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Abstract: We propose Depth-to-Space Net (DTS-Net), an effective technique for semantic segmen-
tation using the efficient sub-pixel convolutional neural network. This technique is inspired by
depth-to-space (DTS) image reconstruction, which was originally used for image and video super-
resolution tasks, combined with a mask enhancement filtration technique based on multi-label
classification, namely, Nearest Label Filtration. In the proposed technique, we employ depth-wise
separable convolution-based architectures. We propose both a deep network, that is, DTS-Net, and
a lightweight network, DTS-Net-Lite, for real-time semantic segmentation; these networks employ
Xception and MobileNetV2 architectures as the feature extractors, respectively. In addition, we
explore the joint semantic segmentation and depth estimation task and demonstrate that the pro-
posed technique can efficiently perform both tasks simultaneously, outperforming state-of-art (SOTA)
methods. We train and evaluate the performance of the proposed method on the PASCAL VOC2012,
NYUV2, and CITYSCAPES benchmarks. Hence, we obtain high mean intersection over union (mIOU)
and mean pixel accuracy (Pix.acc.) values using simple and lightweight convolutional neural network
architectures of the developed networks. Notably, the proposed method outperforms SOTA methods
that depend on encoder–decoder architectures, although our implementation and computations are
far simpler.

Keywords: convolutional neural networks; semantic segmentation; real-time computer vision

1. Introduction

Semantic segmentation is an important task in computer vision, as it constitutes
pixel-wise classification of an image to mask each object in the scene. Hundreds of appli-
cations, such as autonomous driving, robotics, medical diagnostics, image editing, and
augmented reality applications, incorporate semantic segmentation. Recent studies on
semantic segmentation have achieved promising results using convolutional neural net-
works (CNNs), particularly encoder–decoder CNN architectures. In such architectures, the
semantic segmentation task is modeled in two stages: the encoding stage, in which the
image is down-sampled to obtain its deep semantic features, and the decoding stage, in
which the semantic features are up-sampled to obtain a semantic segmentation mask of
the same size as the input image. Encoder–decoder architecture can achieve highly accu-
rate segmentation results; however, the decoder stage adds considerable computational
complexity to the overall model and the input image size of such models is usually small.
Furthermore, the decoding-stage reconstruction is inefficient because de-convolution or
up-sampling layers are used, which eliminate small details and sometimes propagate noise.

The semantic segmentation problem can be seen as an image-to-image translation
problem, as the aim of this task is to construct segmentation masks equivalent to each
object in the input image. Further, the objects in the segmentation mask have the same
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boundaries as the input image; thus, the segmentation mask can be considered as an
alternative to the image and, hence, the segmentation task can be performed using image
reconstruction techniques. The efficient sub-pixel CNN [1] has shown promising results
in image and video super-resolution tasks because of its depth-to-space (DTS) layer, from
which a high-resolution image can be reconstructed from many low-resolution images. This
layer performs image reconstruction through pixel reordering of the low-resolution feature
maps obtained from the CNN network, in order to form super-pixels of the high-resolution
image with very accurate borders and object details. Thus, the DTS layer efficiently obtains
accurate semantic segmentation masks with clear borders, at far higher speeds than the
traditional encoder–decoder architectures usually used for segmentation tasks. The DTS
layer has many advantages, including its lower computation count and considerably higher
accuracy compared with the decoder stage of the encoder–decoder architecture. Therefore,
modeling can be accelerated, while high segmentation accuracy is maintained.

Vision transformers, which apply a transformer network to images in a manner simi-
lar to natural language processing, are a recent achievement in computer vision. Vision
transformers allow parallelization in the processing of a sequence dataset or a sequence
of patches of the target image. This is achieved through positional encoding, which al-
lows the network to learn the position of the patch in the input “big image”. Vision
transformer-based methods achieve better accuracy than CNN-based methods for classifi-
cation, segmentation, and object detection tasks without increased computational cost.

In this study, we propose the DTS-Net deep network for semantic segmentation using
a sub-pixel CNN, to address the semantic segmentation complexity problem that arises
for encoder–decoder architectures with or without attention methods while retaining high
segmentation accuracy. We also present DTS-Net-Lite, a lightweight version of this network.
Our contributions can be summarized as follows:

• Rather than a pixel-wise classification problem, we treat the semantic segmentation
problem as an image-to-image translation problem through regression using the DTS
layer, and construct segmentation maps using the higher-resolution image reconstruc-
tion approach of the super-resolution task;

• We propose DTS-Net, a deep model that uses Xception architecture as a feature
extractor for high-accuracy critical applications, as well as a small lightweight model,
DTS-Net-Lite, for high-speed critical applications that uses MobileNetV2 architecture
as a feature extractor;

• We reduce the typical decoding stage complexity for segmentation mask construction
to that of the DTS image construction layer and show that this layer can construct
segmentation masks with far lower computational cost and much higher precision
than conventional CNN-based decoding architectures.

• We propose a new segmentation improvement technique namely nearest label filtra-
tion (NLF) to improve the segmentation by correcting the wrong predicted pixels by
DTS-layer in the segmentation mask.

The proposed method achieves higher accuracy and speed than the recent semantic
segmentation methods. Further, learning of highly detailed feature maps is possible as we
depend on CNN architecture in addition to the DTS layer; this allows the construction of
higher-resolution prediction maps. In addition, we explore the joint semantic segmentation
and depth estimation task and achieve promising results. A preview of our results is shown
in Figure 1. The remainder of this paper is structured as follows. Section 2 summarizes re-
lated work and Section 3 presents the proposed method and architectures. Sections 4 and 5
discuss the training and test datasets and present the results with comparison to state-
of-the-art (SOTA) methods, respectively. Section 6 discusses future work and Section 7
presents conclusions.
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Figure 1. Sample predicted and filtered semantic segmentation results of proposed method: (top to bot-
tom) samples from PASCAL VOC2012 [2], NYUV2 [3], and CITYSCAPES [4] benchmarks, respectively.

2. Related Work

Recent semantic segmentation studies have shown that encoder–decoder architecture
can efficiently perform segmentation tasks. The first encoder–decoder architecture was
the fully convolutional network (FCN) [5], in which the same architecture was used for
image classification but the final dense layers were replaced with 1 × 1 convolutional
layers having the same weights. The decoder stage was a simple up-sampling layer. The
FCN obtained relatively good results, motivating further research on encoder–decoder
architectures. Later, SegNet [6] was proposed as a deep encoder–decoder architecture. This
architecture features pooling indices shared between the max-pooling layers in the encoder
stage and the corresponding max-unpooling layers in the decoder stage. SegNet exhibited
impressive semantic segmentation results on outdoor and indoor segmentation datasets.
U-Net [7] is another impressive encoder–decoder architecture, which was proposed for
microscopy cell segmentation in medical images. U-net suggests residual connections
between corresponding layers in the encoder and decoder stages and, hence, achieves
considerable segmentation accuracy.

The four versions of DeepLabVx also constitute considerable contributions to the
semantic segmentation task. DeepLabV1 [8] tackled the problem of inefficient down-
sampling through a wide field of view convolution using the Atrous convolution [8], which
increases the spatial field of the convolutional window using the same weights as the
normal convolution. In that work, the conditional random field (CRF) was also proposed,
which uses an energy function derived from the summation of a unary potential term
calculated from the probability distribution of the output label of each pixel, along with
a binary potential term calculated from the correlation between pixel labels. In general,
the CRF allows the model to learn small image details. With DeepLabV2 [9], Atrous
Spatial Pyramid Pooling (ASPP) was proposed to enhance the model learning at multiple
scales of the feature maps. In addition, the VGG16 [10] used in DeeplabV1 was replaced
with ResNet [11], which yielded better performance. The ASPP was further improved for
DeepLabV3 [12], with the use of different sampling rates in the ASPP in a cascaded manner.
Finally, for DeepLabV3+ [13], the encoder architecture was replaced with a depth-wise
separable convolution-based architecture, and Aligned Xception was adopted. The latter
is a modified version of Xception [14] that replaces the max-pooling layers in the original



Sensors 2022, 22, 337 4 of 23

architecture with strided convolutional layers with more Xception blocks; this facilitates
higher accuracy and speed during processing.

Zhao et al. proposed the pyramid scene parsing network (PSPNet) [15], which adopts
a pyramid parsing module that learns the global context of the image through region-based
aggregation. Pyramid pooling is employed to learn the context of the image from the
final small feature maps. Later, Zhao et al. presented the image cascade network (IC-
Net) [16], which performs high-speed semantic segmentation on high-resolution images
using cascade feature fusion. The latter approach mixes the features obtained from the
input image on different scales in a method called cascade label guidance. Up-sampling
layers are then used to resize the image to the input image size. As another approach, the
bilateral segmentation network (BiSeNet) [17] performs real-time semantic segmentation
using an architecture with two paths. The first is a spatial path for spatial information
preservation and the other is a context path for general context learning through down-
sampling. The features obtained by the two paths are then combined via a feature fusion
technique. ResNeSt, developed by Zhang et al. [18], applies channel-wise attention to
different network branches to learn diverse feature representations and cross-feature in-
formation. Shi et al. [19] proposed Hierarchical Parsing Net for semantic segmentation
which enhances scene parsing by learning the global scene information and the contextual
relation between objects in the scene using a deep neural network. Chen et al. [20] proposed
a one-shot semantic segmentation method which uses the multiclass labels information
during training to encourage the network to learn more accurate semantic features of each
category and they also proposed the pyramid feature fusion module to mine the fused
features of the objects and a self-prototype guidance branch to support the segmenta-
tion task. Although all the previously mentioned methods presented challenging results,
they adopted inefficient decoding stages that eliminate the object details and introduce
some noise.

Zoph et al. [21] proposed pre-training and self-training techniques using stronger
augmentation on ImageNet [22] across the different image sizes using EfficientNet [23]
architecture, and showed that pre-training and self-training are mutually beneficial and im-
prove the accuracies of both the semantic segmentation and object detection tasks. Further,
Rashwan et al. [24] proposed dilated SpineNet or SpineNet-Seg, which is a neural archi-
tecture search discovered network from DeepLabv3. In this approach, the scale permuted
networks originally used for object detection in the semantic segmentation task are evalu-
ated, adopting a customized dilation ratio per block. Bai et al. [25] proposed the multiscale
deep equilibrium model (MDEQ), MDEQ backpropagates through the equilibrium points
of multiple scale features simultaneously using simple differentiation to avoid storing inter-
mediate states, they attained a high segmentation accuracy on CITYSCAPES however, their
model has high computational complexity. Termritthikun et al. [26] proposed EEEA-Net in
which they employed a neural architecture search method to search an optimized model
with the lowest number of parameters by using an early exit population initialization
algorithm. They could achieve an average accuracy segmentation model but the number
of the parameters of their model was extremely low. Ding et al. [27] recently proposed
RepVGG in which they adopted a VGG-like architecture composed of a stack of 3× 3
convolution and Relu. RepVGG models ran much faster than ResNet-50 or ResNet-101
with higher accuracy on the classification and semantic segmentation tasks. It is important
to note that Aich et al. [28] initiated the direction of using depth-to-space for segmentation
when they employed it to perform binary segmentation for satellite maps in DeepGlobe
dtaset [29] using ResNet and VGG16 backbones but their implementation was not efficient
enough and our model can produce better quality segmentation than their model.

Other methods [30,31] employed depth information to support the semantic segmen-
tation task. Kang et al. [30] proposed a depth adaptive deep neural network for semantic
segmentation using a depth-adaptive multiscale convolutional layer consisting of the adap-
tive perception neuron and the in-layer multiscale neuron to adjust the receptive field at
each spatial location and to apply the different size of the receptive field at each feature
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space to learn features at multiple scales, respectively. Gu et al. [31] proposed Hard Pixel
Mining for semantic segmentation using a multiscale loss weight map generated by the
depth data to enforce the model to pay more attention to the hard pixels in segmentation.
They employed the depth data during the training step only and did not use it in the
testing step. Other studies have shown the ability of CNN models to perform the joint
task of semantic segmentation and depth estimation. For example, Mousavian et al. [32]
proposed a multi-scale fully convolutional CNN for simultaneous semantic segmentation
and monocular depth estimation. In this architecture, a CNN model is coupled with a fully
connected conditional random field (CRF) to obtain the contextual relation and the interac-
tions between the semantics of the image and depth cues. Zhang et al. [33] developed joint
task-recursive learning (TRL) for semantic segmentation and depth estimation and showed
that TRL can recursively refine the results from both tasks using a task attention module.
Further, a hybrid CNN for depth estimation and semantic segmentation (HybridNet) was
developed by Lin et al. [34]; this network functions by sharing the parameters that can yield
mutual improvement for each task. Finally, He et al. [35] proposed semantic object seg-
mentation and depth estimation (SOSD)-Net for application to monocular images; in this
approach, semantic objectness is used to perform image processing based on the geometric
relationship between the two tasks. The aligned Xception architecture is employed.

In all of the related work, the studies adopted mainly encoder-decoder approaches
with some methods adopted extra attention methods or transformers. The proposed
method mainly eliminates the need for a complex decoding stage which is computationally
expensive, eliminates some of the image details, and propagates noise. Hence, we propose
a simple and fast approach for dense prediction. We use the DTS-layer as the decoding
stage to directly construct a dense map out of small feature maps extracted from an
encoding stage.

3. Proposed Method

The proposed method, which is illustrated in Figure 2, consists of three main components:

• The feature extractor CNNs: These CNNs extract the image semantics and deliver
deep feature maps. Both proposed architectures, DTS-Net and DTS-Net-Lite, are pre-
sented in this section. We also discuss our reasons for choosing depth-wise separable
convolution-based architectures.

• DTS layer: This layer aggregates the small feature maps to form a higher-resolution
segmentation map (or depth map).

• The nearest label filtration (NLF): This filtration employs multi-label classification
labels to filter the segmentation mask patch by patch.

3.1. Feature Extractor Architectures

The feature extractor is the most important part of a dense prediction CNN model, as
the dense predictions are highly dependent on the extracted features. Depth-wise separable
convolution was first presented by Chollet [14] and was clearly shown to be much faster
and more efficient than normal convolution. Depth-wise separable convolution-based ar-
chitectures (such as Xception and MobileNetV2 [36]) can attain high accuracy for ImageNet
classification and other tasks (such as object detection and semantic segmentation) with a
significantly low parameter number and low floating-point operations count compared
with conventional CNN-based architectures.

Xception [14] was also proposed by Chollet. This unique convolution approach
consists of two main modules: depth-wise and point-wise convolution. In depth-wise
convolution, the convolution is performed for each channel separately, whereas point-wise
convolution involves a 1 × 1 convolution through the channels; the latter can be regarded
as channel projection or dot-product multiplication between channels. As regards the
computational cost of depth-wise separable convolution [36], it is clearly apparent that this
convolution has 1

N + 1
D2

k
fewer parameters than conventional convolution, where N is the

number of channels and Dk is the kernel size.
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Figure 2. The architecture of the proposed method. With an Xception (DTS-NET) or MobileNetV2
(DTS-Net-Lite) backbone, the DTS layer (module) is added after a 1× 1× r2 convolutional layer. The
pixels in the h× w× r2 low-resolution feature maps are arranged in an rh× rw segmentation map.
Another branch features global average pooling and a fully connected layer is added for multi-label
classification. (a) Training architecture of the proposed method and (b) inference architecture, which
features one additional step, that is, the nearest label filtration (NLF). NLF is a patch-by-patch image
filtration based on the global labels of the image and the patch labels. The noisy pixels with labels
that are not included in the global image labels are mapped to the nearest neighbor in the intersection
between the patch and global labels using a simple iterative difference operation.

The original Xception architecture proposed for Imagenet classification consists of
three stages. The main building block of the model is the Xception block, which involves
two or three depth-wise separable convolutions with a kernel size of 3 × 3 and rectified
linear unit (ReLU) activation with or without max-pooling at the end. Residual connections
are used to connect the block from start to end. The first stage involves the entry flow, which
has three Xception blocks with max-pooling at the end of each block. The second stage
involves the middle flow, which has eight Xception blocks without max-pooling. Finally,
the third stage pertains to the exit flow, which has one Xception block with max-pooling
and then two depth-wise separable convolutions. The Xception block details are shown in
Figure 3a. The final feature map depth is 2048. In our proposed approach, we then add
a 1 × 1 × 1024 (i.e., 32 × 32) convolution to reduce the depth from 2048 to 1024, so as to
aggregate a segmentation map that is 32 times the width and 32 times the height of the final
feature maps after the DTS layer. As a second branch, we add global average pooling and
then a fully connected layer with sigmoid activation to obtain the multi-label classification
predictions. The Xception feature extractor is incorporated in the main network proposed
in this work, that is, DTS-Net.

MobileNetV2 [36] is the other architecture employed in this study and is implemented
in DTS-Net-Lite to accelerate our approach for real-time application on low-computational-
power devices such as embedded devices or mobile phones. Like Xception, MobileNetV2
adopts depth-wise separable convolution as the main building module, to benefit from the
cheap computational cost of this module along with other features that further decrease the
computation. In MobileNetV2, inverted residuals and linear bottlenecks are implemented.
The feature maps can be encoded in a low-dimensional subspace using the bottlenecks
with a linear operation. A bottleneck consists of an expansion module (1 × 1 convolution
with a higher number of filters with expansion factor t), followed by depth-wise separable
convolution with a 3 × 3 kernel and, finally, a projection module (1 × 1 convolution with a
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lower number of filters with the same factor t). In [36], t = 6 was employed as the expansion
factor. Each of the three modules features patch normalization and ReLU6 activation (i.e.,
ReLU with the maximum value clipped to 6). The inverted residuals form a skip-connection
between the bottleneck start and end, which have the same channel depth. This gives
the network access to earlier features before entering the bottleneck block. MobileNetV2
originally consisted of seven sequential MobileNet blocks (a MobileNetV2 block is shown
in detail in Figure 3b), followed by a 1 × 1 × 1280 convolution. In our proposed approach,
we add a 1 × 1 × 1024 convolution to reduce the depth to 1024 (32 × 32) in order to
construct a dense map using the DTS layer. We also add a global average pooling layer after
the 1 × 1 × 1280 convolution, which is followed by a fully-connected layer with sigmoid
activation for multi-label classification. As noted above, we employ MobileNetV2 as the
feature extractor of the lightweight version of the proposed method, that is, DTS-Net-Lite.

Figure 3. (a) Xception block. There are three depth-wise separable convolutions, each having prior
ReLU activation. A residual connection connects the block start and end in the entry-flow stage. A
1 × 1 convolution is implemented in the middle-flow stage. (b) MobileNetV2 block. An expansion
module is followed by a Depth-wise separable convolution layer, then a projection module was
added with a residual connection between the beginning and the end of the block.

We believe that our choice of depth-wise separable convolution-based architecture is
key to the high accuracy and speed achieved in this work. The depth-wise convolution (DW-
Conv) is perfectly compatible with depth-to-space image construction as DW-Conv extracts
information from each channel separately, allowing small details in each channel (depth-
axis) to be captured. Then, the DTS layer reconstructs the image from the aggregation of
the information in each channel, as discussed in detail in the next section. This explains the
high accuracy of the depth-wise separable convolution-based architecture combined with
the DTS dense map reconstruction.

3.2. Efficient Sub-Pixel Convolutional Neural Networks

Efficient sub-pixel CNN [1] was originally proposed for image and video super-
resolution, in which high-resolution images are constructed from lower-resolution images
through DTS aggregation. In this approach, pixels with the same location in the low-
resolution image channels are mapped and re-ordered to form a super-pixel in the high-
resolution image. DTS aggregates small feature maps of dimension h × w × r2 to form a
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final high-resolution dense map of size rh × rw (as a segmentation or depth map), where
h, w, and r2 are the feature-map width, height, and depth, respectively. The feature maps
extracted from the feature extractor CNN are passed to the 1 × 1 × r2 convolutional layer,
which gives a total activation patterns of r2 with size W

r and H
r , where W and H are the

width and height of the input image, respectively. The final reconstructed dense map is
also produced. The DTS module then rearranges the elements of the tensor W

r ×
H
r × r2 to

a tensor of shape r. W
r × r. H

r , which is equivalent to the input image size of W × H. This
operation is illustrated visually in Figure 2. In this method, fast one-step up-sampling is
performed, which can be mathematically expressed as

MAPx,y = F[x/r],[y/r],r.mod(y,r)+mod(x,r), (1)

where MAPx,y is the constructed dense map, F represents the feature maps extracted from
the CNN and passed to the 1 × 1 × r2 convolutional layer, r is the feature map depth, and
operation mod is the modulus, which maps the pixels from the low-resolution feature maps
to the super-pixel in the final dense map when mod(x, r) = 0 or mod(y, r) = 0.

In our implementation, we use r = 32, as the Xception or MobileNetV2 feature
extractors down-sample the features using the convolution and max-pooling to 1/32 of
the input image size. Therefore, to reconstruct the final dense map at the same size as the
input image, we use the 1 × 1 × 1024 convolutional layer, where r2 = 1024, to obtain a
final feature map count equal to r2. This reconstruction layer can be trained simply with a
regression loss (we use the mean absolute error), while inference (a rounding operation) is
used to round the predicted pixels in the dense layer to the nearest integer in the case of
semantic segmentation.

3.3. Nearest Label Filtration

As we use an image reconstruction technique, the reconstructed segmentation map
introduces a reconstruction noise, particularly at the borders of the objects in the image.
Hence, mislabeled pixels are introduced. In detail, these noisy pixels are usually mislabeled
with a label neighboring the true label. During the training stage, the network attempts to
learn the true label as accurately as possible; however, an abrupt color change occurs at a
border, causing mislearning of the border pixels. This problem is particularly notable when
the CNN down-samples the image using max-pooling, and some details disappear from
the final feature maps. To solve this problem, we propose Nearest Label Filteration (NLF),
which aims to correct those noisy pixels by mapping them to the nearest classification label
using a patch-by-patch technique. We train the network for multi-label classification besides
segmentation; thus, we use the classification labels of the image (global labels) to filter
the noisy pixels in the segmentation map. We divide the image into patches (imperially,
10 × 10 and 8 × 8 are the best patch sizes). For each patch, we obtain the unique labels that
exist in the patch (patch labels). Then, we find the intersection between the patch labels
(PL ) and global labels (GL ) of the image to obtain the true labels (TL ):

TL = GL ∩ PL (2)

By measuring the distance between each PL and the TL , we can find the distance
array for all PL as follows:

dist_arr = |PLi − TLj| (3)

for i in ΩPL space and j in ΩGL space. Then we can estimate the nearest label in TL
corresponding to the minimum distance in dist_arr and overlay the noisy pixel with the
nearest label (NL ), as follows:

NLi = TL[argmin(dist_arr)] (4)

This filtration method efficiently removes the noise from the image and provides
clear edges. However, performance degradation occurs in extremely dense cases where
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the segmentation mask has a large number of classes and almost all pixels have widely
differing labels (e.g., for the Cityscapes [4] dataset, in which the scenes are very crowded
with small labels and many different classes). However, the method performs very well on
the Pascal VOC2012 and NYUV2 datasets, in general. Figure 1 presents sample images that
clearly show the difference before and after filtration. Figure 2 presents a visual illustration
of the filtration step as a component of the overall proposed method.

3.4. Loss Function

The loss function for the proposed CNNs is divided into two separate loss functions:
one for learning the semantic segmentation mask reconstruction and the other for multi-
label classification. The loss for semantic segmentation reconstruction is the mean absolute
error (MAE), which is expressed as follows:

SegLoss =
1

r2hw

rw

∑
x=1

rh

∑
y=1
|SGT

x,y − SConst
x,y |, (5)

where SGT
x,y is the ground-truth pixel in the semantic segmentation mask and SConst

x,y is the
pixel in the constructed semantic segmentation mask. The other loss is the multi-label
binary cross-entropy (BCE) loss for N-classes of the dataset. This classification loss can be
defined as

ClassLoss =
N

∑
i=1

[−pilog(qi) + (1− pi)log(1− qi)], (6)

where p is the ground-truth label probability (0 or 1) and q is the predicted label probability.
The multi-label binary cross-entropy loss is used to predict the objectness of each class inde-
pendently with sigmoid activation which outputs a value in the range of 0 to 1 equivalent
to the probability of the existence of each object. The employment of MAE for segmentation
map regression and the multi-label classification for mask filtration improves the speed,
it lowers the number of computations needed for obtaining the segmentation map as it
constructs the segmentation map directly like an image with a single channel instead of
predicting N channels image (where N is the number of classes) which is computationally
expensive since the final segmentation maps have the same size of the input image which
is relatively a high-resolution image (1024× 512 in case of cityscapes). Additionally, mask
filtration using multi-label classification (NLF) is much cheaper than constructing the N
segmentation masks.

4. Experiments

In this section, we report the experiments performed to test the performance of the
proposed method. These experiments include a segmentation quality comparison between
different CNN backbones as feature extractors. We show the intermediate feature maps
used to construct the segmentation maps. We also report semantic segmentation results
for our proposed network DTS-Net and DTS-Net-Lite, and compare these results with
those for state-of-the-art (SOTA) methods. Finally, we show that our method can be used
for the joint task of semantic segmentation and depth estimation, as these two tasks are
highly similar. The same training and testing environment and conditions are used for
all experiments.

4.1. Semantic Segmentation Evaluation Metrics

To evaluate the proposed models on semantic segmentation, we use two evaluation
metrics: mean intersection over union (mIOU ) and mean pixel accuracy (Pix.acc. ). The
definition for those metrics is stated as below:

mIOU =
1
N

N

∑
c=1

TPc

TPc + FPc + FNc
(7)
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Pix.acc. =
1
N

N

∑
c=1

TPc + TNc

TPc + TNc + FPc + FNc
, (8)

where N is the number of class categories, TP (true-positive) represents the pixels that are
truly predicted to be belonging to a class (c ), TN (true-negative) represents the pixels that
are predicted to not belong to that class, FP (false-positive) the pixels which are falsely
predicted to be belonging to a class, and FN (false-negative) the pixels which are falsely
predicted to be not belonging to that class.

4.2. DTS-Net and DTS-Net-Lite

DTS-Net is the proposed deep architecture for semantic segmentation and employs
Xception as the feature extractor CNN. In the experiment, we used relatively high-resolution
images to obtain a segmentation mask with a fine border and high mean intersection over
union. DTS-Net-Lite is the fast, lightweight version of the proposed method and employs
MobileNetV2 as the feature extractor. In the experiment, we used approximately half the
image size for DTS-Net to gain more processing speed; thus, some accuracy was sacrificed.

4.3. Benchmarks

To train and test our approach, we used three popular benchmarks for semantic seg-
mentation, PASCAL VOC2012, NYUV2 Depth, and Cityscapes. Two of these benchmarks
contain depth data.

PASCAL VOC2012 [2] is a popular benchmark with 20 commonly seen classes. The
dataset contains annotation for several computer vision tasks such as bounding-box object
detection, semantic segmentation, instance segmentation, and action recognition. The
segmentation data contain 2913 images of varying sizes: 1464 for training and 1449 for
validation, the definition of the classes and the color used for each class’ mask is shown in
Figure 4a. We resized the images to 480× 480 and 256× 256 for DTS-NET and DTS-Net-Lite
training and testing, respectively. We trained the network as detailed in the previous section
and constructed the segmentation map with the DTS layer at the same size as the image.
This was achieved using feature map sizes of 15× 15 and 8× 8, both with a depth of 1024,
for DTS-Net and DTS-Net-Lite, respectively (both architectures down-sampled the image
to 1/32nd the input image size). In testing both networks, we used the same image size as
in training.

NYUV2 Depth [3] is a benchmark for semantic segmentation and depth estimation.
The image data are in RGB-D format and captured using a Kinect sensor. The dataset
contains 1449 images of 13 indoor object classes, that is, 795 and 654 images for training and
testing, respectively, with fixed image sizes, the definition of the classes, and the color used
for each class’ mask is shown in Figure 4b. We trained and tested DTS-Net with the original
image size (640× 480) and used a 320× 256 image size for DTS-Net-Lite. We trained both
networks as described in Section III, with feature map sizes before the DTS layer of 20× 15
and 10× 8, both with a depth of 1024, for DTS-Net and DTS-Net-Lite, respectively.
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Figure 4. Class definitions and colormaps for the used benchmarks. (a) PASCAL VOC2012 [2] class
definitions and colormap, (b) NYUV2 [3] class definitions and colormap, and (c) Cityscapes [4] class
definitions and colormap.

Cityscapes [4] is another benchmark for semantic segmentation and depth estima-
tion, which contains urban street scenes in 50 cities, organized as 19 classes grouped into
8 categories. The dataset contains 5000 training images with fine segmentation masks, an
additional 20,000 coarse annotated images, and 500 validation images, the definition of
the classes and the color used for each class’ mask is shown in Figure 4c. We trained our
models with the 5000 fine annotated images as we required high-resolution segmentation
and depth estimation with fine borders. The original size of the images in the dataset
was 2048× 1024. We resized the training and testing images to half this size, that is, to
1024× 512. This was still a high resolution for DTS-Net but allowed considerably faster
training and inference. We then validated the model with the validation data. For DTS-
Net-Lite, we resized the images to approximately one-third of the original size, that is, to
704× 352, for higher-speed processing while sacrificing some accuracy. The feature map
sizes before the DTS layer were 32× 16 and 22× 11 with a depth of 1024 for DTS-Net and
DTS-Net-Lite, respectively.

4.4. Training and Testing Configuration

We trained the models using a desktop PC with an Intel Core i7-8700 CPU @3.20 GHz,
Nvidia RTX3090 GPU, and 64 GB RAM. We used Tensorflow-Keras to implement the
proposed method and all of the proposed models were initialized with the pre-trained
version of the model on the ImageNet [22] dataset to accelerate the model fitting. We used
Adam’s optimizer with an initial learning rate of 0.001, beta1 of 0.9, and beta2 of 0.999.
We then evaluated the models using the same hardware configurations. All models were
trained for approximately 1000 epochs.

4.5. Quality Comparison between Different CNN Backbones

We performed several experiments to test the ability of different CNN architectures
to perform semantic segmentation using the proposed method. We trained three other
architectures as feature extractors (VGG16 [10], ResNet50 [11], and DenseNet121 [37]) in
addition to Xception and MobileNetV2. All were trained on the NYUV2 segmentation
dataset with an image size of 640× 480 for 1000 epochs. We then compared the features
and the constructed segmentation masks obtained using the DTS layer (a sample test image
is shown in Figure 5). For VGG16 and DenseNet121, the results showed features with
inaccurate blurry edges, which were also apparent in the constructed segmentation masks.
Better features and constructed masks with far more detail of the object edges and bound-
aries were extracted in the case of ResNet50 and MobileNetV2. The highest-detail features
and the best-constructed segmentation maps were obtained for the Xception architecture.
Therefore, we adopted this architecture as the feature extractor of our method. We adopted
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MobileNetv2 as the feature extractor for DTS-Net-Lite because that architecture exhib-
ited average performance but the fewest multiplication/addition computations (MACs)
(0.3 Giga; far lower than those of the other architectures), to achieve higher-speed process-
ing. Table 1 compares the five architectures based on the mean pixel accuracy (Pix.acc.) of
each CNN with the DTS layer. This is a measure of the percentage of the correctly classi-
fied pixels in the predicted mask. The MAC and parameter numbers are also compared.
To further support our selection and the proposed architecture, we trained DTS-Net on
DeepGlobe satellite images dataset for road extraction using binary segmentation. We
compared the obtained segmentation results from our architectures (using Xception and
MobileNetV2 backbones) with ResNet-D2S and VGG16-D2S proposed in [28] (we also
used Segnet results on DeepGlobe as the authors of this paper [28] trained SegNet [6] on
DeepGlobe and added the results in their paper) in Figure 6. The comparison is simply
a quality comparison of samples from the DeepGlobe validation satellite images as the
validation server for this challenge is closed and there is no other way to validate the
results. Our results on the binary segmentation of the satellite images show better quality
in extracting more details than the results produced by ResNet-50 [11] and VGG16 [10]
backbones in [28], even better than SegNet [6], which proves the excellent performance of
the proposed architectures using Xception and MobileNetV2 backbones.

Figure 5. Quality comparison of (a) extracted feature maps before the DTS layer and (b) constructed
segmentation mask using DTS layer (without NLF) between VGG16, ResNet50, DenseNet121, Mo-
bileNetV2, and Xception architectures.

Figure 6. Quality comparison of the binary segmentation task on DeepGlobe [29] dataset between
the models proposed by Aich et al. [28] (ResNet-D2S and VGG16-D2S) and SegNet [6] in the
same paper and our models: DTS-Net and DTS-Net-Lite which uses Xception and MobileNetV2 as
backbones, respectively.
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Table 1. Comparison of VGG16, ResNet50, DenseNet121, MobileNetV2, and Xception as feature
extractors for DTS-Net without filtration in terms of MACs, the number of parameters (Params), and
Pix.acc. on the NYUV2 dataset.

Feature Extractor Params (M) MACs (G) Pix.acc. %

VGG16 138.3 M 62.1 G 42.1
DenseNet121 8 M 11.1 G 51.3

ResNet50 25.6 M 15.4 G 62.5
MobileNetV2 3.5 M 1.2 G 66.7

Xception 22.4 M 18.5 G 79.4

We selected depth-wise separable convolution as being suitable for the proposed
DTS module based on the following main reason. The DTS layer constructs the final
image using a pixel reordering technique through the channel axis to form super-pixels
in the segmentation map, which highly depend on the feature-map quality. Depth-wise
convolution extracts the features from each channel separately and then projects them using
point-wise convolution. This approach extracts more accurate feature maps as the depth-
wise convolution focuses on the data in each channel separately. These characteristics
explain the good quality of the features extracted by the Xception and MobileNetV2
feature extractors.

4.6. Joint Semantic Segmentation and Depth Estimation

We further trained the proposed method on the simultaneous task of semantic seg-
mentation and depth estimation. NYUV2 provides dense depth data captured by a Kinect
sensor that is suitable for direct use, and CITYSCAPES provides disparity data that are
equivalent to depth (as the disparity has a linear relationship with the depth). Here, we
trained DTS-Net on the disparity without conversion. We trained our main model, DTS-
Net, on NYUV2 with an image size of 640× 480 and on Cityscape with an image size of
1024× 512 for the depth estimation and semantic segmentation tasks. For the depth esti-
mation, we added a third branch, which was identical to the branch for the segmentation
branch, that is, a 1 × 1 × 1024 convolutional layer followed by a DTS layer to construct the
depth map. We retained the two main branches, that is, the semantic segmentation branch
and the multi-label classification branch. We then trained the network for 1000 epochs
under the same hardware configuration, as previously mentioned in Section 4.4. As the
depth estimation and semantic segmentation have a common training procedure and the
aim is a dense map, we believe that the two tasks help each other. This is confirmed in
Section 5, where the accuracy and error values for the depth are reported; these values
were obtained simultaneously with the performance of the semantic segmentation task.

5. Results

In this section, we report the noteworthy results obtained with the proposed method.
These results indicate the high accuracy of both our semantic segmentation approach and
the joint task with depth estimation. We compare our results with those of SOTA methods
for semantic segmentation and show that our method outperforms the alternatives by
some margin. We also compare the joint task model performance with those of SOTA
joint methods.

5.1. Semantic Segmentation mIOU Results

Promising mIOU values were exhibited by the proposed method on the three datasets,
particularly with the application of the NLF technique. Figure 7 shows sample results from
the three datasets with the predicted and filtered (NLF Seg) segmentation results. On the
PASCAL VOC2012 benchmark, DTS-Net and DTS-Net-Lite attained mIOU values of 91.1%
and 83.8% on the validation set, respectively. On the NYUV2 test benchmark, DTS-Net at-
tained high accuracy with a pixel accuracy (Pix.acc.) of 80.72%, while DTS-Net-Lite attained
a pixel accuracy (Pix.acc.) of 73.7%. On the CITYSCAPES validation benchmark, DTS-Net
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and DTS-Net-Lite attained mIOU values of 80.72% and 61.5%, respectively. These mIOU
and Pix.acc. values were superior to those of all SOTA methods for semantic segmentation,
even though the proposed architecture is far simpler than the SOTA-method architectures.

Figure 7. Sample results of predicted and NLF-filtered semantic segmentation (NLF Seg) results that
were obtained using DTS-Net on PASCAL VOC2012 (rows 1–3), NYUV2 (rows 4–6), and CITYSCAPES
(rows 7–9), with input images and ground-truth segmentation masks (Seg).

The results in Figures 7 and 8 show the quality of the segmentation results, with fine
and sharp edges. Table 2 lists the mIOU values for both DTS-Net and DTS-Net-Lite on the
three benchmarks; these results highlight the unique performance of the proposed method.
Note that the predicted segmentation masks contained many mispredicted pixel values
that had neighboring labels to the true label. Most of those pixels could be corrected easily
by the NLF technique. The main reason for the high mIOU and Pix.acc. values obtained
by our method is the NLF algorithm which improves the mIOU by 63.4% on PASCAL
VOC2012, improves the mIOU by 28.8% on NYUV2, and improves the mIOU by 33.0% on
CITYSCAPES. The pixel accuracy (Pix acc.) values also improved when applying NLF but
not with a big margin due to the nature of the pixel accuracy metric that reports the number
of correctly classified pixels regardless of the ratio of the overlap between the predicted
and the ground truth masks which is used in the mIOU metric. Those high improvements
in the mIOU and Pix acc. prove the important role of the NLF algorithm in getting more
accurate segmentation results than those without NLF.
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Figure 8. Sample results of predicted and NLF-filtered semantic segmentation (NLF Seg) results that
were obtained using DTS-Net-Lite on PASCAL VOC2012 (rows 1 and 2), NYUV2 (rows 3 and 4), and
CITYSCAPES (rows 5 and 6) with input images and ground-truth segmentation masks (Seg).

Table 2. Results that were obtained from DTS-Net and DTS-Net-Lite with and without NLF for each
dataset VOC2012, NYUV2, and CITYSCAPES with the mIOU%, Pixel accuracy(Pix.acc.)% and the
speed in FPS.

Model Img Size Dataset mIOU% Pix acc.% Speed (FPS)

DTS-Net 480 × 480 VOC2012 27.66 90.07 22
DTS-Net 640 × 480 NYUV2 33.92 79.4 18.1
DTS-Net 1024 × 512 CITYSCAPES 47.7 85.1 9.5

DTS-Net-Lite 256 × 256 VOC2012 14.72 87.0 24
DTS-Net-Lite 320 × 256 NYUV2 24.5 66.76 21.3
DTS-Net-Lite 512 × 256 CITYSCAPES 35.3 82.8 14.7

DTS-Net+ NLF 480 × 480 VOC2012 91.1 98.8 15.5
DTS-Net+NLF 640 × 480 NYUV2 62.77 84.73 12.8
DTS-Net+NLF 1024 × 512 CITYSCAPES 80.72 93.1 6.6

DTS-Net-Lite+NLF 256 × 256 VOC2012 83.8 96.1 19.2
DTS-Net-Lite+NLF 320 × 256 NYUV2 48.46 73.3 14.2
DTS-Net-Lite+NLF 512 × 256 CITYSCAPES 61.5 82.06 11.7

5.2. Semantic Segmentation Speed Results

We measured the processing speed of each frame for both models. Recall that we
chose MobileNetV2 as the feature extractor for DTS-Net-Lite to achieve real-time process-
ing. In general, depth-wise separable convolution-based architecture has considerably
higher processing speed than normal convolutional architectures, as discussed in detail
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in Section 3.1. DTS-Net-Lite is faster than DTS-Net because inverted residual and linear
bottle-necks are used; however, DTS-Net can achieve an average processing speed. In the
experiments, DTS-Net-Lite attained a speed of 19.2 frames per second (fps) with NLF filtra-
tion on PASCAL VOC2012 as the image size was 256× 256. Without the NLF, it attained
24 fps, as the patch-by-patch filtration required more computations, which consumed more
time. DTS-Net with NLF achieved only 17.5 fps on PASCAL VOC2012 and 22 fps without
NLF. DTS-Net-Lite achieved speeds of 14.1 and 21.3 fps with and without NLF, respectively,
on the NYUV2 dataset. On the CITYSCAPES dataset, DTS-Net-Lite achieved a low speed
of 11.7 fps with NLF, as the image size was 512× 256, and 14.7 fps without NLF. Table 2
lists the results achieved with DTS-Net and DTS-Net-Lite, that is, the mIOU, the Pix.acc,
and the speed.

5.3. Comparison with SOTA Semantic Segmentation Methods

We compared the proposed method with SOTA methods in terms of semantic seg-
mentation for the three benchmarks. On PASCAL VOC2012, the proposed method out-
performed the recent SOTA methods in terms of mIOU. In detail, the best-performing
SOTA method, that is, EfficientNet-L2+NAS-FPN [21] (based on EfficientNetB7, neural
architecture search, and a features pyramid network [38]) achieved an mIOU of 90.0%,
whereas DTS-Net achieved 91.1%. Table 3 compares the proposed method and the SOTA
methods on the PASCAL VOC2012 validation set in terms of mIOU, and indicates the
backbone architecture of each method. Further, Table 4 compares the proposed method
with the SOTA methods with regard to semantic segmentation on the NYUV2 benchmark
in terms of Pix.acc. Our method DTS-NEt+NLF outperformed the best SOTA method on
NYUV2 13 classes (BPNET [39]) by 11.2%, and DTS-NET-Lite+NLF achieves approximately
the same performance as BPNET with 0.2% lower pixel accuracy. We also compared our
method with the SOTA methods for semantic segmentation on the CITYSCAPES validation
benchmark. As detailed in Table 5, the proposed method outperformed the best SOTA
method in terms of mIOU by 0.15%. These results prove that the proposed method as a
learning technique exhibits higher performance than the recent SOTA encoder-decoder
architectures i.e., Deeplabv3, DeepLabv3+ which also depends on depthwise separable
convolution architectures (Xception and MobileNet encoders). We also compared the speed
of each model (the speeds are copied from the original papers) in Table 5 while the speed
comparison is not so informative since the hardware used for testing and the input image
size highly affect the speed of the model, and each method uses different hardware specifi-
cations and image size. In general, the proposed method exhibited distinctive performance
primarily because of the DTS layer which constructs the initial segmentation result and,
secondarily, the NLF filtration which enhances this segmentation result. Figure 9 shows
a quality comparison between the semantic segmentation results obtained from the best
architecture of the proposed method (DTS-Net+NLF) and those of the SOTA methods
which have encoder-decoder architecture and some of them have Xception architecture
encoder, that is, DeepLabv3 and DeepLabv3+, on PASCAL VOC2012 and CITYSCAPES
benchmarks. In Figure 9, the comparison on PASCAL VOC2012 shows that our method
can predict a precise segmentation mask even the unlabeled areas (white pixels in the
groundtruth) are labeled as background, noting that the borders of our results have few
mislabeled pixels. Those pixels exist due to the use of an image reconstruction method
(DTS) to construct the segmentation mask, and the NLF algorithm sometimes fails to correct
those pixels as their label is a true label of the segmentation output. On a CITYSCAPES
quality comparison in Figure 9, our methods can predict high-quality masks with few noisy
borders due to the same reasons mentioned at the previous sentence. Note that the black
regions contain many mislabeled pixels and this situation is acceptable as the black pixels
are unlabeled pixels that are not counted in the segmentation evaluation.
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Table 3. Comparison of the proposed method and SOTA methods on PASCAL VOC2012 vali-
dation benchmark.

Method Backbone mIOU (%)

DeepLab-CRF [9] ResNet-101+CRF 77.69
DeepLabv3 [12] ResNet-101 76.5

DeepLabv3+Res2Net [40] Res2Net-101 79.3
DeepLabv3+ [13] Aligned Xception 84.56

PSPNet [15] RestNet-152 85.4
SpineNet-S143 [24] Dilated SpineNet 85.64

HPN [19] ResNet-101 85.8
ExFuse [41] ResNeXt-131 85.8

Eff-B7 NAS-FPN [42] EfficientNet-B7+NAS+FPN 86.6
EfficientNet-L2+NAS-FPN [21] EfficientNet-B7+NAS+FPN 90.0

bf DTS-Net-Lite+NLF MobileNetV2+DTS 83.8
DTS-Net+NLF Xception+DTS 91.1

Table 4. Comparison between the proposed method and SOTA methods on the NYUV2 semantic
segmentation test benchmark. Note that ScanNet was evaluated on 11 classes only.

Method Backbone Pix.acc.%

SceneNet [43] VGG16 52.5
Hermans et al. [44] RDF+CRF 54.3

SemanticFusion [45] VGG16 59.2
ScanNet [46] NiN [47] 60.7
3DMV [48] Enet [49] 71.2
BPNet [39] U-Net 73.5

DTS-Net-Lite+NLF MobileNetV2+DTS 73.3
DTS-Net+NLF Xception+DTS 84.7

Table 5. Comparison between the proposed method and SOTA methods on CITYSCAPES semantic
segmentation validation benchmark in terms of mIOU and speed (FPS).

Method Backbone mIOU (%) Speed (FPS)

DICENet [50] ShuffleNetV2 63.4 17.2
ContextNet [51] Shallow+deep CNN 65.9 18.3

Template-Based NAS-arch1 [52] NAS-Net [53] 69.5 97.0
HPN [19] ResNet-101 71.7 4.0

FasterSeg [54] NAS-Net [53] 73.1 6.1
SqueezeNAS [55] NAS-Net [53] 75.2 0.0065

Dilated-ResNet [11] Dilated ResNet-101 75.7 -
EEEA-Net-C2 [26] NAS-Net [53] 76.8 11.6
MDEQ-large [25] MDEQ 77.8 -
DeepLabv3 [12] Dilated ResNet-101 78.5 2.0

DeepLabv3+ [13] Dilated Xception-71 79.6 4.2
PSPNet [15] Dilated ResNet-101 79.7 1.6

MDEQ-XL [25] MDEQ 80.3 -
RepVGG-B2 [27] VGG-like 80.57 4.5

DTS-Net-Lite+NLF MobileNetV2+DTS 61.5 11.7
DTS-Net+NLF Xception+DTS 80.72 6.6
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Figure 9. Quality comparison between the semantic segmentation results obtained from the proposed
method (DTS-Net+NLF), DeepLab, DeepLabv3, PSPNet, and DeepLabv3+ on PASCAL VOC2012
validation benchmark, and between DTS-Net+NLF, PSPNet, and DeepLabv3 on CITYSCAPES
validation benchmarks.

5.4. DTS-Net for Joint Depth Estimation and Semantic Segmentation

We trained DTS-Net on the simultaneous joint task of depth estimation and semantic
segmentation, as discussed in Section 4.5. The proposed method yielded promising results
even though the network performed both tasks simultaneously. The output semantic
segmentation and depth estimation had fine details. DTS-Net extracted the important
features for each task while using the same feature extractor but with different branches of
1 × 1 × 1024 convolutional layers, which were followed by the DTS layer. NLF filtration
was then applied to the segmentation output. The network showed promising error values
and accuracy for the depth estimation task while attaining a slightly inferior semantic
segmentation performance. To evaluate the depth estimation, we evaluated the following
depth estimation metrics:

• the absolute relative error (REL): 1
n ∑n

i
|y−ŷ|

y ;

• the relative difference squared (Sq_REL): 1
n ∑n

i
||y−ŷ||2

y ;

• the root mean squared error (RMSE):
√

1
n ∑n

i (y− ŷ)2;

• the disparity error (px): 1
n ∑n

i |y− ŷ|;
• the threshold accuracy δi of yp: max( y

ŷ , ŷ
y ) = δ < thr for the commonly used threshold

values thr = 1.25, 1.252, 1.253,
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where n is the number of pixels in the depth map, i indicates an iterator over the pixels, y
and ŷ are the ground truth and predicted pixel values, respectively.

The joint trained network yielded high-quality results, as shown in Figure 10. DTS-
Net+NLF attained a REL of 0.0987 and δ1 of 90.5% on the CITYSCAPES benchmark. Re-
garding the semantic segmentation in the joint task, the network attained mIOU values
of 72.1% with NLF filtration which is much lower than this for the single task. Further,
DTS-Net+NLF attained a REL value of 0.102 and δ1 of 94.59% while attaining an mIOU of
49.1% on the NYUV2 benchmark. The proposed method outperformed the SOTA methods
for joint semantic segmentation and depth estimation on the depth estimation by some
margin, however, the semantic segmentation was not compared because the segmentation
configuration for the models in the comparison is not similar to ours. Table 6 presents the
comparison for the depth estimation results with the SOTA methods in terms of REL, Sq
Rel, RMSE, the disparity error (px), and the delta accuracies. The proposed method had
low depth errors and high delta accuracy for depth estimation surpassing all other joint
semantic segmentation and depth estimation accuracies and error values while maintaining
a high mIOU for semantic segmentation.

Figure 10. Sample results of the joint semantic segmentation and depth estimation task using DTS-
Net. The upper sample is from the CITYSCAPES benchmark and the bottom sample is from the
NYUV2 benchmark. To the right of each input image, the ground truth and the output depth and
semantic segmentation are given.

Table 6. Comparison of the proposed method (DTS-Net+NLF) and the SOTA methods on depth
estimation using a joint semantic segmentation and depth estimation model in terms of depth error
(REL, Sq Rel, and RMSE), depth accuracy (δ1, δ2, and δ3), and disparity error (px).

Method Dataset REL Sq Rel RMSE δ1 δ2 δ3 px

SemDepth+CRF [32] NYUV2 0.158 0.121 0.641 0.769 0.950 0.988 -
TRL-ResNet50 [33] NYUV2 0.144 - 0.501 0.815 0.962 0.992 -
HybridNet A2 [34] CS 0.240 4.27 12.09 0.597 0.822 0.929 -

NYUV2 0.202 0.186 0.682 0.613 0.892 0.974 -
ESOSD-Net [35] NYUV2 0.145 - 0.514 0.805 0.962 0.992 -

CS - - - - - - 2.41

DTS-Net+NLF NYUV2 0.102 0.503 0.310 0.946 0.997 0.999 -
CS 0.098 1.093 7.627 0.905 0.956 0.971 1.62
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6. Future Work

The proposed DTS-Net shows promising results for dense prediction tasks, such as
semantic segmentation and depth estimation. In the future, this method can be extended
to more challenging dense prediction tasks, such as instance segmentation, through com-
bination with an object detection technique. This approach will allow for discrimination
between instances of the same class and can mask those instances with different masks.
The feature extractor component could also be replaced with a considerably smaller and
simple architecture equivalent to the opposite layer (the space-to-depth), which could then
be followed by a small number of convolutional filters. This would reduce the complexity
of the feature extractor CNNs. The nearest label filtration (NLF) technique can also be
improved using a separate CNN trained on small patches of the training images instead of
the integrated branch for classification in current implementation for whole image classi-
fication, and the local prediction may attain better filtration accuracy as the current NLF
considers the global labels of the image, and not all of those labels exist in every patch of
the image.

7. Conclusions

The proposed DTS-Net is a simple approach inspired by the DTS image reconstruction
technique used in image and video super-resolution. The proposed DTS-Net implementa-
tion is simple and yet achieves extremely high accuracy and an average speed for dense
prediction tasks such as semantic segmentation, as proven by the results obtained on the
different semantic segmentation benchmarks reported herein. For the simultaneous joint
task of semantic segmentation and depth estimation, DTS-Net exhibited promising accu-
racy for both semantic segmentation and depth estimation while the two tasks were trained
simultaneously. These results prove the strength of the DTS module, which is the core of
the proposed method, and demonstrate its potential for re-employment in dense prediction
tasks. The proposed DTS-Net-Lite also provides the ability to perform real-time processing
by using a lightweight encoder achieving relatively good segmentation accuracy.
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