
����������
�������

Citation: Pustišek, M.; Chen, M.; Kos,

A.; Kos, A. Decentralized Machine

Autonomy for Manufacturing

Servitization. Sensors 2022, 22, 338.

https://doi.org/10.3390/s22010338

Academic Editors: Thomas

K. Dasaklis, Fran Casino and

Rachaniotis Nikolaos

Received: 3 November 2021

Accepted: 14 December 2021

Published: 3 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Decentralized Machine Autonomy for
Manufacturing Servitization
Matevž Pustišek 1,* , Min Chen 2, Andrej Kos 1 and Anton Kos 1

1 Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia;
andrej.kos@fe.uni-lj.si (A.K.); anton.kos@fe.uni-lj.si (A.K.)

2 School of Computer Science and Technology, Huazhong University of Science and Technology,
Wuhan 430074, China; minchen2012@hust.edu.cn

* Correspondence: matevz.pustisek@fe.uni-lj.si

Abstract: Blockchain ecosystems are rapidly maturing and meeting the needs of business environ-
ments (e.g., industry, manufacturing, and robotics). The decentralized approaches in industries
enable novel business concepts, such as machine autonomy and servitization of manufacturing
environments. Introducing the distributed ledger technology principles into the machine sharing and
servitization economy faces several challenges, and the integration opens new interesting research
questions. Our research focuses on data and event models and secure upgradeable smart contract
platforms for machine servitization. Our research indicates that with the proposed approaches, we
can efficiently separate on- and off-chain data and assure scalability of the DApp without compro-
mising the trust. We demonstrate that the secure upgradeable smart contract platform, which was
adapted for machine servitization, supports the business workflow and, at the same time, assures
common identification and authorization of all the participants in the system, including people,
devices, and legal entities. We present a hybrid decentralized application (DApp) for the servitization
of 3D printing. The solution can be used for or easily adapted to other manufacturing domains. It
comprises a modular, upgradeable smart contract platform and off-chain machine, customer and
web management, and monitoring interfaces. We pay special attention to the data and event models
during the design, which are fundamental for the hybrid data storage and DApp architecture and
the responsiveness of off-chain interfaces. The smart contract platform uses a proxy contract to
control the access of smart contracts and role-based access control in function calls for blockchain
users. We deploy and evaluate the DApp in a consortium blockchain network for performance and
privacy. All the actors in the solution, including the machines, are identified by their blockchain
accounts and are compeers. Our solution thus facilitates integration with the traditional information-
communication systems in terms of the hybrid architectures and security standards for smart contract
design comparable to those in traditional software engineering.

Keywords: machine autonomy; servitization; use case; decentralized application; smart contract

1. Introduction

Information and communication technologies (ICT) have a paramount role in the digi-
talization of manufacturing and logistics. Digitalization builds on automation, robotics, and
the Internet of Things (IoT) for industrial environments, the extensive use of cloud services,
advanced data analytics, and close integration with the existing enterprise resource plan-
ning (ERP) systems. Digitalization is mostly based on proven centralized production-grade
solutions for maintaining high-quality standards. They enable highly connected machines
and smart cloud-based management for remote monitoring and control or preventive main-
tenance. However, the expectations reach far beyond this. From the business perspective,
manufacturing and supply chains are relatively static, driven by long-term agreements, and
rely on a high level of trust between participants [1]. Machine-sharing economy principles

Sensors 2022, 22, 338. https://doi.org/10.3390/s22010338 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22010338
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-1042-6203
https://orcid.org/0000-0001-6234-8561
https://doi.org/10.3390/s22010338
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22010338?type=check_update&version=2

Sensors 2022, 22, 338 2 of 22

and servitization impose a mix of new business and technical requirements for future
digitalization. The relationships between participants need to be more dynamic, including
short-term and ad hoc relationships, and the manufacturing and supply chains need to
be coupled even closer. Nevertheless, the mutual trust between the participants cannot
always be taken for granted.

A machine-sharing economy enables optimal utilization of machine capacities. These
can be offered in a digitized marketplace, and the manufacturers pay for the machines
based on their actual use (pay per use). Servitization promises even more complex business
arrangements, such as the manufacturing of personalized products, social manufacturing,
virtualized factories, and economically autonomous machines. These concepts are moti-
vated by successful examples of sharing economies in other domains (e.g., tourism and
transportation). They are also encouraged by clear benefits for the providers and service
consumers and the lessons learned in the ICT domain (e.g., from mobile virtual network
operators (MVNO) or different virtualized and cloud service providers).

Distributed ledger technology (DLT) is an important enabler for the machine-sharing
economy and servitization. It facilitates a trusted transaction recording and a business logic
execution environment. It equally supports business, human, and machine participants
and assures efficient identification, authentication, and autonomy. Intermediaries or trusted
third-party providers are no longer required, as the trust is assured by decentralization and
incorporated security mechanisms in DLT. Decentralized applications (DApp), which are
based on DLT, can integrate the DLT features with the cloud or other non-DLT services and
thus assure interoperability with the existing industrial systems.

However, introducing the DLT principles into the machine-sharing and servitization
economy faces several challenges, and the integration opens new and interesting research
questions. These include, for example, DLT network performance, interoperability, stan-
dardization, scalability, hybrid DApp architectures, and DApp security. In our research, we
focus on two of these aspects. We propose a data and event model for an adaptable and scal-
able DApp and present a secure, upgradable smart contract platform adapted for machine
servitization. Both contributions are essential steps for the DApp architectures to progress
from the current demonstration phases to the future use in real industrial environments.
We designed, developed, and evaluated a decentralized solution for sharing 3D printing
resources in our research. In this way, we created an emulation environment to verify the
feasibility of the proposed data and event models and the secure smart contract platform,
as 3D printers become autonomous entities and are identified by their unique blockchain
accounts. They can offer, negotiate, or order printing services from other printers, and 3D
printing is just an example use case that can be extended to other manufacturing cases and
servitization. The smart contracts are designed to be modular, upgradeable, and updatable.
These features assure secure maintenance of the smart contract platform and seamless
service operation. We establish a consortium proof-of-authority blockchain network to
meet our solution’s security and performance needs. A blockchain-aware, web-based user
interface facilitates management and monitoring of the system.

The key contributions of our research presented in this paper are the following:

1. We demonstrate a blockchain-based system where manufacturing machines act as
completely autonomous entities which can share or order manufacturing resources
from others. Machines do have owners, but they do not (have to) intervene in any
machine service-provisioning communications;

2. We define the data and event models for a hybrid on-chain and off-chain decentralized
application. They enable efficient splitting of application logic and data storage
between the on-chain and off-chain application parts for an effective and scalable
solution and integration with legacy systems;

3. A secure modular smart contract platform was designed and developed to support
the desired business logic and demonstrated in an autonomous 3D printing service. In
designing the data and event models and the smart contract platform, we anticipated
the requirements of business-grade decentralized applications, their productization,

Sensors 2022, 22, 338 3 of 22

and seamless extension to other use cases for machine sharing and servitization in
manufacturing and supply chains.

The remainder of this paper is organized as follows. Section 2 highlights some recent
endeavors on machine autonomy and servitization with blockchains in manufacturing.
Section 3 gives the directions toward decentralized applications dealing with the IoT. In
Section 4, we declare the use case and involved actors. Section 5 presents the design and
development, and Section 6 evaluates a decentralized servitization solution sharing 3D
resources among economically autonomous machines. In the Conclusion, we summarize
the key findings and outline future research directions.

2. Background

Decentralized applications combine the distributed ledger technology (DLT) aspects
with web, mobile, or other technologies. This combination is needed to integrate trustwor-
thy decentralized backend application parts, running in DLT networks and with a non-DLT
cloud-based backend, either for the mobile and web-based user or machine interfaces.
Blockchains (BC) are the most common form of DLT.

DLT-based IoT applications share many aspects with decentralized applications in
other application domains. However, some additional requirements and limitations apply
due to the nature of the IoT systems. These are, for example, DL network performance,
smart contracts, and end-device security, or the participation of constrained IoT devices in
a DApp. The design of DApps for the IoT requires careful consideration of the application
architecture, specifically defining DL’s meaningful role in the DApp. Initially, DLT and
blockchains’ distributed nature was seen as a potential cure for many of the challenges ap-
pearing in cloud-centered IoT solutions, including scalability, availability, limited network
performance, and cost [2]. However, many of these expectations have been proven to be
false, and these challenges are being addressed efficiently without DLT (e.g., virtualization
in cloud and networks or edge or fog architectures improving the cloud). We would rather
see the key potentials of blockchains in the IoT to provide new features derived from the
trusted, decentralized nature of the DLT. These are, for example, the improved trust with
no central authorities, full autonomy in device operation and business, seamless M2M
transactions and trusted operation through the smart contracts, trustworthy DApps, known
data provenance, and fairness through financial incentives [3].

Blockchain Technologies in Industry and Manufacturing

In [4], the authors conducted a study with 50 experts to examine blockchain technol-
ogy’s overall impact and role in the machine economy. This study defined and evaluated
several projections about the potential role of blockchain technologies in machine autonomy.
These projections clearly pointed out the anticipation of expert communities for machine
economic autonomy, including independent machine identification, decision making, and
value exchange. In terms of technology, key issues are found in blockchain scalability
and integration with other enabling technologies, such as the industrial IoT, cloud, and
advanced data analytic and AI techniques. Apart from that, their findings point out the
relevance of standardization, legislation, and regulatory frameworks for machine economy.
These endeavors enable further moves from product-based to service-driven manufactur-
ing scenarios, where BC is one of the key technology drivers for servitization [5]. It enables
not only tamper-proof data recording but also a fast and secure decision-making process in
critical areas such as ordering, billing, and warranty management and the automation of
value networks [6]. Various incumbent organizations and start-ups examined blockchains
as the basis of the machine economy. So far, none of the solutions are in a productive
status [4]. In [7], the authors evaluated the role of blockchain technology in addressing the
critical bottlenecks in business process management. They outlined a blockchain-based
framework to select and compose services in open business environments.

One of the first non-financial domains where research, experimentation, and prac-
tical deployments with blockchain technology started was logistics [8]. Decentralized

Sensors 2022, 22, 338 4 of 22

applications here reduce time delays, management costs, and human errors. Commonly,
supply chains consist of several competing actors. Blockchains provide a framework for
coordination, collaboration, and regulation conformance with no central trusted entities.
Although these solutions track physical objects (e.g., shipments) and, in some cases, their
physical parameters, they focus on object tracking and not on their autonomy. These
solutions support efficient and trustworthy planning, scheduling, monitoring, and vali-
dation of logistics activities. In [9], the authors pointed out that some of the key benefits
of integrating the IoT and blockchains include freight tracking, temperature control, car-
rier authentication, fast delivery through the continuous monitoring and readjustment of
routes, delivery receipts, and payment and vehicle authentication. A survey [10] of the
role of blockchain technology in achieving sustainability in manufacturing and product
lifecycle management gave an overview of the metrics for adopting blockchains in these
domains. They position blockchain solutions as a digital twin for securing manufacturing
and lifecycle management data.

Another active field of research prototyping is the Energy Internet. Possible uses
of decentralized principles are demonstrated in plug-in electric vehicle charging and
peer-to-peer energy trading, combined with distributed energy resource management
and green energy. Energy supply and origin certificates are commonly tokenized with
distributed ledger technologies to facilitate tradable tokens for novel and flexible trading
mechanisms [3].

Use cases related to industry and manufacturing are found in robotics, machine shar-
ing, and manufacturing servitization. Swarm robotics [11] requires efficient coordination to
execute mission activities. Blockchains can facilitate this, along with a transparent record-
ing of robots’ actions and improved security. A study of secure coordination mechanisms
to identify Byzantine (malicious) members in robot swarms demonstrated [12] the fea-
sibility of the decentralized approach. Performance comparisons of the traditional and
blockchain-based approaches indicated a clear advantage of the latter.

Sharing idle or excessive machine capacities [1] optimizes the utilization of the infras-
tructure, reduces the costs of ownership, and increases the flexibility of manufacturing
to adapt to the changed requirements. Two aspects have to be addressed to achieve this.
First, transparent process traceability is needed for service configuration, ordering, and
keeping track of actual machines performing tasks, applied tools, and process parameters
(raw process values and aggregated key performance indicators (KPIs)). Second, a service
marketplace must be established, possibly automated, and well-integrated with existing
enterprise resource planning and manufacturing information systems. In [1], the authors
presented a prototype of a decentralized machine-sharing economy (MSE) approach. A
skill and capability model describes the available machine capacities following the DIN
8580:2003–09 standard, which defines the manufacturing process classes of a technical
system performing manufacturing process [13]. The marketplace is comprised of several
services. The prototype implementation relies on Ethereum-related technology (private
network with Parity nodes and Solidity smart contracts). It heavily relies on cloud com-
ponents, but no clear rationale is given for how the application is split between on-chain
and off-chain parts. The authors concluded it was difficult to find suitable and proven
blockchain architectures, including design patterns for hybrid DApps and a secure design
of smart contracts to facilitate industry-grade solutions. A scalable framework for shared
manufacturing proposed in [14] defined a blockchain-based procedure for service execution
and considered sharing economy design principles. The authors analyzed the feasibility of
the proposed approach and evaluated it in a cross-chain solution.

A blockchain solution for the ice cream supply chain is presented in [15]. This work
addresses a real-world use case of machine servitization and trustful competition between
refill suppliers. Because of the decentralized approach, the solution can be adapted to
small businesses, too. They would otherwise not be competitive customers for big machine
manufacturers and refill suppliers. The lack of trust among the participants is reflected in
the privacy requirements. These were addressed by using different channels (i.e., similar to

Sensors 2022, 22, 338 5 of 22

a separate subchain) for each triplet of machine client, machine manufacturer, and refill
supplier. The solution is implemented on the Hyperledger Fabric blockchain platform
and enables the immutable and private identification of devices and objects and traces all
refills in a machine. The research also proved that their architecture could be implemented
in resource-constrained IoT devices. Raspberry Pi nodes represented the machines in
this experiment.

The role of blockchain technologies is also explored in service-level agreement (SLA)
management. This research focuses on SLAs in cloud service provisioning, which is an
integral part of digitalization in industry and manufacturing. Traditional cloud service
management approaches face problems such as poor management and auditing of SLAs,
dependence on (untrusted) third-party monitoring, and the dominant position of the
service provider compared with the service customer [16]. Blockchain-based approaches
can be more efficient than the current SLA management because of increased transparency,
automated SLA enforcement and conflict resolution, and decentralized audited decision
making [17]. Such an SLA can also more effectively act as a legal binding.

The research endeavors on machine autonomy and servitization with blockchains in
manufacturing in this section show that this is a relevant research domain. They demon-
strate the role of decentralization in different use cases but rarely focus on and detail the
architectural approaches and smart contract designs at a level that is expected in business
environments. Smart contract solutions are mostly very simple single-contract solutions
that are not scalable or updatable. Data models are frequently not given or use on-chain
and off-chain resources inefficiently. Mixed participant identification approaches are used,
including combinations of blockchain identities, off-chain certificates, and cloud-based
authorization. This effectively prohibits the machine from acting as an economically inde-
pendent entity.

3. Decentralized Applications for the IoT

Machine autonomy and servitization require a mix of technological approaches, and
distributed ledger technology is one of these building parts. In [4], the authors listed
the novel requirements for the ICT infrastructure, raised by economically autonomous
machines engaging in business relationships. These requirements include availability
and scalability, reliable and trustful transaction management, identity management for
machines and other participants, interoperability, and overall ICT security. DLTs are a
valuable contributor to many of these requirements. However, autonomous machines in
manufacturing use cases are cyber-physical systems. This means that in a decentralized
application built on DLT, we do not only deal with blockchain networks, protocols, and
transactions.

Distributed ledger technology-based IoT applications can be seen as a special case of
DApps. Specific aspects include DL network performance, smart contract and end-device
security (e.g., device access to its BC key stores and accounts), and implementation of the
off-chain applications in constrained IoT devices. Additional aspects also reflect the careful
selection of the DLT role in the desired decentralized machine autonomy applications. We
also have to define the aspects [18] related to the physical manifestation of the designed
system, such as securely attaching constrained physical devices to the blockchain network,
binding other physical objects (e.g., assembly parts) to the chain, and trusting the data
provided from the physical world (with, for example, blockchain oracles). IoT solutions
frequently impose industry-grade requirements on the underlying DL networks and their
development and support ecosystems.

Running decentralized applications requires a triplet of building blocks: a DLT net-
work, on-chain application logic in smart contracts, and off-chain application parts for the
user, machine, and cloud interfaces. Various blockchain technologies and platforms exist,
and they can be further implemented in different blockchain networks. A BC platform
(e.g., Ethereum) can be implemented in public main (the Ethereum Mainnet) or public
test networks (e.g., Ropsten or Rinkeby). Using the same Ethereum node software, we

Sensors 2022, 22, 338 6 of 22

can set up private or consortium blockchain networks. They might share the same or
similar blockchain platforms as the public networks but differ in terms of network gover-
nance, access, settings, and performance. Smart contracts are sets of programming code
executed in a virtual machine (e.g., Ethereum Virtual Machine (EVM)), which is part of
the blockchain network. Different programming languages and smart contract approaches
exist to assure the finality of smart contract execution (i.e., a common agreement about the
execution outcomes). In Ethereum, smart contracts are mostly developed in the Solidity
programming language. A smart contract is identified by its unique blockchain address,
has a balance, and accepts, processes, and sends transactions. Because they are deployed to
and executed in the blockchain network, we refer to them as the on-chain logic. Traditional
user, machine, and cloud interfaces are the off-chain logic, which interacts with the smart
contracts. Off-chain applications independently perform some blockchain tasks (e.g., create
and sign transactions or react upon events emitted by the smart contracts). Using the
blockchain nodes’ APIs, they utilize other blockchain services (e.g., block creation and
consensus and smart contract execution). End users interact with the DApp through web
or mobile user interface applications. Embedded applications in IoT devices or server-side
web applications similarly access the blockchain services. Developers can abstract much
of the complexity of interacting with blockchain node APIs with off-chain client libraries,
which are available for different programming languages (e.g., Web3.js or Web3.py for
Ethereum). Client libraries facilitate the integration of DL networks and services with
IoT applications. Another useful feature is decentralized name services. For example, the
Ethereum Name Service (ENS) [19] resolves user-friendly names into Ethereum addresses.
Using the ENS, we can point to a changed smart contract instead of the previous one. The
applications referring to an ENS name do not have to be changed.

DLTs rely on advanced cryptographic mechanisms and provide several security fea-
tures in decentralized applications. However, DLT is not a universal security technology
and does not equally contribute to all security aspects [3]. It even opens some additional se-
curity risks not exhibited in centralized application architectures. The key security objective
of DLT and blockchains is integrity derived from the shared and immutably recorded data.
The transparent sharing of the ledger data is the fundament for trust in DLT. Blockchain
data are therefore not confidential if specific measures are not taken to ensure as much.
The concept of the common ledger also strongly affects data privacy. Users’ personal
information is not needed for, as an example, the access and use of blockchain services in
public networks. However, the blockchain data can determine the entire transaction history
and the account balance. Mechanisms to increase privacy include private and consortium
networks, permissioned network access, carefully carving the data stored in the ledger,
or applying privacy-enabled zero-knowledge blockchain platforms. Privacy issues may
appear even if the transaction data are encrypted. In [15], the authors pointed out the
problem of competitive participants having potential business insights into competitors
solely from the number of transactions exchanged among different accounts.

Smart contract security imposes specific security challenges to be addressed during
the entire DApp life cycle [20]. Smart contract security is, in our opinion, one of the key
challenges in meeting the production-grade application requirements for business. On the
one hand, most DLT platforms, tools, and smart contract programming languages are still
maturing, evolving, and changing their features. Therefore, design flaws might exist in
smart contract languages and shared libraries, inappropriate SC architecture designs may
be taken, or errors and bugs in the SC programming code can be made. The Smart Contract
Weakness Classification and Test Cases Registry (SWC) [21] is a comprehensive list of
key security flaws in the Solidity smart contract code. However, the immutable nature of
the already-deployed smart contract code prevents the efficient updating and upgrading
of the SC code if the SC architecture does not carefully consider these options. Some of
the vulnerabilities easily mitigated in traditional software systems can therefore present
severe risks in decentralized applications. Passive security measures involve smart contract
architectures, software engineering techniques specific to the smart contract environment,

Sensors 2022, 22, 338 7 of 22

and code reviews and verification. Only recently, smart contract design patterns, software
engineering techniques [22], verification tools (e.g., MythX [23]), and security libraries
(e.g., OpenZeppelin [24]) started appearing for the leading SC platforms and SC languages.
Active smart contract security measures occur during smart contract execution and refer to
smart contract and method access control, active monitoring of the incoming smart contract
transactions, and authorizing their actions [3].

Some of the initial expectations [2] about blockchain technology for the IoT included
seeking an alternative for centralized cloud-based IoT data storage and management.
Decentralized approaches were expected to provide performance and scalability in the
cloud backend. A blockchain system can be described as a form of a distributed and
decentralized database. However, the high distribution of nodes in the network is not meant
to assure performance or bulk data storage, but rather the distributed and decentralized
consensus, machine autonomy, and monetary aspects in machine communications [25]. The
transactions in BC systems usually have a predefined structure and sometimes an option to
include arbitrary data (e.g., a JSON string in an Ethereum transaction). These data were
primarily meant to carry the parameter values when calling the smart contract methods.
The amount of these data is practically limited by the transaction processing costs and
block size, among other factors. Therefore, most blockchain-based IoT data management
approaches, such as the IPFS, FairAccess, ENIGMA, or BigchainDB, take a hybrid approach,
where bulk data are stored off-chain and the blockchain is utilized for management. The
hybrid approach offloads the bulk data from the chain, preventing excessive growth of the
chain data, and assures consistency, trust, and decentralized data access control. Hybrid
approaches are not limited to the aforementioned decentralized storage approaches but can
also include cloud-based storage. The actual architecture of a hybrid decentralized cloud
data depository in a DApp is a fundamental step when we define the DApp architecture.

Blockchain accounts and corresponding addresses can be successfully utilized to
identify the participating devices in an IoT DApp. Unique addresses are a prerequisite for
autonomous participation in blockchain transaction exchanges. If a device in the solution
possesses a blockchain address, this address can also identify it. In the enrollment process,
the logical identification of a device can be matched to the physical address (i.e., the IMEI
number or MAC) or some other non-blockchain identifier (e.g., QR code). Blockchain-based
identifications can be used for authorization and access control in smart contracts [20] or off-
chain applications [26]. Blockchain-based solutions are even considered (https://login.xyz,
accessed on 14 December 2021) in sign-in mechanisms for easy implementation in web-
based services, either independently or in an OAuth-compatible manner.

Decentralized applications based on DLT enable monetization in the IoT [20] as a part
of the decentralized business logic implemented in smart contracts. The most recognized
use of blockchain technology is cryptocurrencies, where the exchange of monetary value
between accounts is the primary intention. In IoT systems, some form of financial compen-
sation is sought for the investments and operation of IoT and blockchain platforms and
for monetizing data and related contextual information [18]. Similar technology enables
payments controlled by smart contracts in the servitization of end services. Economically
autonomous devices thus become service providers and consumers and can negotiate, pay,
and get paid for the provided services. The addition of monetization is a strong enabler for
innovative business cases. Smart contract logic does not have to include monetarization,
but it can if needed.

Business logic and payment methods rely on technologically separate platforms and
solutions in traditional systems. Public cryptocurrencies require public blockchain net-
works. These networks might not be equally appropriate for IoT DApps due to public
network performance, privacy, and scalability constraints. However, tokenization is an
alternative mechanism for value exchange in private or consortium networks. Participants
are usually not anonymous in business applications and are granted permissioned access
to the network and applications. Aside from the logic implemented in smart contracts,
they can also be bound with some legal agreement that defines the value and lifecycle of

https://login.xyz

Sensors 2022, 22, 338 8 of 22

the tokens in the system. Finally, the emerging cross-chain solutions (e.g., COSMOS [27]
and Polkadot [28]) provide the means to combine various blockchain networks in the
same decentralized application. With cross-chain solutions, a consortium network for
performant and private IoT management could be connected to a public network to enable
the monetary aspect of the application.

While the Internet of Things presents a well-established, proven, and industry-grade
technological concept, distributed ledger technologies—with blockchains as the leading
example—are still maturing. Therefore, the productization of DApps is a specific chal-
lenge [29]. Adopters are faced with the rapid development of new decentralized concepts
and platforms. At the same time, they need to select and base their research on a relevant
blockchain ecosystem which assures them long-term and sustainable solutions and part-
nerships. Other aspects of the ecosystem are different from the technological platform
characteristics (performance, governance, and scalability). These aspects include the avail-
able libraries and tools facilitating the development and testing, monitoring networks,
validating the solutions, quality documentation, and efficient formal and non-formal sup-
port through the community gathered in the ecosystem. An indicator for the decisions
about the DLT platform is also a clear roadmap, an open, collaborative development culture
and clearly defined mechanisms for cooperation with academia and enterprises, and the
scope of prominent use cases.

Blockchain-as-a-Service (BaaS) providers facilitate efficient blockchain network node
deployment, system monitoring, smart contract analysis or testing, and access control.
With BaaS [30], DApp developers can focus on application development and use instead of
system provisioning. Most of the key players in cloud service provisioning (e.g., Amazon,
Microsoft, Alibaba, and IBM) provide some form of BaaS. Two DLT technologies are
dominant in BaaS: Hyperledger Fabric and Quorum (Ethereum-based). This prevalence
is not surprising, since both are predominantly meant for private or consortium-based
blockchain networks utilized in business BC applications.

4. Use Case Definition for 3D Printing Servitization

We designed and developed a decentralized application composed of a smart contract
platform, off-chain user and machine interfaces, and an underlying consortium proof-of-
authority blockchain network. In our approach, we applied blockchain technology where
it shines. We did not impose the expectations it struggles to meet, especially when scaling
out the solution and advancing it toward system prototype demonstrations in operational
environments. We first defined the actors and corresponding use cases. The research in [1],
for example, defines three application actors in their machine-sharing economy example on
process traceability in distributed manufacturing: client, owner, and operator. We added
two additional actors. First is the solution provider, who is crucial for the productization of
the solution and the security expected in business environments. However, this does not
mean adding another entity in the use case but shaping the design of the smart contract
platform. Second, we introduced the machine as an autonomous actor. A machine does
have a proprietor who registers a machine in the system and claims its earnings. Apart
from that, machines autonomously participate in all business arrangements carried out
among the actors in the decentralized application. All the actors in the system are identified
and authorized to execute smart contract methods by their blockchain accounts. Unlike
some other related approaches [1] which rely on cloud services for basic system features
(e.g., user authorization), the entire trust in the system and the business logic are encoded
in the on-chain smart contract platform.

The expenses of blockchain network infrastructure provisioning are compensated by
each consortium member running nodes. The consortium network imposes no transaction
costs during the operation. Tokens with a fixed value are used for cost clearing in machine
service provision and consumption. Currently, the tokens act as vouchers, where the value
is fixed in FIAT and determined with a business agreement in the consortium. A cross-chain
solution would assure immediate compensations with public cryptocurrencies, too.

Sensors 2022, 22, 338 9 of 22

The solution utilizes a hybrid data storage approach that integrates on-chain and
cloud storage for trust and efficiency. The off-chain cloud storage is an add-on integrated
into the on-chain logic. Apart from flexibility and upgradeability, which are not self-
evident in decentralized applications, this builds the foundation for even the most futuristic
sharing economy scenarios in manufacturing with economically autonomous machines.
We concretized the machine sharing principle in a 3D printing use case. We defined a data
model that was secure, efficient, and general enough to accommodate the selected use case
during the design and development. At the same time, it could directly support or be easily
adapted to other machine sharing use cases, such as collaborative robotics.

In the continuation, we introduce the service workflow and the actors in more detail.
We present the smart contract platform as well as the data and event models. Finally, we
present the user and machine interfaces of the decentralized application.

4.1. Actors

Four different actor types are foreseen in our solution: platform providers, machine
providers, machines, and customers, as can be seen in Figure 1. These can be people,
devices, or legal entities in the real world. To participate in the decentralized solution,
they need a blockchain account and are identified by a blockchain account. The business
objectives of a particular actor type are reflected in the role-based access control in the
smart contract design. The mapping between the actor type and their effective roles are
given in Table 1 and explained in more detail in Section 5.1.

Sensors 2022, 22, 338 9 of 23

basic system features (e.g., user authorization), the entire trust in the system and the busi-
ness logic are encoded in the on-chain smart contract platform.

The expenses of blockchain network infrastructure provisioning are compensated by
each consortium member running nodes. The consortium network imposes no transaction
costs during the operation. Tokens with a fixed value are used for cost clearing in machine
service provision and consumption. Currently, the tokens act as vouchers, where the
value is fixed in FIAT and determined with a business agreement in the consortium. A
cross-chain solution would assure immediate compensations with public cryptocurren-
cies, too.

The solution utilizes a hybrid data storage approach that integrates on-chain and
cloud storage for trust and efficiency. The off-chain cloud storage is an add-on integrated
into the on-chain logic. Apart from flexibility and upgradeability, which are not self-evi-
dent in decentralized applications, this builds the foundation for even the most futuristic
sharing economy scenarios in manufacturing with economically autonomous machines.
We concretized the machine sharing principle in a 3D printing use case. We defined a data
model that was secure, efficient, and general enough to accommodate the selected use
case during the design and development. At the same time, it could directly support or be
easily adapted to other machine sharing use cases, such as collaborative robotics.

In the continuation, we introduce the service workflow and the actors in more detail.
We present the smart contract platform as well as the data and event models. Finally, we
present the user and machine interfaces of the decentralized application.

4.1. Actors
Four different actor types are foreseen in our solution: platform providers, machine

providers, machines, and customers, as can be seen in Figure 1. These can be people, de-
vices, or legal entities in the real world. To participate in the decentralized solution, they
need a blockchain account and are identified by a blockchain account. The business objec-
tives of a particular actor type are reflected in the role-based access control in the smart
contract design. The mapping between the actor type and their effective roles are given in
Table 1 and explained in more detail in Section 5.1.

Table 1. System participants and their foreseen smart contract roles.

Participant or Role Owner Admin Registered User Unregistered User
Platform provider Yes Yes
Machine provider Yes

Machine Yes
Customer Yes

Figure 1. Use case diagram of actors and activities.

A platform provider is the initiator of the solution that deploys the initial smart con-
tracts and applies the initial settings of the system. The initial settings comprise the map-
pings between the deployed (multi) contracts and assigning roles to blockchain accounts.
The provider is also responsible for the management of the platform during operation.

Figure 1. Use case diagram of actors and activities.

Table 1. System participants and their foreseen smart contract roles.

Participant or Role Owner Admin Registered User Unregistered User

Platform provider Yes Yes
Machine provider Yes

Machine Yes
Customer Yes

A platform provider is the initiator of the solution that deploys the initial smart con-
tracts and applies the initial settings of the system. The initial settings comprise the map-
pings between the deployed (multi) contracts and assigning roles to blockchain accounts.
The provider is also responsible for the management of the platform during operation. The
management includes smart contract updates and registration of the machine provider
addresses. Apart from that, it is not involved in any other business logic. There is only
one participant of this type in the system, and it will usually be the system integrator of
decentralized solutions.

Machine providers are owners of manufacturing machines, which they would like to
share through the decentralized platform. Usually, they would represent a legal or business
entity dedicated to a manufacturing business. Machine providers perform the basic man-
agement of the machines, including registration of new machines, configuration, updating
a machine’s status and information, and removing them from the system. There can be
many machine providers in the system. The more there are, the richer the servitization
offering enabled by the system.

Sensors 2022, 22, 338 10 of 22

Customers can place and monitor a service order but not accept or execute one. This
actor presents a service consumer or a company needing manufacturing services from
the system.

Machines can be any manufacturing devices, including collaborative, welding, addi-
tive or assembly robots, 3D printers, grinding, milling, mold injection, or CNC machines.
Our use case was elaborated in more detail for 3D printers. A machine can act as a service
provider or a service consumer. It includes all the functionality of a customer actor and
additional functionality for service provisioning. It can place a service order or accept and
execute one and is highly autonomous. A blockchain account identifies a machine, and
it can hold funds, negotiate for appropriate bidding, be compensated for the provided
services, or be penalized for faulty executions. In our case, the machines still have an
owner who can retrieve the machines’ funds or deregister a machine from the system. The
existence of a machine owner reflects the current and near future of machine autonomy,
where machines still are not independent legal entities. However, our solution could enable
economically autonomous machines if the legal frameworks allowed for it.

4.2. 3D Printing Servitization Workflow

When a customer or a service-requesting machine starts placing a new service order,
the system suggests an appropriate service-executing machine. The smart contract platform
manages a list of currently vacant machines of the required type.

The 3D printing service order processing is depicted in Figure 2. A customer places
an order with a transaction sent to the smart contract platform. The transaction, which
includes the address of the selected machine, specifies the order details and includes funds
for the service payment and the agreed deposit sum. For 3D printing servitization, the
order specification includes the expected deadline and the URL pointing to the 3D printing
specification in an STL file. Deposits in our system guarantee that the requesting and
providing parties are committed to the service arrangement.

Sensors 2022, 22, 338 11 of 23

Once the task is completed and the proof provided, the customer can retrieve, verify,
and confirm the proof. Then, the platform notifies the servicing machine about the confir-
mation and transfers the service funds and the deposit to the machine’s address. Similarly,
the security deposit is returned to the customer’s account.

Figure 2. Order processing sequence chart.

This use case is focused on 3D printing, which allows for certain simplifications. For
example, selecting an appropriate manufacturing machine is straightforward and does
not require an elaborated decision mechanism. In the current implementation, a round-
robin principle is used for machine selection. The selection procedure can be easily
adapted to a more sophisticated selection procedure that involves customer selections and
confirmations and considers criteria such as the reputation of the machine, detailed KPI
or raw process values, or an elaborated execution schedule. The advanced selection would
take place off-chain but would be based on data recorded in the chain. The use case and
the entire solution can be easily adapted to other related use cases, such as collaborative
robotics or manufacturing.

Order negotiations are also rather basic now in this use case. We have already exper-
imented with auction modules in the smart contract platform to introduce advanced ma-
chine-to-machine biddings and business negotiations about orders.

Initial platform deployment, set-up, and management workflows, including updates
and upgrades, are a part of regular DevOps procedures and system administration and
are not use case-specific. We explained these procedures in [20]. In Section 5.1, we explain
how they are related to the security aspects of the smart contract platform. In Section 5.2,
we explain the rationales behind the hybrid blockchain and cloud data storage. Details of
the customer and machine interface implementations are given in Section 5.3.

Figure 2. Order processing sequence chart.

Sensors 2022, 22, 338 11 of 22

The service-provisioning machine receives the order placement notification, verifies
the STL model file, toggles its status to busy, and confirms the order. Before the order
confirmation, the customer can cancel the order. If the machine rejects the order during this
negotiation (e.g., because the machine status no longer allows for the timely task execution),
the deposit is returned to the customer. In the order confirmation transaction, the machine
also includes the deposit as the guarantee. The platform is an escrow, which secures the
funds and deposits of the requesting and provisioning parties during order processing.
In Figure 2, we separate the machine control from the actual 3D printer for clarity. The
following action thus occurs internally in the machine. The control unit starts the 3D
printing procedure. When printing is completed, the printer notifies the control about it.
At the same time, the control system records a video of the printing process and stores it in
the cloud server. This record and the successful printer status are the proof of the task’s
completion. Upon completion, the machine sends a notification to the blockchain that the
task has been executed. The notification transaction also records the proof URL and file
hash to the blockchain.

Once the task is completed and the proof provided, the customer can retrieve, verify,
and confirm the proof. Then, the platform notifies the servicing machine about the confir-
mation and transfers the service funds and the deposit to the machine’s address. Similarly,
the security deposit is returned to the customer’s account.

This use case is focused on 3D printing, which allows for certain simplifications. For
example, selecting an appropriate manufacturing machine is straightforward and does not
require an elaborated decision mechanism. In the current implementation, a round-robin
principle is used for machine selection. The selection procedure can be easily adapted to a
more sophisticated selection procedure that involves customer selections and confirmations
and considers criteria such as the reputation of the machine, detailed KPI or raw process
values, or an elaborated execution schedule. The advanced selection would take place
off-chain but would be based on data recorded in the chain. The use case and the entire
solution can be easily adapted to other related use cases, such as collaborative robotics or
manufacturing.

Order negotiations are also rather basic now in this use case. We have already ex-
perimented with auction modules in the smart contract platform to introduce advanced
machine-to-machine biddings and business negotiations about orders.

Initial platform deployment, set-up, and management workflows, including updates
and upgrades, are a part of regular DevOps procedures and system administration and are
not use case-specific. We explained these procedures in [20]. In Section 5.1, we explain how
they are related to the security aspects of the smart contract platform. In Section 5.2, we
explain the rationales behind the hybrid blockchain and cloud data storage. Details of the
customer and machine interface implementations are given in Section 5.3.

5. Solution Design and Development

The proposed solution is a comprehensive decentralized application comprised of a
smart contract backend, off-chain machine and user interfaces, cloud-based storage, and an
underlying consortium-based blockchain network. Every part of the DApp was carefully
designed. We paid special attention to the data and event models.

We selected the Ethereum ecosystem for implementation and practical experimentation
based on its characteristics and our previous good experience with Ethereum technology.
Ethereum provides a proven technical background for DApps, systematic technology
development, extensive examples, libraries, integrated development environments, security
validation tools, and documentation. It has a large developer community and a clearly
outlined roadmap toward Ethereum 2.0. The Ethereum virtual machine and Ethereum
smart contracts are also used in several other distributed ledger ecosystems, so a relevant
part of our solution can be directly replicated there. Another benefit of Ethereum is its
application in public as well as consortium networks and the possibilities for cross-chain
integrations. Finally, we anticipate that Ethereum-based blockchain network provisioning

Sensors 2022, 22, 338 12 of 22

for business environments will soon be even more widely available than BaaS. Ethereum
BaaS will enable focusing on application development and provisioning instead of setting
the nodes and a reliable network.

5.1. Smart Contract Platform

Our previous research proposed a modular multi-smart contract platform which was
upgradable and updatable. The platform comprised service-agnostic, service-specific, and
auxiliary smart contracts [20]. This underlying smart contract platform facilitates several
security contributions essential for the productization of decentralized applications. In
each smart contract module, methods are provided to freeze and update a smart contract
if a security vulnerability is found or functional extensions are required. This facilitates
the efficient management of security updates and upgrades. Smart contract tunnels (SCTs)
ensure access control mechanisms at the level of message senders. SCTs interconnect
only the valid SCs in the platform and prevent malicious SCs from accessing the platform
methods. At the level of transaction origin, we provide additional per participant role-
based access control to the platform methods. Each participant can be granted one of
four permission roles to control the access to service-specific and platform management
smart contracts and methods. We adapted this multi-tenant platform for the decentralized
machine autonomy use case.

SmartContractIndex and SmartContractAdministration are key platform management
contracts, and they remained in their roles. The Core module only served as a relay smart
contract; it implemented no service-specific logic (compared with the ChargingStationCore
in [20]). It was the single access point for any method calls from the off-chain applications
to the smart contract platform. The Orders contract implemented the business logic. This
contract was service-specific and reflected the business workflow and order processing.
It also provided escrow for service providers and consumers during the order execution
and held the service payment until the order was completed. For the operation, it relied
on data in the MachineDirectory. MachineDirectory is a service-specific on-chain registry
of the machines utilized in the solution. Every machine is registered with its blockchain
address, type, state, and machine info (JSON structure with detailed machine description)
as well as the address of the machine owner. MachineDirectory entries can be created and
updated only by machine owners. The Orders contract may change only the machine’s
state to reflect the current workflow execution status. MachineDirectory has rather simple
functionality, but it was excluded from the Orders so that it did not have to be modified for
another servitization use case.

Figure 3 depicts the top-level architecture of the smart contract platform. The machine
provider, machine, and customer actors only access platform functions through the Core
module, which redirects the calls to corresponding service-specific contracts while ensuring
that the method access policy matches the actor’s role.

SmartContractIndex is a registry of all smart contracts in the platform. An index points
to the currently valid contract version and holds the addresses of the deprecated versions.
SmartContractIndex also holds current subscriptions in place between the contracts on the
platform. In this way, it defines the endpoints of the smart contract tunnels. Aside from its
registry function, SmartContractIndex notifies all the subscribed contracts about the index
changes. It thus assures that any update is seamlessly propagated through the platform.

SmartContractAdministration provides common role-based access control in the smart
contract platform. It registers all the participants and their possible access roles of own-
ers, admins, or registered users. This way provides all the other smart contracts with
corresponding access rules in inter-contract calls.

Sensors 2022, 22, 338 13 of 22

Sensors 2022, 22, 338 13 of 23

Core module, which redirects the calls to corresponding service-specific contracts while
ensuring that the method access policy matches the actor’s role.

Figure 3. Top-level smart contract layout and actors.

SmartContractIndex is a registry of all smart contracts in the platform. An index
points to the currently valid contract version and holds the addresses of the deprecated
versions. SmartContractIndex also holds current subscriptions in place between the con-
tracts on the platform. In this way, it defines the endpoints of the smart contract tunnels.
Aside from its registry function, SmartContractIndex notifies all the subscribed contracts
about the index changes. It thus assures that any update is seamlessly propagated through
the platform.

SmartContractAdministration provides common role-based access control in the
smart contract platform. It registers all the participants and their possible access roles of
owners, admins, or registered users. This way provides all the other smart contracts with
corresponding access rules in inter-contract calls.

The actor types need to be distinguished from their smart contract access roles. The
effective mapping is given in Table 1. While the participants are real-world entities, roles
are attached to their blockchain accounts:
• Owner is a role derived from Ethereum smart contract principles and refers to the

account the contract was deployed from. The owner of a smart contract cannot be
changed;

• Admins are responsible for day-to-day configuration, such as registering new users
in the smart contracts. One or more accounts can be assigned to the Admin role. We
recommend that a platform provider uses a separate blockchain account for security
reasons for the Owner and Admin roles. The Owner account is responsible for the
initial platform deployment, critical migrations such as smart contract updates and
upgrades, and appointing new Admin accounts to smart contracts;

• Registered users are machines and machine providers. This means that an account in
the decentralized system can only execute functions related to these two roles if reg-
istered with the corresponding role in the SmartContractAdministration;

• Any account in the system can invoke customer functions, as the customer actor is
an Unregistered user. However, the use is still limited by the business logic (e.g.,
machine state or sufficient funds for service compensation or an invalid machine
state). If, for example, the solution was extended to include the loyalty mechanism
for customers, the role of the customers would be changed from the Unregistered

Figure 3. Top-level smart contract layout and actors.

The actor types need to be distinguished from their smart contract access roles. The
effective mapping is given in Table 1. While the participants are real-world entities, roles
are attached to their blockchain accounts:

• Owner is a role derived from Ethereum smart contract principles and refers to the
account the contract was deployed from. The owner of a smart contract cannot be
changed;

• Admins are responsible for day-to-day configuration, such as registering new users
in the smart contracts. One or more accounts can be assigned to the Admin role. We
recommend that a platform provider uses a separate blockchain account for security
reasons for the Owner and Admin roles. The Owner account is responsible for the
initial platform deployment, critical migrations such as smart contract updates and
upgrades, and appointing new Admin accounts to smart contracts;

• Registered users are machines and machine providers. This means that an account
in the decentralized system can only execute functions related to these two roles if
registered with the corresponding role in the SmartContractAdministration;

• Any account in the system can invoke customer functions, as the customer actor is an
Unregistered user. However, the use is still limited by the business logic (e.g., machine
state or sufficient funds for service compensation or an invalid machine state). If,
for example, the solution was extended to include the loyalty mechanism for cus-
tomers, the role of the customers would be changed from the Unregistered user to the
Registered user to increase the security to the level expected by such functionality.

If needed, additional service-specific modules could be added to the platform. For
example, a Loyalty module could ensure an ERC20-based loyalty system in the form of
a non-fungible token or a stable coin. Similarly, a Parachain module would attach the
presented solution to a relay chain and link it to other blockchain systems. In this way, the
solution could combine the performance and privacy of a consortium blockchain with the
monetary and DeFi aspects of a public cryptocurrency network. In this case, the escrow
function would become more complex and most likely retrieved from the order-processing
module to a separate one, too. An Accumulator module would enable the registered users
to retrieve their funds from the Escrow smart contract.

Ethereum smart contract best practices recommend a relay smart contract [22] to
point to the latest version of a contract, enable upgrades and updates, and act as a single
point of interaction in a multi-contract platform. Our Core contract does this. There are
alternative approaches to assure similar functionality, but none fulfill all the needs of

Sensors 2022, 22, 338 14 of 22

our solution. ENS enables mapping between a permanent identifier and a changeable
smart contract address. However, it does not support any programmable logic, such as
push notifications to propagate information about address changes proactively. Another
approach to upgradeable modular contracts is the “diamond cut,” proposed as Ethereum
Improvement Proposal (EIP) 2535 [31]. This draft document proposes a proxy contract
that supports using multiple logic contracts and facets that supply one or more than
one smart contract function. Events are emitted upon changes in diamond functions.
Unfortunately, the diamond approach facilitates no security functions, such as SCT or
role-based access. The OpenZepplin Upgrades smart contract security library enables a
proxy upgrade pattern [32] that can be controlled by any type of governance. The problem
with this pattern is that it is meant primarily for a single contract solution. In our case, this
approach would require five separate proxies, with one for each module in the platform.
With the extension of the functionality and adding additional modules (e.g., Loyalty and
Escrow), management of the replicated proxies would become challenging.

5.2. Data and Event Model

A data model is important for efficient and secure hybrid on-chain and off-chain
storage. The event model serves as a notification system between the smart contracts and
the off-chain applications, and importantly, it increases the responsiveness and usability of
the user and machine interfaces.

5.2.1. Data Model

The data model defines the three levels of variables, parameters, and data sources
needed in decentralized applications. The data are stored on-chain and off-chain and
thus present a hybrid DApp architecture. The model design considers the expectations of
trustworthy data recording, flexibility to adapt the solution without unnecessarily affecting
its availability, and the limitations of blockchains when storing large amounts of data.
Therefore, we utilized the smart contract variables and arbitrary JSON data structures
stored in the chain and off-chain cloud data storage for large binary objects.

Solidity provides several elementary variable types. If a new variable has to be added
to an existing smart contract or the variable type changed, this would require a new smart
contract deployment alternative to the previous version. Although upgrading is possible
in our smart contract platform, we carefully selected the set of smart contract variables
and limited it to the essential ones. This limitation minimized the need for smart contract
modifications, even if some business logic modifications were applied (e.g., adding new
machine types or changing a description of a machine provider). Any extensive or non-
essential upgrades may jeopardize platform security and availability. In this way, we kept
the platform rather generic, but at the same time, we did not prevent functional extensions
and business adaptations. All smart contract values were read-only and could only be
modified through modifier functions, where RBAC was applied for security reasons.

Figure 4 gives an example of the input parameters with their corresponding value
types in a registerMachine function. The machineAddress parameter is a type address and
can only hold Ethereum blockchain account addresses. The machineType and machineState
parameters are type integers. There is no other variable to describe the variety of possible
machine types or states in the smart contract platform. Instead, we used enumerators to
interpret the actual meanings of the machineType and machineState variables. If a new
machine type were to be added to the system, we would just choose a new enumerator
for it.

To maintain the high flexibility of the solution while benefiting from the trusted ledger
records, we kept other values in the JSON strings. These values are not required for
the on-chain logic but are essential for the meaningful operation of the user and machine
interfaces. For example, detailed information about the machine is given in the machineInfo
parameter, which is a JSON string. Smart contracts do not impose any limitations on this
JSON structure. It can therefore be used to keep values that might be arbitrary and is easily

Sensors 2022, 22, 338 15 of 22

extended with additional values, such as an additional machine description, location, and
clarification of its properties, version, or model. These values are duly recorded in the
blockchain but not directly queried by smart contracts. Instead, JSON strings are parsed,
and the values are used in off-chain application parts.

Sensors 2022, 22, 338 15 of 23

and business adaptations. All smart contract values were read-only and could only be
modified through modifier functions, where RBAC was applied for security reasons.

Figure 4 gives an example of the input parameters with their corresponding value
types in a registerMachine function. The machineAddress parameter is a type address and
can only hold Ethereum blockchain account addresses. The machineType and machineS-
tate parameters are type integers. There is no other variable to describe the variety of pos-
sible machine types or states in the smart contract platform. Instead, we used enumerators
to interpret the actual meanings of the machineType and machineState variables. If a new
machine type were to be added to the system, we would just choose a new enumerator
for it.

Figure 4. An example of a smart contract function and corresponding parameters.

To maintain the high flexibility of the solution while benefiting from the trusted
ledger records, we kept other values in the JSON strings. These values are not required
for the on-chain logic but are essential for the meaningful operation of the user and ma-
chine interfaces. For example, detailed information about the machine is given in the ma-
chineInfo parameter, which is a JSON string. Smart contracts do not impose any limita-
tions on this JSON structure. It can therefore be used to keep values that might be arbitrary
and is easily extended with additional values, such as an additional machine description,
location, and clarification of its properties, version, or model. These values are duly rec-
orded in the blockchain but not directly queried by smart contracts. Instead, JSON strings
are parsed, and the values are used in off-chain application parts.

Apart from the smart contract values and JSON data kept in the chain, the solution
requires digital content that is too extensive or dynamic for efficient on-chain storage. For
example, this is a 3D printing specification in an STL file that describes the three-dimen-
sional surface of the object to be printed. The file can be in ASCII or binary representations.
Similarly, we record a video of the entire printing process. As described in Section 4.2, this
is used as proof that the order was completed. The video is automatically stored on a cloud
server. To combine the cloud resources that are part of the business process (as inputs or
outputs) in a hybrid solution with the blockchain data model, we permanently store JSON
structures with hash values, URLs, and metadata in the chain. Although not available in
the chain, the authenticity of the off-chain resources can always be transparently verified
with the accompanying chain data.

5.2.2. Event Model
Solidity events give an abstraction on top of the EVM’s logging functionality. Appli-

cations can subscribe to these events through the RPC interface of an Ethereum client.
Events are inheritable members of contracts. When we call them, they cause the argu-
ments to be stored in the transaction’s log. These logs are associated with the contract’s
address and are incorporated into the blockchain [33]. In our solution, the events reflect
all the key changes in the workflow (e.g., an updated state of an order or machine, regis-
tration of a new machine, or changed information about a machine owner). They invoke
callback functions in the user and machine interfaces while listening for these events.

Figure 4. An example of a smart contract function and corresponding parameters.

Apart from the smart contract values and JSON data kept in the chain, the solution
requires digital content that is too extensive or dynamic for efficient on-chain storage. For ex-
ample, this is a 3D printing specification in an STL file that describes the three-dimensional
surface of the object to be printed. The file can be in ASCII or binary representations.
Similarly, we record a video of the entire printing process. As described in Section 4.2, this
is used as proof that the order was completed. The video is automatically stored on a cloud
server. To combine the cloud resources that are part of the business process (as inputs or
outputs) in a hybrid solution with the blockchain data model, we permanently store JSON
structures with hash values, URLs, and metadata in the chain. Although not available in
the chain, the authenticity of the off-chain resources can always be transparently verified
with the accompanying chain data.

5.2.2. Event Model

Solidity events give an abstraction on top of the EVM’s logging functionality. Applica-
tions can subscribe to these events through the RPC interface of an Ethereum client. Events
are inheritable members of contracts. When we call them, they cause the arguments to
be stored in the transaction’s log. These logs are associated with the contract’s address
and are incorporated into the blockchain [33]. In our solution, the events reflect all the
key changes in the workflow (e.g., an updated state of an order or machine, registration of
a new machine, or changed information about a machine owner). They invoke callback
functions in the user and machine interfaces while listening for these events.

In the example given in Figure 4, the registerMachine method accepts the input
parameters upon the invocation. It executes the logic (i.e., registers a new machine in
the machine directory) and emits the machineRegistered event. Similarly, several other
event types are emitted during the execution of the order-related functions. These events
give notification regarding the updated order state. The user interface application (see
Section 5.4) sets an orderUpdate event filter in the blockchain access node JSON-RPC API
to receive this notification. An API call registers the event listener with the appropriate
filter setting. The notifications are pushed through the WebSocket connection from the node
to the off-chain application. In this way, the user interface immediately changes (e.g., the
order state label in the management web page).

The machine interface also needs to listen to the events about the order processing. For
example, when a customer or a machine places an order, it calls the placeOrder function
in the Orders smart contract. This function checks the message value, which has to equal
the value of the order and the obligatory order deposit. Upon completion, the function
emits an order update event with the status set to created. The target machine has an event
listener set that catches this event and continues with the order processing (i.e., it verifies
the input STL model file and confirms or cancels the order).

Sensors 2022, 22, 338 16 of 22

Table 2 gives an overview of the key events emitted by the smart contracts in the
platform, the indication if they are intercepted by the user or machine interfaces, and the
consequent effect of the event in the off-chain application. Events are not relevant only for
the immediate off-chain application notifications. We can also access the past events and
their timestamps. In this way, we can reproduce and visualize the entire order processing
history. The settings that send transactions to the chain and are made from the machine
or user interfaces do not necessarily require the consequent event notifications. There is
always a transaction confirmation that can be utilized for the interface status update.

Table 2. System events and interfaces.

Event UI MI Immediate Effect

orderUpdate x x
The user interface retrieves and displays
an updated status of the order.
Machine interface

machineOwnerRegistered x The user interface retrieves and displays
an updated list of machine owners.

machineOwnerUpdated x The user interface retrieves and displays
updated details of a machine owner.

machineRegistered x The user interface updates its list of
registered machines.

machineUpdated x The user interface retrieves and displays
updated details of a machine.

machineStateUpdated x x

The machine interface is notified of the
changed state and acts in the order
processing accordingly.
The user interface retrieves and displays
the updated state of a machine.

5.3. Customer and Machine Interfaces

With the customer interface, we place an order. The customer provides a URL to
the STL model file with the printed object description and the deadline for the order’s
completion. This is included in the order transaction and recorded in the blockchain
together with the file hash for verification. If needed, the customer or servicing machine
can cancel the order.

Machines—in our case, 3D printers—interface the blockchain backend using embed-
ded software on a single-board computer. The machine interface application is Python-
based and uses the Web3.py library. It interacts with the physical device via a USB interface
and the blockchain via a JSON-RPC API at the blockchain node over the IP network. The
interface on the physical device enables complete control of the printing process.

Potential challenges for future machine autonomy are the device constraints and the
hardware security. IoT devices may be limited in their computation and communication
capabilities. However, this challenge is more exposed in non-industrial use cases (e.g.,
environmental sensor monitoring). We can usually count on a sufficient power supply
and controlled connectivity in industrial applications. This minimizes the communication
constraints. We can also ensure enough computation capabilities with gateway devices to
execute blockchain-specific operations in the device. Hardware security refers to trusted
storage and access to the blockchain accounts that identify the device in the system. With
economically autonomous devices, these accounts can hold monetary value, too. The
current machine interface functionality could be integrated into the device’s firmware
instead of relying on a gateway device. The hardware could provide a trusted execution
environment (TEE) to maximize hardware security.

5.4. Management and Monitoring User Interfaces

We created a web-based user interface for efficient management and monitoring of
the system at the business process level. The entire process is indeed recorded in the

Sensors 2022, 22, 338 17 of 22

transactions. The chain blocks and the chain data can always be analyzed with network
scanning tools, such as Etherscan for public Ethereum networks or Hyperledger Explorer for
private networks. We can view or query blocks, transactions, or account details and monitor
the network’s operation with these tools. However, from the business perspective, we
expect more user-friendly, high-level insight that is matched with the business process. The
management UI runs in a blockchain-enabled web browser so that a user can be identified
by a valid blockchain account, which is registered in the SmartContractAdministration
module. Blockchain-based authentication in the browser also provides control access to the
management and monitoring functions. Based on the actor type, parts of the interface are
enabled or disabled. The machine providers can register and manage their machines or
update the machine’s provider data in the interface. An administrator can appoint new
machine providers. Both actors also have detailed insight into the order execution. They
can filter the order list by address, status, and timestamp.

Figure 5 shows a snapshot of the management and monitoring user interface. The
current user of the management interface is registered as a machine provider and adminis-
trator. They can edit and update the machine provider’s details. The user interface indicates
the pending transaction (bottom right) for these changes to be committed. As machine
providers, they can list their machines and update the machine’s details.

Sensors 2022, 22, 338 18 of 23

Figure 5. Web management and monitoring user interface.

The interface utilizes the proven Web3.js client library [34] for interacting with the
blockchain node API. The UI application logic is written in JavaScript, and web pages are
created using well-known web technologies.

5.5. Consortium Blockchain Network
We established a consortium proof-of-authority (PoA) blockchain network to meet

our solution’s security and performance needs. PoA is a consensus mechanism which suc-
cessfully replaces the traditional proof-of-work (PoW) mechanism. While PoW has, to
some extent, a meaningful role in public blockchain networks, it is extremely energy-con-
suming and has significant jitter in block creation times due to the randomness in the
consensus. Public PoW blockchain networks comprise many mining nodes, which in-
creases the network propagation times and limits the performance in terms of transactions
per second. The implemented system for our use case is not public. It is a system provided
by a known platform provider to known machine providers. If needed, their business ar-
rangements reflected in the platform can be bound by legal agreements. Therefore, there
is no need for a public network. The PoA mechanism was created for consortium-based
blockchain networks. Only a set of known trusted entities is allowed to set up confirma-
tion nodes and thus participate in the block creation process. The mining process does not
depend on extensive computation for random calculations of new block hash values. PoA
is therefore energy-efficient and supports arbitrary block times and sizes, increasing net-
work performance and decreasing transaction latency. The restricted network access,
which can be limited only to registered participants, improves the system’s privacy.

An important feature of PoA which is especially valuable for machine autonomy use
cases is a free transaction environment. This means that the gas price is set to zero, and
the blockchain network imposes no transaction costs. The gas is still calculated for each
transaction and remains relevant for combining the pending transactions in a new block.
Another benefit of free transactions is that the native cryptocurrency can now be easily
used for manufacturing service payments. The platform provider manages the distribu-
tion of the PoA Ether among the solution participants. The currency can serve as a voucher
(namely a token without ERC smart contracts), and its value can be mapped to FIAT at a
fixed price.

The key network configurations are set up in the genesis file. It sets, for example, the
block time and block size, allocates funds to the initial blockchain accounts, and specifies
the boot nodes. We set the block size to 8,000,000 gas and the block time to 3 s.

Figure 5. Web management and monitoring user interface.

The interface utilizes the proven Web3.js client library [34] for interacting with the
blockchain node API. The UI application logic is written in JavaScript, and web pages are
created using well-known web technologies.

5.5. Consortium Blockchain Network

We established a consortium proof-of-authority (PoA) blockchain network to meet
our solution’s security and performance needs. PoA is a consensus mechanism which
successfully replaces the traditional proof-of-work (PoW) mechanism. While PoW has,
to some extent, a meaningful role in public blockchain networks, it is extremely energy-
consuming and has significant jitter in block creation times due to the randomness in the
consensus. Public PoW blockchain networks comprise many mining nodes, which increases
the network propagation times and limits the performance in terms of transactions per
second. The implemented system for our use case is not public. It is a system provided
by a known platform provider to known machine providers. If needed, their business
arrangements reflected in the platform can be bound by legal agreements. Therefore, there
is no need for a public network. The PoA mechanism was created for consortium-based
blockchain networks. Only a set of known trusted entities is allowed to set up confirmation

Sensors 2022, 22, 338 18 of 22

nodes and thus participate in the block creation process. The mining process does not
depend on extensive computation for random calculations of new block hash values. PoA is
therefore energy-efficient and supports arbitrary block times and sizes, increasing network
performance and decreasing transaction latency. The restricted network access, which can
be limited only to registered participants, improves the system’s privacy.

An important feature of PoA which is especially valuable for machine autonomy use
cases is a free transaction environment. This means that the gas price is set to zero, and
the blockchain network imposes no transaction costs. The gas is still calculated for each
transaction and remains relevant for combining the pending transactions in a new block.
Another benefit of free transactions is that the native cryptocurrency can now be easily
used for manufacturing service payments. The platform provider manages the distribution
of the PoA Ether among the solution participants. The currency can serve as a voucher
(namely a token without ERC smart contracts), and its value can be mapped to FIAT at a
fixed price.

The key network configurations are set up in the genesis file. It sets, for example, the
block time and block size, allocates funds to the initial blockchain accounts, and specifies
the boot nodes. We set the block size to 8,000,000 gas and the block time to 3 s.

We used three node types in the system: boot, confirmation, and access nodes. They
all used the same Ethereum blockchain node software and only differed in their functions
in the network. One node instance could perform all three functions, but we preferred to
keep them separate entities for increased node and network robustness.

The boot nodes are index nodes in the network. At the network’s genesis, they
point to the initial set of confirmation nodes and later to the nodes added to the network
afterward. A newly added node points at a boot node during its initialization. This
ensures rapid synchronization with the network for the flawless execution of blockchain
network communications. The confirmation (i.e., mining) nodes implement the consensus
mechanism. A new confirmation node can only be initialized in the network with a copy of
the initial genesis file. The access nodes do not have to participate in block creation. They
expose APIs for off-chain applications to interact with the blockchain network and to access
the services provided by the network. In our experimentation, the need for separate access
nodes became evident because the access nodes appeared to be resource-consuming. The
resource consumption was correlated with the number of API calls and, in particular, with
the number of transactions created. The boot and confirmation nodes did not exhibit these
changes in resource demand.

Figure 6 shows the architecture of the blockchain network. The nodes belong to
two consortium partners. Some were located on-premises in two different countries, and
additional ones were installed in the cloud. The initial boot node was installed on-premises
at the first consortium partner. Later, several confirmation nodes were added at both
consortium partners along with some additional ones at a cloud hosting provider. Each
partner had one access node for the off-chain applications.

Sensors 2022, 22, 338 19 of 23

We used three node types in the system: boot, confirmation, and access nodes. They
all used the same Ethereum blockchain node software and only differed in their functions
in the network. One node instance could perform all three functions, but we preferred to
keep them separate entities for increased node and network robustness.

The boot nodes are index nodes in the network. At the network’s genesis, they point
to the initial set of confirmation nodes and later to the nodes added to the network after-
ward. A newly added node points at a boot node during its initialization. This ensures
rapid synchronization with the network for the flawless execution of blockchain network
communications. The confirmation (i.e., mining) nodes implement the consensus mecha-
nism. A new confirmation node can only be initialized in the network with a copy of the
initial genesis file. The access nodes do not have to participate in block creation. They
expose APIs for off-chain applications to interact with the blockchain network and to ac-
cess the services provided by the network. In our experimentation, the need for separate
access nodes became evident because the access nodes appeared to be resource-consum-
ing. The resource consumption was correlated with the number of API calls and, in par-
ticular, with the number of transactions created. The boot and confirmation nodes did not
exhibit these changes in resource demand.

Figure 6 shows the architecture of the blockchain network. The nodes belong to two
consortium partners. Some were located on-premises in two different countries, and ad-
ditional ones were installed in the cloud. The initial boot node was installed on-premises
at the first consortium partner. Later, several confirmation nodes were added at both con-
sortium partners along with some additional ones at a cloud hosting provider. Each part-
ner had one access node for the off-chain applications.

Figure 6. PoA network architecture.

Because the number of nodes in the network was low compared with a public net-
work, and we only added new nodes if agreed upon by the consortium, we could apply
IP network access limitations (firewalls) to protect the network from unwanted external
access. Setting up proprietary nodes was the only viable solution that allowed for flexibil-
ity and full control of the network during our testing. With the emerging BaaS providers,
a viable alternative would be a hosted blockchain network compatible with Ethereum
technology.

Figure 6. PoA network architecture.

Sensors 2022, 22, 338 19 of 22

Because the number of nodes in the network was low compared with a public network,
and we only added new nodes if agreed upon by the consortium, we could apply IP network
access limitations (firewalls) to protect the network from unwanted external access. Setting
up proprietary nodes was the only viable solution that allowed for flexibility and full
control of the network during our testing. With the emerging BaaS providers, a viable
alternative would be a hosted blockchain network compatible with Ethereum technology.

6. Evaluation

Figure 7 shows a detailed image of the actual experiment set-up (i.e., the 3D printer
with a camera mounted to record the manufacturing process). We tested the operation of
the developed system, and it provided the required functionality successfully. A success-
ful order execution resulted in four transactions for order placement, confirmation, task
execution, and provisioning of the proof. In addition, the servicing machine emitted two
additional transactions for machine state updates. Canceled or rejected orders resulted in
only two transactions. Each addition or information update resulted in one transaction in
the management and monitoring user interface.

Sensors 2022, 22, 338 20 of 23

6. Evaluation
Figure 7 shows a detailed image of the actual experiment set-up (i.e., the 3D printer

with a camera mounted to record the manufacturing process). We tested the operation of
the developed system, and it provided the required functionality successfully. A success-
ful order execution resulted in four transactions for order placement, confirmation, task
execution, and provisioning of the proof. In addition, the servicing machine emitted two
additional transactions for machine state updates. Canceled or rejected orders resulted in
only two transactions. Each addition or information update resulted in one transaction in
the management and monitoring user interface.

Figure 7. 3D printing set-up and camera for process recording.

It was impossible to estimate the exact average transaction rate per unit of time, be-
cause the actual manufacturing process could last from a couple of minutes to a couple of
hours. For example, if the printing task took 60 min, this would result in a transaction load
of 0.00167 Tx/s. In other words, the system could run several hundreds or even thousands
of such orders simultaneously to reach an average transaction load in the order of magni-
tude of 1 Tx/s. These are the transaction loads that are easily accommodated by the un-
derlying network. We analyzed the transaction sizes in the typical order execution and
found 200,000–400,000 gas transaction sizes. The actual figures might vary because of dif-
ferent sizes of input parameters, but these variations were small and kept the size estimate
in the given range. We estimate that with the current block size of 8,000,000 gas and a
block time of 3 s, our PoA network was capable of about 20–40 Tx/block or 7–13 Tx/s.

In addition, we carried out some network performance evaluations. We loaded the
network with randomly generated transactions sent to the smart contract platform, with
average transaction rates of 1, 2, 3, 5, and 10 Tx/s. We monitored the transaction pool at
the confirmation nodes. The network was able to accommodate all these transaction rates.
Interestingly, the bottleneck proved to be the transaction creation process, which required
the composition of the appropriate data structure and digital signatures and hashing.
While the system resource of the confirmation and boot nodes remained unaffected by the
increased transaction rates, the node which was emulating the machines and customer
interfaces showed increased CPU usage. As the transaction rates applied in the network
evaluation were substantially higher than the ones we would realistically expect in prac-
tical solution deployment, we did not further investigate the reasons for the increased
CPU usage. At the same time, this was not a blockchain network issue, but rather a prob-

Figure 7. 3D printing set-up and camera for process recording.

It was impossible to estimate the exact average transaction rate per unit of time,
because the actual manufacturing process could last from a couple of minutes to a couple
of hours. For example, if the printing task took 60 min, this would result in a transaction
load of 0.00167 Tx/s. In other words, the system could run several hundreds or even
thousands of such orders simultaneously to reach an average transaction load in the order
of magnitude of 1 Tx/s. These are the transaction loads that are easily accommodated by the
underlying network. We analyzed the transaction sizes in the typical order execution and
found 200,000–400,000 gas transaction sizes. The actual figures might vary because of different
sizes of input parameters, but these variations were small and kept the size estimate in the
given range. We estimate that with the current block size of 8,000,000 gas and a block time of
3 s, our PoA network was capable of about 20–40 Tx/block or 7–13 Tx/s.

In addition, we carried out some network performance evaluations. We loaded the
network with randomly generated transactions sent to the smart contract platform, with
average transaction rates of 1, 2, 3, 5, and 10 Tx/s. We monitored the transaction pool at
the confirmation nodes. The network was able to accommodate all these transaction rates.
Interestingly, the bottleneck proved to be the transaction creation process, which required
the composition of the appropriate data structure and digital signatures and hashing.
While the system resource of the confirmation and boot nodes remained unaffected by the

Sensors 2022, 22, 338 20 of 22

increased transaction rates, the node which was emulating the machines and customer
interfaces showed increased CPU usage. As the transaction rates applied in the network
evaluation were substantially higher than the ones we would realistically expect in practical
solution deployment, we did not further investigate the reasons for the increased CPU
usage. At the same time, this was not a blockchain network issue, but rather a problem
of machine interfaces if they were resource-constrained. However, the machine interfaces
could be implemented more efficiently without using Web3 libraries or could even create the
transaction from scratch to reduce the resource consumption during transaction creation.

7. Conclusions

We presented the design, development, and implementation of a hybrid decentralized
application for servitization in manufacturing environments. It assures machine autonomy,
such as for 3D printing in our case. Machines have their own blockchain identities and can
place, negotiate, execute, and charge for manufacturing services. The solution can be used
or easily adapted to other manufacturing domains.

We carefully addressed two critical success factors for integrating blockchains and
the IoT in manufacturing and industrial environments: the security of the smart contract
platform and the data and event models. These two aspects become especially relevant
when progressing the solutions from laboratory validation to demonstrations in relevant
or operational environments. The smart contract platform is upgradable and updatable,
and it uses a proxy contract to control the access of smart contracts and role-based access
control for function calls for blockchain users. The approaches to the security design of
the applied smart contract platform are now comparable to those in traditional software
engineering. Data and event models are fundamental for the hybrid data storage, DApp
architecture, and responsiveness of off-chain interfaces. We deployed and evaluated the
DApp to a consortium blockchain network for performance and privacy, which proved to
be performant enough to support the selected use case. The performance requirements
might differ in different use cases and need to be estimated separately.

Our research shows that with the proposed data and event model, we could efficiently
separate on- and off-chain data and assure scalability of the DApp without compromising
the trust. We demonstrated that the secure upgradeable smart contract platform, which
was adapted for machine servitization, supported the business workflow and, at the same
time, assured common identification and authorization of all the participants in the system,
including people, devices, and legal entities.

Different use cases could be reflected in the extended smart contract platform. Addi-
tional escrow, bidding, or machine profiling and selection modules can be added to the
platform to separate their on-chain functionality from the existing ones. Still, the data
and event model, as well as the smart contract security and access control features, would
remain. Similarly, a parachain module would attach the presented solution to a relay
chain and link it to other blockchain systems to facilitate a consortium network for the
performance and privacy of the IoT and a public cryptocurrency network for monetary
aspects of the business solution. Our solution thus facilitates the integration of decentral-
ized approaches with traditional ICT systems in terms of hybrid application and storage
architectures and the security standards for smart contract design.

Author Contributions: Conceptualization, M.P., A.K. (Andrej Kos); methodology, M.P.; validation,
M.C.; investigation, M.P., A.K. (Andrej Kos), A.K. (Anton Kos), M.C.; resources, M.P., A.K. (Andrej
Kos); writing—original draft preparation, M.P., A.K. (Andrej Kos); writing—review and editing, M.P.,
A.K. (Anton Kos); supervision, A.K. (Andrej Kos). All authors have read and agreed to the published
version of the manuscript.

Funding: This research was partially funded by Javna Agencija za Raziskovalno Dejavnost RS: P2-
0246 and P2-0425 (accessed 12 December 2021). Prof. Min Chen’s work was partially supported by
the Technology Innovation Project of Hubei Province of China under Grant 2019AHB061.

Institutional Review Board Statement: Not applicable.

Sensors 2022, 22, 338 21 of 22

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Geiger, S.; Schall, D.; Meixner, S.; Egger, A. Process traceability in distributed manufacturing using blockchains. In Proceedings of

the 34th ACM/SIGAPP Symposium on Applied Computing, New York, NY, USA, 8 April 2019; pp. 417–420. [CrossRef]
2. Banafa, A. IoT and Blockchain Convergence: Benefits and Challenges. IEEE Internet of Things. 10 January 2017. Available online:

http://iot.ieee.org/newsletter/january-2017/iot-and-blockchain-convergence-benefits-and-challenges.html (accessed on 16
September 2020).

3. Pustišek, M.; Živić, N.; Kos, A. Blockchain: Technology and Applications for Industry 4.0, Smart Energy, and Smart Cities. De
Gruyter. 2021. Available online: https://www.degruyter.com/document/isbn/9783110681130/html (accessed on 1 Septem-
ber 2021).

4. Schweizer, A.; Knoll, P.; Urbach, N.; von der Gracht, H.A.; Hardjono, T. To What Extent Will Blockchain Drive the Machine
Economy? Perspectives From a Prospective Study. IEEE Trans. Eng. Manag. 2020, 67, 1169–1183. [CrossRef]

5. How Is Servitization Reshaping the Future of Manufacturing: An Executive’s Guide. Birlasoft. Available online: https:
//www.birlasoft.com/articles/how-is-servitization-reshaping-the-future-of-manufacturing (accessed on 27 August 2021).

6. Dorst, W. Implementation Strategy Industrie 4.0—Report on the Results of the Industrie 4.0 Platform, The Industrie 4.0 Platform,
Berlin. January 2016. Available online: https://www.bitkom.org/Bitkom/Publikationen/Implementation-Strategy-Industrie-40
-Report-on-the-results-of-the-Industrie-40-Platform.html (accessed on 25 August 2021).

7. Viriyasitavat, W.; Da Xu, L.; Bi, Z.; Sapsomboon, A. Blockchain-based business process management (BPM) framework for service
composition in industry 4.0. J. Intell. Manuf. 2020, 31, 1737–1748. [CrossRef]

8. Al-Jaroodi, J.; Mohamed, N. Blockchain in Industries: A Survey. IEEE Access 2019, 7, 36500–36515. [CrossRef]
9. Humayun, M.; Jhanjhi, N.; Hamid, B.; Ahmed, G. Emerging Smart Logistics and Transportation Using IoT and Blockchain. IEEE

Internet Things Mag. 2020, 3, 58–62. [CrossRef]
10. Leng, J.; Ruan, G.; Jiang, P.; Xu, K.; Liu, Q.; Zhou, X.; Liu, C. Blockchain-empowered sustainable manufacturing and product

lifecycle management in industry 4.0: A survey. Renew. Sustain. Energy Rev. 2020, 132, 110112. [CrossRef]
11. Lopes, V.; Alexandre, L.A.; Pereira, N. Controlling Robots Using Artificial Intelligence and a Consortium Blockchain. arXiv 2019,

arXiv:1903.00660. Available online: https://arxiv.org/abs/1903.00660 (accessed on 7 June 2021).
12. Strobel, V.; Castelló Ferrer, E.; Dorigo, M. Managing Byzantine Robots via Blockchain Technology in a Swarm Robotics Collective

Decision Making Scenario, Mit Media Lab Research. May 2018. Available online: https://dspace.mit.edu/handle/1721.1/115883
(accessed on 17 August 2021).

13. Alexandr, P.K.; Hans-Joachim, K. A New Systematic Approach to the Description of Processes and their Classification. Procedia
Manuf. 2017, 8, 199–206. [CrossRef]

14. Rožman, N.; Diaci, J.; Corn, M. Scalable framework for blockchain-based shared manufacturing. Robot. Comput. Integr. Manuf.
2021, 71, 102139. [CrossRef]

15. Balistri, E.; Casellato, F.; Giannelli, C.; Lazzarini, R.; Keyi, C.F.N.; Stefanelli, C. Servitization in the Era of Blockchain: The Ice
Cream Supply Chain Business Case. In Proceedings of the 2020 International Conference on Technology and Entrepreneurship
(ICTE), Bologna, Italy, 21–23 September 2020; pp. 1–8. [CrossRef]

16. Tan, W.; Zhu, H.; Tan, J.; Zhao, Y.; Xu, L.D.; Guo, K. A novel service level agreement model using blockchain and smart contract
for cloud manufacturing in industry 4.0. Enterp. Inf. Syst. 2021, 1–26. [CrossRef]

17. Alzubaidi, A.; Solaiman, E.; Patel, P.; Mitra, K. Blockchain-Based SLA Management in the Context of IoT. IT Prof. 2019, 21, 33–40.
[CrossRef]

18. Verma, P.K.; Verma, R.; Prakash, A.; Agrawal, A.; Naik, K.; Tripathi, R.; Alsabaan, M.; Khalifa, T.; Abdelkader, T.; Abogharaf, A.
Machine-to-Machine (M2M) communications: A survey. J. Netw. Comput. Appl. 2016, 66, 83–105. [CrossRef]

19. Ethereum Name Service (ENS). 2019. Available online: https://docs.ens.domains/ (accessed on 15 April 2020).
20. Pustišek, M.; Turk, J.; Kos, A. Secure Modular Smart Contract Platform for Multi-Tenant 5G Applications. IEEE Access 2020, 8,

150626–150646. [CrossRef]
21. SWC-101·Overview. SWC—Smart Contract Weakness Classification and Test Cases. Available online: https://swcregistry.io/

docs/SWC-101 (accessed on 7 June 2020).
22. Software Engineering Techniques—Ethereum Smart Contract Best Practices. Available online: https://consensys.github.io/

smart-contract-best-practices/software_engineering/ (accessed on 1 September 2021).
23. MythX: Smart Contract Security Service for Ethereum. Available online: https://mythx.io/ (accessed on 2 June 2020).
24. OpenZeppelin. Available online: https://docs.openzeppelin.com/openzeppelin (accessed on 28 September 2021).
25. Ali, M.S.; Vecchio, M.; Pincheira, M.; Dolui, K.; Antonelli, F.; Rehmani, M.H. Applications of Blockchains in the Internet of Things:

A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2019, 21, 1676–1717. [CrossRef]
26. Ding, S.; Cao, J.; Li, C.; Fan, K.; Li, H. A Novel Attribute-Based Access Control Scheme Using Blockchain for IoT. IEEE Access

2019, 7, 38431–38441. [CrossRef]

http://doi.org/10.1145/3297280.3297546
http://iot.ieee.org/newsletter/january-2017/iot-and-blockchain-convergence-benefits-and-challenges.html
https://www.degruyter.com/document/isbn/9783110681130/html
http://doi.org/10.1109/TEM.2020.2979286
https://www.birlasoft.com/articles/how-is-servitization-reshaping-the-future-of-manufacturing
https://www.birlasoft.com/articles/how-is-servitization-reshaping-the-future-of-manufacturing
https://www.bitkom.org/Bitkom/Publikationen/Implementation-Strategy-Industrie-40-Report-on-the-results-of-the-Industrie-40-Platform.html
https://www.bitkom.org/Bitkom/Publikationen/Implementation-Strategy-Industrie-40-Report-on-the-results-of-the-Industrie-40-Platform.html
http://doi.org/10.1007/s10845-018-1422-y
http://doi.org/10.1109/ACCESS.2019.2903554
http://doi.org/10.1109/IOTM.0001.1900097
http://doi.org/10.1016/j.rser.2020.110112
https://arxiv.org/abs/1903.00660
https://dspace.mit.edu/handle/1721.1/115883
http://doi.org/10.1016/j.promfg.2017.02.025
http://doi.org/10.1016/j.rcim.2021.102139
http://doi.org/10.1109/ICTE47868.2020.9215539
http://doi.org/10.1080/17517575.2021.1939426
http://doi.org/10.1109/MITP.2019.2909216
http://doi.org/10.1016/j.jnca.2016.02.016
https://docs.ens.domains/
http://doi.org/10.1109/ACCESS.2020.3013402
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-101
https://consensys.github.io/smart-contract-best-practices/software_engineering/
https://consensys.github.io/smart-contract-best-practices/software_engineering/
https://mythx.io/
https://docs.openzeppelin.com/openzeppelin
http://doi.org/10.1109/COMST.2018.2886932
http://doi.org/10.1109/ACCESS.2019.2905846

Sensors 2022, 22, 338 22 of 22

27. Cosmos: The Internet of Blockchains. Available online: https://cosmos.network/ (accessed on 21 October 2021).
28. Polkadot Network. Available online: https://polkadot.network/ (accessed on 21 October 2021).
29. Dolenc, D.; Turk, J.; Pustišek, M. Distributed Ledger Technologies for IoT and Business DApps. In Proceedings of the 2020

International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom),
Graz, Austria, 7–9 July 2020; pp. 1–8. [CrossRef]

30. Zheng, W.; Zheng, Z.; Chen, X.; Dai, K.; Li, P.; Chen, R. NutBaaS: A Blockchain-as-a-Service Platform. IEEE Access 2019, 7,
134422–134433. [CrossRef]

31. Diamond Standard ·Issue #2535·Ethereum/EIPs. GitHub. Available online: https://github.com/ethereum/EIPs/issues/2535
(accessed on 15 June 2020).

32. Proxy Upgrade Pattern. Available online: https://docs.openzeppelin.com/upgrades-plugins/1.x/proxies (accessed on 28
September 2021).

33. Contracts—Events Solidity 0.8.7 Documentation. Available online: https://docs.soliditylang.org/en/v0.8.7/contracts.html?
highlight=events#events (accessed on 22 October 2021).

34. Web3.js—Ethereum JavaScript API. Available online: https://web3js.readthedocs.io/en/v1.2.11/ (accessed on 25 Septem-
ber 2021).

https://cosmos.network/
https://polkadot.network/
http://doi.org/10.1109/CoBCom49975.2020.9174188
http://doi.org/10.1109/ACCESS.2019.2941905
https://github.com/ethereum/EIPs/issues/2535
https://docs.openzeppelin.com/upgrades-plugins/1.x/proxies
https://docs.soliditylang.org/en/v0.8.7/contracts.html?highlight=events#events
https://docs.soliditylang.org/en/v0.8.7/contracts.html?highlight=events#events
https://web3js.readthedocs.io/en/v1.2.11/

	Introduction
	Background
	Decentralized Applications for the IoT
	Use Case Definition for 3D Printing Servitization
	Actors
	3D Printing Servitization Workflow

	Solution Design and Development
	Smart Contract Platform
	Data and Event Model
	Data Model
	Event Model

	Customer and Machine Interfaces
	Management and Monitoring User Interfaces
	Consortium Blockchain Network

	Evaluation
	Conclusions
	References

