 cm/s (not shown). Below 10 m depth,
it is always negligible. The relative downwind (down-wave) current due to Stokes drift
at 3 and 15 m with respect to the value at 0.8 m (depth of the CODE center) is shown in
Figure 8. Maximum values are 3 and 5 cm/s for 3 and 15 m, respectively.

The relative ADCP currents and their vertical shear shown in Figures 7 and 8 do
not appear to be well correlated with the local winds and wave height. In particular, the
weak vertical shear around 12:00 UTC in both down- and cross-wind directions does not
correspond to any specific signal in the wind speed and wave height. Other CALYPSO 2019
measurements by an ADCP mounted on a Wirewalker and by the ship-mounted ADCP of
the RV Pourquoi Pas? on 9 April 2019 [30] confirm this temporal evolution of the vertical
shear of horizontal currents that is not directly related to the local winds.

If we focus on the hour centered at 18:00 UTC, the downwind relative current varies
between ~−7 cm/s about 3 m below the surface to ~−19 cm/s at 20 m depth (Figure 9).
Most of the shear is above 6 m and below 17 m depth (about 1–2 cm/s over 1 m). These
results can be interpreted as velocity differences, i.e., the CODE ADCP moves downwind
by about 7 cm/s with respect to the current at 3 m and by about 14 cm/s with respect to the
currents at 15 m. The relative current due to Stokes drift is also shown in Figure 9. It varies
between −2.3 cm/s at 3 m and −3.3 cm/s at 20 m. In the cross-wind direction, the relative
currents are rather constant with depth, with a value between −2 and −3 cm/s. These
results show that the CODE ADCP moves to the right of the wind (looking downwind)
compared to the currents in the upper water column.



Sensors 2022, 22, 353 13 of 18Sensors 2021, 21, x FOR PEER REVIEW 13 of 19 
 

 

 
Figure 8. Significant wave height (top panel; DWSDTM 14670—thin, DWSDTM 14680—thick, ERA5—
dashed), wind speed (middle panel; ship—solid, ERA5—dashed) and downwind slip of the CODE 
with respect to the currents at 3 m (gray), 15 m (thin black) and 20 m (thick black), measured by the 
ADCP versus time on 9 April 2019 (bottom panel). The downwind slips ue to the Stokes drift shear 
between 0.8 m and 3 m (dashed–dotted) and 15 m (dashed) are also shown. 
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Figure 8. Significant wave height (top panel; DWSDTM 14670—thin, DWSDTM 14680—thick,
ERA5—dashed), wind speed (middle panel; ship—solid, ERA5—dashed) and downwind slip of the
CODE with respect to the currents at 3 m (gray), 15 m (thin black) and 20 m (thick black), measured
by the ADCP versus time on 9 April 2019 (bottom panel). The downwind slips ue to the Stokes drift
shear between 0.8 m and 3 m (dashed–dotted) and 15 m (dashed) are also shown.
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4. Discussion

The currents measured by CARTHE, CODE and SVP drifters in the southwestern
Mediterranean during the CALYPSO 2018 and 2019 experiments were compared. Even
though these experiments were not designed to compare the drifters, the measurements
obtained in a wide range of wind speed [0–17 m/s] allowed us to further assess the water-
following characteristics of the instruments. Surface waves, mainly generated by the
local wind, were essentially propagating in the downwind direction, and their amplitude
reaching a maximum of 3 m significant wave height, increased with the wind speed.
Differences in drifter velocity in the down- and cross-wind directions were examined as
a function of wind speed and significant wave height measured in situ or provided by
the ERA5 climatological model. Scatter diagrams (e.g., Figures 2 and 6) reveal positive
trends in the downwind direction when CARTHE and CODE drifters are compared to
SVP drifters. Maximum differences of more than 20 cm/s are found for a wide range of
wind speed between 5 and 15 m/s. However, the increase versus wind speed is mostly
evident for winds stronger than 8 m/s. For these strong winds, the CARTHE-SVP and
CODE-SVP velocity differences are 0.5–1% of the ERA5 wind speed, which is similar or
somewhat less than the slope of 1% found by Poulain et al. [15,31] and Pazan and Niiler [32]
for the un-drogued SVP with respect to the drogued SVP drifter. This is expected, since
the surface buoy of the SVP has more direct wind drag above the sea surface compared
to the CARTHE and CODE drifters. Thus, we can conclude that the typical difference
between the surface drifters and the drifters drogued at 15 m is 0.5–1% of the wind speed,
i.e., a difference of about 5–10 cm/s in 10 m/s winds. This is less than the classical “slip
law” of 3% [33–35], which is sometimes used operationally to estimate the drift of oil
slicks or floating objects/bodies in addition to numerically modelled or climatological near
surface currents.

However, there is large scatter around this rule and individual relative speeds can
even be as large as 20 cm/s in wind speeds near 5 m/s (Figure 2). The large scatter at
low wind speed (<10 m/s) is most likely due to the horizontal shear between the drifters
separated by less than 1 km (see Appendix A for a discussion). ADCP measurements also
show relative currents at 15 m depth below the CODE drifter (see Figures 7 and 8) that can
be as large as ~15 cm/s in winds near 15 m/s.

In the direction perpendicular to the wind, the interpretation of the results is difficult,
but differences between CARTHE/CODE and SVP rarely exceed 10 cm/s, and their means
are generally not significantly different from zero (see Figure 2 and Table 2). The non-filtered
data on 9 April 2019 revealed that the CARTHE has a tendency to move to the right of the
wind, compared to the SVP (Figure 6 and Table 3). However, the ADCP measurements
below the CODE indicated mostly negative cross-wind relative currents (Figure 7).

The currents measured by CARTHE and CODE drifters were also compared with each
other (Figures 4 and 6, Tables 2 and 3). The results obtained for the wind/wave conditions
of the southwestern Mediterranean during the CALYPSO 2018 and 2019 experiments do
not show significant differences. Only some tendency of the CARTHE to move more
downwind is sometimes seen (see, for instance, in Figure 6). This might be expected, since
the CARTHE drifter is closer to the sea surface and has a smaller drag area ratio compared
to the CODE. We therefore conclude that the two types of surface drifters, CARTHE and
CODE, measure the currents in approximately the same way and that their data can be
combined to investigate the surface kinematics and dynamics [24,25,36].

The individual contributions to the velocity difference between CARTHE/CODE and
SVP drifters include the effect of direct wind drag and wave rectification and the shear in
the upper layer related to Stokes drift, Ekman spiral, Langmuir cells and other ageostrophic
currents. We have shown that, for the relatively large wave conditions measured in the
southwestern Mediterranean Sea (up to 3 m significant wave height), the exponentially
decaying Stokes drift contribution to the total surface current can only partially explain
this difference. The shear between 0.8 and 3 m that reaches 7 cm/s includes a contribution
of 3 cm/s due to Stokes drift (Figures 8 and 9). Between 0.8 m and 15 m, the Stokes drift
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can produce a velocity difference of about 5 cm/s compared to 14 cm/s observed, that is,
about 30–40% of the measured velocity difference.

Additional shear can be due to the wind-induced Ekman flow. From the Ekman theory,
a wind speed of 17 m/s and a fully developed Ekman layer with a depth of 40 m should
induce a velocity difference between 0.8 and 3 m of ~0.9 cm/s. For a depth of 20 m, it should
be ~3.3 cm/s. Since these currents are rotated at an angle in excess of 45◦ to the right of the
wind in the northern hemisphere, they correspond to a maximum downwind component
of the Ekman current difference between 0.8 m and 3 m of ~0.5 cm/s and 2.2 cm/s for
Ekman depths of 20 and 40 m, respectively. Therefore, the sum of the Ekman Current and
Stokes drift may still not be sufficient to explain the relative currents measure with the
ADCP mounted on the CODE drifter. We conclude that spurious wave rectification effects
on shallow drogued drifters (e.g., CARTHE and CODE drifters) may also play a role in
explaining the discrepancy and that in the presence of large waves, the use of such drifters
may introduce a source of errors of a few cm/s for the measured down-wave currents.

5. Conclusions

To conclude, we have demonstrated that:

(1) Despite their different designs (e.g., depth and drag-area-ratio differences), the CODE
and CARTHE drifters measure the currents in the first meter below the sea surface in
approximately the same way, and they can be combined to calculate ocean surface
velocity statistics and dynamics.

(2) The surface drift of CODE and CARTHE drifters is typically downwind with 0.5–1%
of the wind speed, when compared to the SVP at 15 m depth. The veering of the
CODE/CARTHE currents to the right of the wind was only partially confirmed by the
observations. The large scatter in velocity differences between CODE/CARTHE and
SVP for all wind and sea state conditions is principally due to vertical and horizontal
shears not related to the wind.

(3) Ekman theory and wave-induced Stokes drift dynamics only partially explain the
observed vertical shear of horizontal currents measured by the CODE ADCP in the
upper sea.
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Appendix A. Distance between Drifters and Horizontal Shear

Before discussing the effects of the maximum separation distance used to search for
drifter pairs on the statistics presented in this paper, it is worthwhile to estimate the typical
distance between raw and low-pass filtered (hamming with 36 h cutoff) drifter positions.
Assuming that the distance between the raw positions sampled every 5 or 10 min and the
interpolated positions every 30 min is small and comparable to the GPS accuracy (~10 m),
we have computed the distance every 6 h between the interpolated and low-pass filtered
position time series for all the CALYPSO drifters in the southwestern Mediterranean Sea
(285 drifters). The distribution of such a distance is show in Figure A1. The mean is 2.2 km,
and the mode is 0.9 km, whereas the maximum distance is ~19 km. The accuracy of the
filtered drifter positions is, therefore, a few kilometers.

If low pass-filtered positions are used to find pairs, a threshold maximum distance less
than 1 km does not make sense. Note that if we use the non-filtered positions in conjunction
with the filtered velocities (to be more accurate in position), the statistical results presented
in this paper remain essentially the same.

It is obvious that if we increase the threshold distance above 1 km, the numbers of pairs
will increase and, in theory, the statistical results will be more robust. However, increasing
the distance the velocity difference between drifters will include a significant increasing
contribution from the horizontal shear of currents. As demonstrated in [24,33], this shear
can be quite substantial at scale of a few kilometers in the southwestern Mediterranean.
In order to assess the effect of the horizontal shear, we have calculated velocity difference
statistics using pairs of identical drifter types. For instance, 1099 CARTHE–CARTHE
pairs with distance less or equal to 1 km were found in CALYPSO 2018–2019 dataset. The
normalized histogram of the magnitude of velocity differences is shown in Figure A2.
Values are essentially bounded by 5 cm/s. For comparison, a similar histogram is also
depicted for the 154 CARTHE-SVP of CALYPSO 2019 (corresponding to the circle symbols
in Figure 2). As expected, the distribution is wider and includes values reaching 20 cm/s.
Figure A2 shows that the horizontal shear over 1 km can produce velocity differences of up
to 5–10 cm/s. Higher values (10–15 cm/s) are related to the local winds and waves.
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tradeoff, providing enough observations and limiting the effects of the horizontal shear on
the results.

References
1. Maximenko, N.A.; Lumpkin, R.; Centurioni, L. Ocean Surface Circulation. In Ocean Circulation and Climate; Siedler, G.,

Griffies, S.M., Gould, J., Church, J.A., Eds.; International Geophysics Series; Academic Press: Cambridge, MA, USA, 2013;
Volume 103, pp. 283–304.

2. Poulain, P.-M.; Centurioni, L. Direct measurements of World Ocean tidal currents with surface drifters. J. Geophys. Res. 2015,
26, 38–47. [CrossRef]

3. Centurioni, L.R.; Niiler, P.P.; Lee, D.K. Observations of inflow of Philippine Sea surface water into the South China Sea through
the Luzon Strait. J. Phys. Oceanogr. 2004, 34, 113–121. [CrossRef]

4. Centurioni, L.R.; Niiler, P.P.; Lee, D.K. Near-surface circulation in the South China Sea during the winter monsoon. Geophys. Res.
Lett. 2009, 36, L06605. [CrossRef]

5. Poulain, P.-M.; Bussani, A.; Gerin, R.; Junwirth, R.; Mauri, E.; Menna, M.; Notarstefano, G. Mediterranean surface currents
measured with drifters: From basin to subinertial scales. Oceanography 2013, 120, 6986–7003. [CrossRef]

6. Molcard, A.; Poulain, P.-M.; Forget, P.; Griffa, A.; Barbin, Y.; Gaggelli, J.; De Maistre, J.C.; Rixen, M. 2009: Comparison
between VHF radar observations and data from drifter clusters in the Gulf of La Spezia (Mediterranean Sea). J. Mar. Sys. 2009,
78 (Suppl. S1), S79–S89. [CrossRef]

7. Querin, S.; Cosoli, S.; Gerin, R.; Laurent, C.; Malacic, V.; Pristov, N.; Poulain, P.-M. Multi-platform, high-resolution study of a
complex coastal system: The TOSCA experiment in the Gulf of Trieste. J. Mar. Sci. Eng. 2021, 9, 469. [CrossRef]

8. Lodise, J.; Özgökmen, T.; Gonçalves, R.C.; Iskandarani, M.; Lund, B.; Horstmann, J.; Poulain, P.-M.; Klymak, J.; Ryan, E.H.;
Guigand, C. Investigating the formation of submesoscale structures along mesoscale fronts and estimating kinematic quantities
using Lagrangian drifters. Fluids 2020, 5, 159. [CrossRef]

9. Niiler, P.P.; Sybrandy, A.; Bi, K.; Poulain, P.-M.; Bitterman, D. Measurements of the water-following capability of holey-sock and
TRISTAR drifters. Deep-Sea Res. 1995, 42, 1951–1964. [CrossRef]

10. Novelli, G.; Guigand, C.; Cousin, C.; Ryan, E.H.; Laxague, N.J.M.; Dai, H.; Haus, B.K.; Özgökmen, T. A biodegradable surface
drifter for ocean sampling on a massive scale. J. Atmos. Ocean. Technol. 2017, 34, 2509–2532. [CrossRef]

11. Poulain, P.-M.; Gerin, R. Assessment of the water-following capabilities of CODE drifters based on direct relative flow measure-
ments. J. Atmos. Ocean. Technol. 2019, 36, 621–633. [CrossRef]

12. Davis, R.E. Drifter observation of coastal currents during CODE. The method and descriptive view. J. Geophys. Res. 1985,
90, 4741–4755. [CrossRef]

13. Poulain, P.-M. Drifter observations of surface circulation in the Adriatic Sea between December 1994 and March 1996. J. Mar. Syst.
1999, 20, 231–253. [CrossRef]

14. Gerin, R.; Zuppelli, P.; Poulain, P.-M. Design and Tests of the OGS Low-Cost CODE Drifter; Technical Report 2016/12 OCE 7 MAOS;
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale: Trieste, Italy, 2016; p. 25.

15. Poulain, P.-M.; Gerin, R.; Mauri, E.; Pennel, R. Wind effects on drogued and undrogued drifters in the Eastern Mediterranean. J.
Atmos. Ocean. Technol. 2009, 26, 1144–1156. [CrossRef]

http://doi.org/10.1002/2015JC010818
http://doi.org/10.1175/1520-0485(2004)034&lt;0113:OOIOPS&gt;2.0.CO;2
http://doi.org/10.1029/2008GL037076
http://doi.org/10.5670/oceanog.2013.03
http://doi.org/10.1016/j.jmarsys.2009.01.012
http://doi.org/10.3390/jmse9050469
http://doi.org/10.3390/fluids5030159
http://doi.org/10.1016/0967-0637(95)00076-3
http://doi.org/10.1175/JTECH-D-17-0055.1
http://doi.org/10.1175/JTECH-D-18-0097.1
http://doi.org/10.1029/JC090iC03p04741
http://doi.org/10.1016/S0924-7963(98)00084-0
http://doi.org/10.1175/2008JTECHO618.1


Sensors 2022, 22, 353 18 of 18

16. Centurioni, L.R. Drifter Technology and Impacts for Sea Surface Temperature, Sea-Level Pressure, and Ocean Circulation Studies.
In Observing the Oceans in Real Time; Venkatesan, R., Tandon, A., D’Asaro, E., Atmanand, M.A., Eds.; Springer International
Publishing: Cham, Switzerland, 2018; pp. 37–57.

17. Niiler, P.P. The World Ocean Surface Circulation. In Ocean Circulation and Climate; International Geophysics Series; Siedler, G.,
Church, J., Gould, J., Eds.; Academic Press: Cambridge, MA, USA, 2001; pp. 193–204.

18. Centurioni, L.; Braasch, L.; Di Lauro, E.; Contestabile, P.; De Leo, F.; Casotti, R.; Franco, L.; Vicinanza, D. A new strategic wave
measurement station off Naples port main breakwater. Coast. Eng. Proc. 2017, 1, 36. [CrossRef]

19. Centurioni, L.R.; Turton, J.; Lumpkin, R.; Braasch, L.; Brassington, G.; Chao, Y.; Charpentier, E.; Chen, Z.; Corlett, G.;
Dohan, K.; et al. Global in situ Observations of Essential Climate and Ocean Variables at the Air–Sea Interface. Front. Mar. Sci.
2019, 6, 419. [CrossRef]

20. Gerin, R.; Poulain, P.-M. OGS Prototype CODE Drifter Equipped with Current Meter and Current Profiler: Realization and Tests;
Technical Report 2011/109 OGA 34 SIRE; Istituto Nazionale di Oceanografia e di Geofisica Sperimentale: Trieste, Italy, 2011; p. 65.

21. Mahadevan, A.; Pascual, A.; Rudnick, D.L.; Ruiz, S.; Tintore, J.; D’Asaro, E. Coherent pathways for vertical transport from the
surface ocean to interior. Bull. Am. Meteorol. Soc. 2020, 101, E1996–E2004. [CrossRef]

22. Poulain, P.-M.; Özgökmen, T.; Guigand, C.; Wirth, N.; Casas, B.; Centurioni, L. CALYPSO Pilot Experiment 2018 27 May–2 June
2018 R/V ALLIANCE & R/V SOCIB: Lagrangian Drifter and Float Deployments; Technical Report 2018/45 OCE 12 MAOS; Istituto
Nazionale di Oceanografia e di Geofisica Sperimentale: Trieste, Italy, 2018; p. 22.

23. Poulain, P.-M.; Özgökmen, T.; Guigand, C.; Cristofano, G.; Centurioni, L. CALYPSO 2019 Experiment 28 March–10 April 2019 R/V
POURQUOI PAS? Technical Report 2019/28 OCE 10 MAOS; Lagrangian Drifter and Float Deployments, Istituto Nazionale di
Oceanografia e di Geofisica Sperimentale: Trieste, Italy, 2019; p. 24.

24. Tarry, D.; Essink, S.; Pascual, A.; Ruiz, S.; Poulain, P.-M.; Özgökmen, T.; Centurioni, L.; Farrar, J.; Shcherbina, A.;
Madadevan, A.; et al. Frontal convergence and vertical velocity measured from drifters in the Alboran Sea. J. Geophys.
Res. Ocean. 2021, 126, e2020JC016614. [CrossRef]

25. Esposito, G.; Berta, M.; Centurioni, L.; Johnston, T.M.S.; Lodise, J.; Özgökmen, T.; Poulain, P.-M.; Griffa, A. Submesoscale vorticity
and divergence in the Alboran Sea: Scale and depth dependence. Front. Mar. Sci. 2021, 8, 678304. [CrossRef]

26. Menna, M.; Gerin, R.; Bussani, A.; Poulain, P.-M. The OGS Mediterranean Drifter Database: 1986–2016; Technical Report 2017/92
OCE 28 MAOS; Istituto Nazionale di Oceanografia e di Geofisica Sperimentale: Trieste, Italy, 2017; p. 34.

27. Mitsuyasu, H.; Tasai, F.; Suhara, T.; Mizuno, S.; Ohkusu, M.; Honda, T.; Rikiishi, K. Observations of the directional spectrum of
ocean waves using a cloverleaf buoy. J. Phys. Oceanogr. 1975, 5, 750–760. [CrossRef]

28. Longuet-Higgins, M.S. The Directional Spectrum of Ocean Waves, and Processes of Wave Generation. Proc. R. Soc. London Ser. A
Math. Phys. Sci. 1962, 265, 286–315.

29. Kenyon, K.E. Stokes drift for random gravity waves. J. Geophys. Res. 1969, 74, 6991–6994. [CrossRef]
30. Mahadevan, A.; D’Asaro, E.A.; Allen, J.T.; Almaraz García, P.; Alou-Font, E.; Aravind, H.M.; Balaguer, P.; Caballero, I.; Calafat, N.;

Carbornero, A.; et al. CALYPSO 2019 Report: Field Campaign in the Mediterranean; Technical Report. WHOI-2020-02; Woods Hole
Oceanographic Institute: Woods Hole, MA, USA, 2020; p. 120.

31. Poulain, P.-M.; Warn-Varnas, A.; Niller, P.P. Near-surface circulation of the Nordic seas as measured by Lagrangian drifters. J.
Geophys. Res. 1996, 101, 18237–18258. [CrossRef]

32. Pazan, S.; Niiler, P.P. Recovery of near-surface velocity from undrogued drifters. J. Atmos. Ocean. Technol. 2001,
18, 476–489. [CrossRef]

33. Weber, J.E. Steady wind- and wave-induced currents in the open ocean. J. Phys. Oceanogr. 1983, 13, 524–534. [CrossRef]
34. Wu, J. Sea-surface drift currents induced by winds and waves. J. Phys. Oceanogr. 1983, 13, 1441–1451. [CrossRef]
35. Csanady, G.T. The “slip law” of the free surface. J. Oceanogr. 1997, 53, 67–80. [CrossRef]
36. Poulain, P.-M.; Centurioni, L.; Özgökmen, T.; Tarry, D.; Pascual, A.; Ruiz, S.; Mauri, E.; Menna, M.; Notarstefano, G. On the

structure and kinematics of an Algerian Eddy in the southwestern Mediterranean Sea. Remote Sens. 2021, 13, 3039. [CrossRef]

http://doi.org/10.9753/icce.v35.waves.36
http://doi.org/10.3389/fmars.2019.00419
http://doi.org/10.1175/BAMS-D-19-0305.1
http://doi.org/10.1029/2020JC016614
http://doi.org/10.3389/fmars.2021.678304
http://doi.org/10.1175/1520-0485(1975)005&lt;0750:OOTDSO&gt;2.0.CO;2
http://doi.org/10.1029/JC074i028p06991
http://doi.org/10.1029/96JC00506
http://doi.org/10.1175/1520-0426(2001)018&lt;0476:RONSVF&gt;2.0.CO;2
http://doi.org/10.1175/1520-0485(1983)013&lt;0524:SWAWIC&gt;2.0.CO;2
http://doi.org/10.1175/1520-0485(1983)013&lt;1441:SSDCIB&gt;2.0.CO;2
http://doi.org/10.1007/BF02700750
http://doi.org/10.3390/rs13153039

	Introduction 
	Data and Methods 
	CARTHE, CODE and SVP Drifters 
	Other Drifters 
	Drifter Deployments 
	Drifter and ADCP Data Processing 
	Estimation of Stokes Drift from DWSDTM Data 
	Ancillary Data and Climatological Products 
	Comparison Methodology 

	Results 
	Comparison Using Low-Pass Filtered Data 
	Comparison Using Non-Filtered Data on 9 April 2019 

	Discussion 
	Conclusions 
	Appendix A
	References

