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Abstract: In order to reduce the amount of hyperspectral imaging (HSI) data transmission required
through hyperspectral remote sensing (HRS), we propose a structured low-rank and joint-sparse (L&S)
data compression and reconstruction method. The proposed method exploits spatial and spectral
correlations in HSI data using sparse Bayesian learning and compressive sensing (CS). By utilizing
a simultaneously L&S data model, we employ the information of the principal components and
Bayesian learning to reconstruct the hyperspectral images. The simulation results demonstrate that
the proposed method is superior to LRMR and SS&LR methods in terms of reconstruction accuracy
and computational burden under the same signal-to-noise tatio (SNR) and compression ratio.

Keywords: hyperspectral images; hyperspectral remoting sensing; Bayesian learning; compressive
sensing; low-rank and joint-sparse

1. Introduction

HSI is a collection of hundreds of images that are usually acquired simultaneously in
narrow and adjacent spectral bands by airborne sensors [1] or spaceborne spectrometers [2].
HSI combines the traditional two-dimensional remote sensing imaging technology and the
optical imaging technology of spectroscopy [3]. Moreover, HSI has achieved the effect of
acquiring images and spectra of objects at the same time, which has set off a revolution in the
field of remote sensing. In recent years, with the rapid development of precision agriculture,
hyperspectral imaging (HSI) technology in hyperspectral remote sensing [4] has been
widely used. In precision agriculture, hyperspectral images can be used to monitor drought
and flooding in farmlands, pests and diseases, and crop growth, as well as to predict
farmland yield. According to the estimated variability from HSI, precision agriculture
can improve resource-use efficiency, productivity, quality, profitability, and sustainability
of agricultural production, such as by using less irrigation water, fewer pesticides and
fertilizers, etc. HSI is also used in many applications besides precision agriculture, including
forestry monitoring, natural resource investigation, vegetation observation, food safety,
and geological mapping.

However, the acquisition and processing of HSI require a high-sensitivity detector,
ultra-long-distance transmission, great computing power, and a huge data storage capacity
in order to deal with such huge amounts of data. The HSI data need to be transmitted
to ground stations. In this regard, one of the obstacles that researchers have had to face
in the past 20 years is that of finding a way to program hyperspectral satellites to reduce
the HSI data. Fortunately, HSI data are low-rank [5] and sparse in the transform domain
(discrete cosine transform (DCT) or wavelet transform) [6–8]. These kinds of data have the
features of being low-rank and sparse, which means that the data are redundant, and a
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small number of datasets can be used to express the entirety of the data. So, we can use
these features to reduce the amount of HSI data to be transmitted. This might be a good
way to solve the problem.

Recently, many works have focused on modeling, compressing, and reconstructing HSI
data using a structured framework. By dividing HSI into many blocks, Zhang et al. [5] in-
troduced an HSI data reconstruction method based on low-rank matrix recovery (LRMR). In
particular, for this kind of signal, many new compressive sensing (CS)-based methods [9–11]
have been proposed [6,8,12–19]. Golbabaee et al. [6] simultaneously reconstructed HSI data
with a low-rank and joint-sparse (L&S) structure by assuming that HSI data are low-rank
and using a spatially joint-sparse wavelet representation. Zhang et al. [12] showed that the
block sparse Bayesian learning (bSBL) algorithm has good recovery performance for data
with a spatial block structure (such as an L&S structure). However, most of the existing
research focused on low-rank structure reconstruction methods or HSI data denoising
methods, and there are no methods for integrating the process of HSI acquisition and
combining a sparse structure reconstruction method to reconstruct HSI data.

In this paper, a method based on the bSBL framework is proposed to compress,
transmit, and reconstruct the entirety of HSI data. Here, each sub-matrix of multi-channel
data is collected, compressed, and transmitted to the ground processing center through
push-broom imaging. The proposed method not only combines the L&S structure priors on
HSI data and the appropriate priors on hyperparameters, but also uses the information of
the main components of the data. Firstly, we assume that the covariance matrix of the data
is a diagonal matrix, and then obtain the initial value of the hyperparameter. Finally, an
EM-like method is used to obtain the best reconstruction of the HSI data. The simulation
results show that the proposed method has better performance than other existing methods.

We highlight the following main contributions:

(1) The proposed method gives the structure of the covariance matrix of the L&S signals,
models HSI data with the L&S structure, and utilizes the CS and Bayesian learning
methods to compress and reconstruct HSI data.

(2) In the reconstruction part, the proposed method makes use of the relationship between
multiple dimensions of high-dimensional data and combines data reconstruction with
HSI data acquisition. It can be used to realize the segmented acquisition, compression,
and transmission of HSI data so as to reduce the amount of calculation and data
transmission that must be performed in the satellite.

(3) We demonstrate the superior performance of the proposed method in comparison
with state-of-the-art alternatives by conducting experiments on both synthetic signals
and real signals.

The rest of this paper is arranged as follows: Section 2 introduces two 2D reconstruction
methods for HSI data. Section 3 introduces the L&S data compression and reconstruction
method combined with the acquisition mode. Section 3.1 introduces a model of the problem,
and Section 3.2 proposes the HSI reconstruction method based on push-broom imaging.
Section 3.3 introduces the simulation results. Discussion is given in Section 4. Finally, this
work is concluded in Section 5.

Notation: p(A) ∼ N (0, Σ) denotes the probability density function of A, which
follows a Gaussian distribution with mean 0 and variance Σ. |A| denotes the determinant
of A. ‖x‖2 denotes the `2 norm of x. vec[A] denotes the vectorization of the matrix A
formed by stacking its columns into a single column vector. A> denotes the transpose of A.
tr(A) denotes the trace of A.

2. Two-Dimensional Reconstruction Methods for HSI Data

As described in the previous section, this section will combine the fast method pro-
posed in our previous work [20] to compress and reconstruct HSI data from two different
two-dimensional (2D) slice methods and will provide two 2D reconstruction algorithms for
three-dimensional (3D) HSI data. These two methods are the method of expanding 3D data
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HSI from different bands to 2D data by using a tensor and the method of slicing them into
2D data one by one according to the acquisition mode.

The HSI data experiment was carried out with the repetition of 100 real tests. Each
experimental datum was selected from the Salinas Database (http://www.ehu.eus/
ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Salinas-A_scene (accessed
on 10 November 2021)) dataset in a 30× 50 area, and 20 bands were used, that is, the
data matrix was a 30× 50× 20 3D matrix with N = 30, Q = 50, M = 20. The two 2D
reconstruction methods are first introduced in the following sections. The core part of
this section shows the direct application of the fast L&S-bSBL method [20]. The same
abbreviations as in [20] are used here.

(1) Estimation of x.

After the Bayesian posterior probability is obtained with the Bayesian rule, the maxi-
mum a posteriori (MAP) is used to obtain the estimation of x:

x̂ = vec(X̂>) , µx = (λΣ−1
0 + H>H)−1HΣ0

= Σ0H>(λI + HΣ0H>)−1y,
(1)

where Σ0 is a block matrix of x, and there are few elements that are non-zero. Moreover,
the sparsity of blocks of x̂ is determined by γiγj. When γk = 0, the value of the kth related
block in x̂ is zero.

(2) Estimation of λ.

In order to obtain λ, we simplify the expression of Σ0 as

Σ0 = Γ⊗ B. (2)

After maximizing the logarithm of the joint probability of x and y, we take the deriva-
tive of it with respect to λ:

λ←
‖y−Hµx‖2

2 + λ(pre)
[
mn− tr(ΣxΣ−1

0 )
]

pn
. (3)

(3) Estimation of B.

B = arg min
X

tr
[
B−1

0

(
XX> +∇B−1

0

)]
+ m log |B0|

=
1
m

(
X̂X̂> +∇B−1

0

)
.

(4)

where

B0 ←
1
m

m

∑
i=1

(
Σi

x + µi
x(µ

i
x)
>)

γ2
i

, (5)

∇B−1 =
m

∑
i=1

B− BH>i
(

HΣ0H> + λI
)−1

HiB. (6)

(4) Estimation of Γ.

The algorithm calculates the singular values of X through singular value decompo-
sition (SVD) for each slice of the HSI data and sorts the singular values in descending
order. Depending on the singular value of the sequence, we can obtain the value of the
corresponding γi(i = 1, · · · , m). The γi corresponding to the larger singular value is 1, or is

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Salinas-A_scene
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Salinas-A_scene
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otherwise 0. For HSI data, a large singular value distribution can be obtained by analyzing
only one segment of its 2D slice signal in advance. The expression of Γ is

Γ =


γ1γ1 γ1γ2 · · · γ1γm
γ2γ1 γ2γ2 · · · γ2γm

...
...

. . .
...

γmγ1 γmγ2 · · · γmγm

. (7)

(5) Estimation of Sopt.

Xopt ← x. (8)

2.1. Two-Dimensional HSI Reconstruction Algorithm—L&S-bSBL (1)

Here, we consider a typical HSR scenario (push-broom imaging) in which there are M
sensors with different wavelengths (called channels or bands; here, we have M bands) for
acquiring HSI data F = [:, Fq, :] ∈ RMN×Q, q ∈ {1, 2, · · · , Q} in an N × Q area following
the Q-dimension, where Fq = [f1, · · · , fM]> ∈ RM×N×1. Here, we simply express this as
Fq = [f1, · · · , fM]> ∈ RM×N . After all HSI data F are collected, the proposed algorithm
performs the following steps on the HSI data, as shown in Figure 1.

Q
M

N

thm

1

vec( )
MNQ





x X

x 

...

11F

1MF

1mF

...

...

...

T
1 1vec( 1) FF...

...

...

Tvec( 1)m m FF

Tvec( 1)M M FF

T T T T
1[ , , ]m M FF F F 

M NQX 

...
...

...

...

...

...

...

...

...

...

...

...

Figure 1. Schematic diagram of the HSI data tensor expanded into 2D data.

(1) According to the different bands M, we use the tensor to expand with F11, · · · , Fm1, · · · , FM1;
(2) let Fm1, m ∈ {1, 2, · · · , M} turn into Fm, m ∈ {1, 2, · · · , M} by using the vec operator;
(3) let F = [F>1 , F>2 , · · · , F>M];
(4) obtain the corresponding value of F in the DCT domain X ∈ RM×NQ.

Here, we first conduct a principle component analysis (PCA) on the data F. As shown
in Figure 2, we can obtain 2D HSI tensor expansion data F in the sparse domain, which
is mainly distributed in the first two columns, as well as the corresponding γ1 = 1 and
γ2 = 1; the other γi, i ∈ {2, 3, · · · , M} is 0. Figure 3 shows a schematic diagram of the
covariance matrix of x.
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Figure 2. (a) Two-dimensional HSI in the DCT domain and (b) Singular value vs. Frequency.
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Figure 3. A covariance matrix of 2D HSI data X.

For the obtained X ∈ RM×NQ, the single measurement vector (SMV) model is used
to solve the problem of data compression, transmission, and reconstruction. First, the
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acquired data X are columnarized into x, encoded by the linear mapping matrix H, and
then transmitted to the ground receiving station through a wireless channel. Here, we
assume that the encoded data will be superimposed with noise e in the process of channel
transmission, and the data received at the ground receiving station are denoted as y.
Therefore, the mathematical model of the problem can be expressed as y = Hx + e. The
proposed algorithm uses the fast L&S-bSBL algorithm in Equations (1), (3), (4), (7) and (8)
to iteratively reconstruct the original data x; then, we obtain F, X . Most existing research
regards the HSI signal as a low-rank signal to reconstruct, so the typical Bayesian low-
rank reconstruction algorithm BARM [21] and the simultaneous low-rank and joint-sparse
reconstruction algorithm SS&LR [22] are selected as the algorithms for comparison.

Figure 4 shows a comparison of the reconstruction performance (including mean
squared error (MSE) vs. signal-to-noise ratio (SNR) and runtime vs. SNR) of all algorithms
in reconstructing 2D unfolded HSI data. In Figure 4a, we observe that the proposed
algorithm L&S-bSBL (1) outperforms all of the other methods because the data expansion
method of the proposed algorithm increases the amount of relevant data. As shown in
Figure 4b, the proposed algorithm uses less runtime than BARM and almost the same
amount as SS&LR. Comprehensive consideration of the two figures shows that the proposed
algorithm is better than the other two algorithms in terms of reconstruction performance
and computational resource consumption.

0 5 10 15 20 25

SNR (dB)
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-3
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1

M
S

E
 (

d
B
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L&S-bSBL(1)

(b)

Figure 4. (a) MSE vs. SNR and (b) runtime vs. SNR for the reconstruction of 2D HSI data.
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2.2. Two-Dimensional HSI Reconstruction Algorithm—L&S-bSBL (2)

Here, we also consider a typical HSR scenario (push-broom imaging) in which there
are M sensors with different wavelengths (called channels or bands; here, we have M
bands) to acquire HSI data F = [:, Fq, :] ∈ RMN×Q, q ∈ {1, 2, · · · , Q} in an N × Q area
following the Q-dimension, where Fq = [f1, · · · , fM]> ∈ RM×N×1. After all HSI data F are
collected, the proposed algorithm performs the following steps on the HSI data, as shown
in Figure 5.

(1) Let slices Fq ∈ RM×N×1 and q ∈ {1, 2, · · · , Q} as Fq ∈ RM×N ;
(2) obtain the corresponding value of Fq ∈ RM×N in the DCT domain Xq, q ∈ {1, 2, · · · , Q};
(3) let Xq turn into xq, q ∈ {1, 2, · · · , Q} by using the vec operator.

qX

1 1vec( )x X

...

...
...

1F

QF

qF

...

...

...

QX

1X

Q
M

N

q

vec( )q qx X

vec( )Q Qx X

...
...

...

...

...

...
...

T
1x

T
qx

T
Qx

Figure 5. A schematic diagram of the HSI slice decomposition according to the push-broom imaging
method following Q.

Here, we first conduct a PCA on the data Fq. As shown in Figure 6, we can obtain 2D
HSI slice data Fq in the sparse domain, which is mainly distributed in the first two columns,
as well as the corresponding γ1 = 1 and γ2 = 1; the other γi, i ∈ {2, 3, · · · , M} is 0. The
schematic diagram of the covariance matrix of x is similar to that shown in Figure 3.

For the obtained Xq ∈ RM×N , the SMV model is used to solve the problem of data
compression, transmission, and reconstruction. Firstly, the acquired data Xq are colum-
narized into xq, encoded by the linear mapping matrix H, and then transmitted to the
ground receiving station through a wireless channel. Here, we assume that the encoded
data will be superimposed with noise eq in the process of channel transmission, and the
data received at the ground receiving station are denoted as yq. Therefore, the mathematical
model of the problem can be expressed as yq = Hxq + eq. The proposed algorithm uses the
fast L&S-bSBL algorithm in Equations (1), (3), (4), (7) and (8) to iteratively reconstruct the
original data x; then, we obtain F, X . Most existing research regards HSI signals as low-rank
signals to recover, so BARM and SS&LR are selected as the algorithms for comparison.
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Figure 6. (a) Two-dimensional HSI slices in the DCT domain and (b) Singular value vs. Frequency.

Figure 7 shows a comparison of the reconstruction performance of all algorithms for
all Q slices. In Figure 7a, we can see that the reconstruction of these slices is acceptable.
However, L&S-bSBL (1) has better performance than L&S-bSBL (2) in reconstructing the
same data, as shown in Figure 4. The reason is that L&S-bSBL (1) greatly utilizes the
correlation between all data and improves the reconstruction performance, while L&S-
bSBL (2) only uses the correlation within a certain band, ignoring the correlation between
the bands at the same location.

Moreover, L&S-bSBL (2) only takes about 35 s compared with L&S-bSBL (1), which
takes 150 s to recover the same data, as shown in Figure 4. This is because L&S-bSBL (1)
has a large data dimension for a single operation and L&S-bSBL (2) has a small dimension,
and the amount of calculation required for the calculation of the matrix inverse operation
is not within an order of magnitude.
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Figure 7. (a) MSE vs. SNR and (b) runtime vs. SNR for the reconstruction performance of 2D HSI
push-brooming slices in all algorithms.

3. L&S Reconstruction Algorithm Combined with Acquisition Methods
3.1. Problem Formulation and Signal Model

We consider a typical HSR scenario (push-broom imaging) in which there are M
sensors with different wavelengths (called channels or bands; here, we have M bands)
to collect HSI data F = [:, Fq, :] ∈ RMN×Q, q ∈ {1, 2, · · · , Q} in an N × Q area. Figure 8
shows that a spaceborne spectrometer (push-broom imaging) acquires multi-channel data
Fq = [f1, · · · , fM]> ∈ RM×N with time synchronization among different regions following
the Q-dimension, where fm ∈ RN×1, m ∈ {1, 2, · · · , M} stands for the data collected by the
mth channel sensor and Fq is the spatially and temporally correlated data matrix. Then,
Fq is encoded by linearly mixing with Ξq and transmitted to a ground receiving station,
denoted as Yq, after superimposing noise Vq. Finally, a novel CS method is used to decode
all Fq at the same time at the ground processing center.
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q
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vec[ ]
q q
=x X ]

Figure 8. An example of hyperspectral image acquisition.

Fortunately, HSI data are highly correlated with the locations and bands of their non-
zero elements in a sparse domain. So, we can get an approximately L&S matrix Xq ∈ RM×N

from Fq = ΨqXq, where Ψq ∈ RM×M is a sparsifying basis (e.g., DCT matrix or wavelet
matrix) [23], and X = [:, Xq, :] ∈ RMN×Q. Thus, we have the following formulation:

Yq = ΦqXq + Vq, (9)

where Φq = ΞqΨq is a known dictionary matrix. Here, this problem belongs to the multiple
measurement vector (MMV) [24] problem.

Following our recent work [12], we now consider a bSBL framework [25] (i.e., L&S-
bSBL) to reconstruct all Xq. By letting yq = vec[Y>q ] ∈ RP×1, Aq = Φq ⊗ In ∈ RP×NM,
xq = vec[X>q ] ∈ RNM×1, vq = vec[V>q ] ∈ RP×1, after transforming the MMV problem to
the block SMV [24] problem, we have

yq = Aqxq + vq. (10)

Then, the original problem becomes

y = Ax + v, (11)

where y = [y>1 , · · · , y>Q ]
> ∈ RQP×1, A = IQ ⊗Aq(q ∈ {1, 2, · · · , Q}) ∈ RQP×QNM, and

IQ ∈ RQ×Q denotes a Q× Q identity matrix. x = [x>1 , · · · , x>Q ]
> ∈ RQNM×1, xq is the qth

block in x. The presence of K non-zero rows in Xq means that there are K × Q non-zero
blocks in x. Thus, x is a block sparse vector. v = [v>1 , · · · , v>Q ]

> ∈ RQP×1.
We assume that the noise elements vq, q ∈ {1, · · · , Q} follow an identical and in-

dependent distribution with p(vq) ∼ N (0, λ), ∀q. We define the Gaussian likelihood for
problem (11) as

p(y|x; A, λ) ∼ Ny|x(Ax, λI) ∝ exp[− 1
2λ
‖Ax− y‖2

2], (12)

and the prior of x is given by

p(x; γqi, γqj, Bqij, ∀q, i, j) ∼ Nx(0, Σ0) ∝ exp[−1
2

x>Σ−1
0 x], (13)

where Bqij ∈ RN×N is a covariance matrix between xqi and xqj, i, j = 1, · · · , M. Σ0 = IQ⊗Σq,
Σq = Γq ⊗ Bqij, Γq = Γq0Γ>q0. Γq0 = [γq1, · · · , γqM]> is the sparsity pattern vector of Xq,
where the support indicates γqi ∈ {0, 1}, i = 1, · · · , M.
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Typically, we can obtain

Σ0 = diag(Σ1, · · · , Σq, · · · , ΣQ),

Σq =


γq1γq1Bq11 γq1γq2Bq12 · · · γq1γqMBq1M
γq2γq1Bq21 γq2γq2Bq22 · · · γq2γqMBq2M

...
...

. . .
...

γqMγq1BqM1 γMγ2BqM2 · · · γqMγqMBqMM

.
(14)

Without losing generality, we assume that Xq is a matrix that is low-rank and joint-
sparse in columns. Figure 9 illustrates an example of Xq and the structure of the covariance
matrix Σq of xq with M = 4. In the figure, we find that only the first two columns have
values, so only γq1 = 1 and γq2 = 1. Thus, the parts related to γq1, γq2 in Σq are valuable.

1 1 11q q q
g g B

q
Σ

q
X

q
x

q
x

1 2 12q q q
g g B

2 2 22q q q
g g B

2 1 21q q q
g g B

1 1 11q q q1 1 111 1 11
g g
1 1 111 1 11q q q1 1 111 1 11
B

1 1 111 1 111 1 11q q q
g g B

q
Σ

q
X

q
x

q
x

1 2 12q q q1 2 121 2 12
g g B
1 2 12q q q

g g B

2 2 22q q q
g g B

q q q2 1 21
g g
2 1 21q q q2 1 212 1 21q q q

g g B

Figure 9. An example of the structure of the covariance matrix Σq of xq, xq = vec[X>q ], M = 4.

3.2. Proposed Method

Following our last work [12], we obtain the posterior density of x with the Bayesian rule:

p(x|y; λ, γqi, γq j, Bqij, ∀q, i, j) ∼ Nx(µx, Σx), (15)

where the mean µx and the covariance Σx can be obtained by

µx =
1
λ

ΣxA>y, (16)

Σx = (Σ−1
0 +

1
λ

A>A)−1

= Σ0 − Σ0A>(λI + AΣ0A>)−1AΣ0.
(17)

When all of the hyperparameters λ, γqi, γqj, Bqij, ∀q, i, j are given, the maximum a
posteriori (MAP) estimate of x can be obtained by

x̂ = vec[X̂>] , µx = (λΣ−1
0 + A>A)−1AΣ0

= Σ0A>(λI + AΣ0A>)−1y,
(18)

where Σ0 is the approximate diagonal matrix obtained by Equation (14), with most block
matrices being zeros. It is clear that γqi, γqj, ∀q, i, j control the sparsity of the blocks of x̂. When
γqk = 0, the associated qkth block in x̂ becomes zero. In fact, γ1i = · · · = γqi = · · · = γQi.

Following the bSBL framework [25], to avoid overfitting, we use a common positive
definite matrix Σ to model all of the covariance matrices Σq. In Σq, we also use a common
positive definite matrix B instead of Bqij and we use a group of γi ∈ {0, 1} instead of all
γqi ∈ {0, 1}, Γ and instead of Γq. From the previous analysis, we can find that the covariance
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matrices induce the spatiotemporal correlation in the prior density. Thus, Equation (14) can
be written as

Σ0 = IQ ⊗ Γ⊗ B. (19)

Using the Bayesian strategy, we maximize the marginal probability p(x, y) of x:

max
B∈N+ ,Γ≥0

∫
p(y|x; A, λ)p(x; Γ, B)dx, (20)

which is equivalent to minimizing the cost function of −2 log p(y; λ, Γ, B):

L(Γ, B, λ) = y>Σ−1
y y + log |Σy|, (21)

where N+ denotes a set of N × N positive definite matrices.

Σy = AΣ0A> + λI, Σ0 = IQ ⊗ Γ⊗ B. (22)

Here, Σy denotes the covariance of y given Γ and B.
Simply, Θ ≡ {Γ, B, λ}; thus, (21) turns into

L(Θ) = y>Σ−1
y y + log |Σy|. (23)

Firstly, x is treated as a hidden variable in the expectation maximization (EM) formula-
tion that proceeds, and we maximize

Q(Θ) =Ex|y;Θ(pre) [log(p(y|x; λ)p(x; Γ, B))]

=Ex|y;Θ(pre) [log p(y|x; λ)]

+ Ex|y;Θ(pre) [log p(x; Γ, B)],

(24)

where Θ(pre) denotes the hyperparameters that are estimated in the previous iteration.
To estimate λ—only the first term in the Q function is correlated with λ—it can be

simplified as

Q(λ) = Ey|x;Θ(pre) [log p(y|x;λ)] ∝ −QP
2

log λ

− 1
2λ

[
‖y−Aµx‖2

2 + λ(pre)[QNM− tr(ΣxΣ−1
0 )]

]
,

(25)

where λ(pre) denotes the estimation of λ in the previous iteration. When we calculate the
derivative of Equation (25) over λ and set it equal to zero, λ is obtained:

λ←
‖y−Aµx‖2

2 + λ(pre)
[

QNM− tr(ΣxΣ−1
0 )
]

PN
. (26)

To estimate Γ and B, Γ = diag(γ2
1, · · · , γ2

M) is first assumed, where diag(·) denotes a
diagonal matrix operator. Notice that only the second term in Equation (24) is related to Γ

and B. So, we can simplify the Q function (24) to

Q(Γ, B) = Ex|y;Θ(pre) [log p(x; Γ, B)], (27)

Then, we have

Q(Γ, B) ∝− QN
2

log(|Γ|)− QM
2

log(|B|)

− 1
2

tr[(Γ−1 ⊗ B−1)(Σx + µxµ>x )].
(28)
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To obtain the values of γi, we use the feature given in [20]. Specifically, the values
of γi corresponding to the larger singular values (the larger singular values are defined
as singular values that are larger than 10% of the largest singular value) are 1; otherwise,
they are 0. Figure 10 gives a schematic diagram of how γi is obtained from HSI data. From
Figure 10, we can find that only the first singular value is larger, so γ1 = 1.
估计

无线传感器网络中的低秩联合稀疏信号快速恢复
算法

1 0 0 … 0

35

Figure 10. The schematic diagram of how γi is obtained.

To estimate B, µx and Σx are plugged into Equation (28). So, we can obtain the
gradients of Equation (28) over B, and then we can obtain B(pre).

B(pre) ← 1
M

M

∑
i=1

(
Σi

x + µi
x(µ

i
x)
>)

γ2
i

. (29)

Thus, we will get Γ(pre). Using the same method, we can get λ(pre). Finally, we get
Θ(pre). Here, A(pre) denotes an initial value of A.

In order to get a closed form of Θ, we employ standard upper bounds to solve
Equation (21), which is known as a non-convex optimization problem leading to an EM-like
algorithm. For the first and second terms of L(Γ, B), we compute their respective bounds.

For the first term in Equation (21), we can obtain

y>Σ−1
y y ≤ 1

λ
‖y−Ax‖2

2 + x>Σ−1
0 x, (30)

where equality is obtained when x satisfies Equation (18).
For the second term, we can obtain

log|Σy| ≡ QMlog|B|+ log|λA>A + Σ−1
0 |

≤ QMlog|B|+ tr[B−1∇B−1 ] + C,
(31)

where, for the second term log|λA>A + Σ−1
0 |, a first-order approximation is used to ap-

proximate it with a bias term C. The equality will hold when the gradient satisfies

∇B−1 =
M

∑
m=1

B− BA>m(AΣ0A> + λI)−1AmB, (32)

where A = [A1, . . . , AM] and Am ∈ RQP×QN . Finally, by using the upper bounds of
Equations (30) and (31) and ∇B−1 , we can obtain the optimal B in a closed form:

Bopt = arg min
x

x>Σ−1
0 x + tr[B−1∇B−1 ] + QMlog|B|. (33)

Starting with B = B(pre), we iteratively compute Equations (18), (32) and (33), then
obtain an estimation for B and a corresponding estimation for x given by Equation (18).
Here, the proposed method is outlined in Algorithm 1.
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Algorithm 1 Proposed method

Source data analysis
calculate singular values of Xq by using SVD;
obtain γi, i = 1, · · · , M by using singular values;
Input y, A; Output X ;
Initialize assume Γ = diag(γ2

1, · · · , γ2
M);

iters = 0, δ = 10−6;
max iteration number = 500;
Set λ, B by λ = 10−10, B = ones(N, N);
compute λ, B from Equations (26) and (33); Σ0 ← IQ ⊗ Γ⊗ B;
While ‖X − X̂ ‖2

2 ≥ δ

compute X̂ by Equation (18); compute ∇B−1 by Equation (32);
compute Bopt by Equation (33); iters = iters + 1;
if iters ≥ 500

STOP;
end if
EndWhile
Get the best Bopt and X .

3.3. Simulation Experiments

In this section, we present the results with HSI data in order to compare the per-
formance of the proposed method with that of the prior state-of-the-art LRMR [5] and
SS&LR [22] methods. For HSI data, 100 continuous-time trials were run. In each trial,
data of a 30× 50 two-dimensional area and 20 bands from the Salinas Database (available
at http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#
Salinas-A_scene (accessed on 10 November 2021)) and Indian Pines (available at http://
www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Indian_Pines
(accessed on 10 November 2021)) were used. Thus, the data matrix was a 30× 50× 20 matrix.

Figures 11 and 12 plot the performance in terms of MSE versus SNR and runtime
versus SNR, respectively. Here, P = 10, so the ratio of compression is P/NM = 1/60. In
Figure 11a, we can observe that proposed method outperforms all of the other methods
in terms of MSE; e.g., at SNR = 20 dB, we note that the proposed method achieves recon-
struction gain at least 5 dB greater than those of the other methods. Figure 11b shows that
the proposed method uses less runtime than the others. In Figure 12, we can observe that
the effect of SS&LR is not good, but our proposed method works well and outperforms
all of the other methods in terms of MSE; e.g., at SNR = 15 dB, we note that the proposed
method achieves a reconstruction gain at least 6 dB greater than those of the other methods.
The proposed method also uses less runtime than the others.

Figures 13 and 14 compare all of the methods for different values of compression P.
Figure 13a shows that most of the MSE curves fall as P increases. As the compression ratio
P/NM decreases (from 1/300 to 1/60), the reconstruction error becomes smaller, affecting
the signal reconstruction performance. Fortunately, the proposed algorithm yields better
performance in all cases and has a higher compression ratio with the same reconstruction
performance. Figure 13b shows that the proposed method consumes less computation time
at the same compression ratio. From Figure 14, we observe that the effects of SS&LR and
LRMR are not good, but our proposed method outperforms all of the other methods in
terms of MSE; e.g., at P = 6, we note that the proposed method achieves a reconstruction
gain at least 7 dB greater than those of the other methods. The proposed method also uses
less runtime than the others.

Figure 15 shows some visual reconstruction results obtained with the three methods.
As expected, the proposed method preserves more fine details and better visual results
than the others.

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Salinas-A_scene
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Salinas-A_scene
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Indian_Pines
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Indian_Pines
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Figure 11. (a) MSE vs. SNR and (b) runtime vs. SNR for the reconstruction of the Salinas data.
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Figure 12. (a) MSE vs. SNR and (b) runtime vs. SNR for the reconstruction of the Indian Pines data.
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Figure 13. (a) MSE vs. P and (b) runtime vs. P with different compression ratios for the reconstruction
of the Salinas data.
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Figure 14. (a) MSE vs. P and (b) runtime vs. P with different compression ratios for the reconstruction
of the Indian Pines data.
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Figure 15 shows some visual reconstruction results obtained with the three methods.
As expected, the proposed method preserves more fine details and better visual results
than the others.
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Figure 15. Visual comparison with a fixed compression ratio P/NM = 1/30 and 20 bands.

Figure 16 only shows a performance comparison chart of the various algorithms from
the perspective of data recovery, and it does not start from the perspective of data collection
methods, as in the beginning of this chapter. It can be seen in Figure 16 that the proposed
3D joint reconstruction algorithm has better performance and less time consumption than
the other algorithms. What needs to be explained here is that the three methods—the
proposed 3D HSI method, L&S-bSBL (1) method, and L&S-bSBL (2) method—are, in terms
of the compression ratio: P/(NM) = 1/60, P/(NQ) = 1/150, and P/N = 1/3.
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Figure 16 only shows a performance comparison chart of the various algorithms from
the perspective of data recovery, and it does not start from the perspective of data collection
methods, as in the beginning of this section. It can be seen in Figure 16 that the proposed 3D
joint reconstruction algorithm has better performance and less time consumption than the
other algorithms. What needs to be explained here is that the three methods—the proposed
3D HSI method, L&S-bSBL (1) method, and L&S-bSBL (2) method—are, in terms of the
compression ratio: P/(NM) = 1/60, P/(NQ) = 1/150, and P/N = 1/3.
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Figure 16. (a) MSE vs. SNR and (b) runtime vs. SNR for only the performance of each algorithm
from the perspective of signal recovery, regardless of the HSI data acquisition method.

4. Discussion

From Section 3.3, the simulation results demonstrate that the proposed method is
superior to LRMR and SS&LR methods in terms of reconstruction accuracy and compu-
tational burden under the same SNR and compression ratio. This is because LRMR only
focuses on the reconstruction of low-rank signals, while SS&LR focuses on the reconstruc-
tion of low-rank and sparse signals, but it only uses the spatial relationship or interband
relationship of HSI signals and does not combine the signal acquisition process.

Based on our present work, some issues that could be addressed in future research
can be summarized as follows. One open problem is that of reducing, as much as possible,
the computational complexity of the proposed method. In particular, unmanned aerial
vehicles (UAVs) are used to monitor fields, such as in farmland monitoring, environmental
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monitoring, etc. While our approach has significant reconstruction performance, there is
still a long way to go before we can apply it to future portable hardware. We can also take
advantage of the properties of HSI data with higher-dimensional structures to design an
effective Bayesian learning-based reconstruction method; namely, tensor models could be
considered to compress and reconstruct HSI data. Furthermore, we may also consider the
design of a sensor selection method for HSI acquisition that reduces the number of sensors
in different locations that are needed so as to extend the life and energy savings of sensors.

5. Conclusions

In this work, based on the fast method proposed in our previous work, two methods
for 2D compression and reconstruction of 3D HSI data are given. Then, starting from
the HSI acquisition method, we analyzed the push-brooming acquisition of data slices in
the hyperspectral image acquisition process, and by assuming that the HSI data met the
L&S model, a joint CS compression and reconstruction method for spatial and spectral
correlation was studied and an L&S structure was proposed. The proposed method
combines data reconstruction with HSI data acquisition. The simulation results show that
the proposed method has better performance than the other two existing methods and the
two proposed 2D reconstruction methods.
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