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Abstract: At present, the design and manufacturing technology of mechanically dithered ring laser
gyroscope (MDRLG) have matured, the strapdown inertial navigation systems (SINS) with MDRLG
have been widely used in military and business scope. When the MDRLG is working, high-frequency
dithering is introduced, which will cause the size effect error of the accelerometer. The accelerometer
signal has a time delay relative to the system, which will cause the accelerometer time delay error.
In this article, in order to solve the above-mentioned problem: (1) we model the size effect error
of the mechanically dithering of the MDRLG and perform an error analysis for the size effect error
of the mechanically dithering of the MDRLG; (2) we model the time delay error of accelerometer
and perform an error analysis for the time delay error of accelerometer; (3) we derive a continuous
linear 43-D SINS error model considering the above-mentioned two error parameters and expand the
temperature coefficients of accelerometers, inner lever arm error, outer lever arm error parameters
to achieve high-precision calibration of SINS. We use the piecewise linear constant system (PWCS)
method during the calibration process to prove that all calibration parameters are observable. Finally,
the SINS with MDRLG is used in laboratory conditions to test the validity of the calibration method.

Keywords: size effect; system-level calibration; inertia lnavigation; lasergyro; dither

1. Introduction

Error parameters of the inertial device are important factors affecting the navigation
accuracy of SINS. Any small error parameter of the inertial device will cause a large navi-
gation error through the divergence of the algorithm error, which needs to be compensated
by calibration. Error parameter calibration methods mainly include discrete calibration
and systematic calibration. The discrete calibration relies on the accurate azimuth, position,
and angular rate reference provided by the high-precision turntable, and by referring to the
local gravity acceleration and the earth’s rotation angular rate, placing the IMU in different
positions can calibrate the error terms of the gyroscopes and accelerometers [1,2]. However,
the calibration accuracy of the discrete calibration is fundamentally limited by the accuracy
of the turntable [3], and the cost of high-precision turntable equipment is too high, which
makes it difficult to greatly improve the accuracy of the discrete calibration.

The systematic calibration method is the process of estimating the SINS error pa-
rameters from the navigation error (attitude error, velocity error, position error) of the
SINS that is based on the error model of the SINS. Systematic calibration does not rely on
high-precision turntables, so it has been widely used in self-calibration and field calibration
of SINS. Pittman [4] pointed out the four major advantages of the systematic calibration
method: it can realize the on-site calibration of the SINS; it can realize the self-calibration
of the SINS; it does not require high-precision turntables and other high-precision test
equipment; it does not need to measure and record the output of the gyroscope or ac-
celerometer. At present, the research on systematic calibration mainly focuses on the
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layout of the calibration path and the design of the Kalman filter. The main purpose of
the calibration path is to decouple the error transmission and improve the observability of
error parameters. Savage [5] designed 2 sets of rotation sequences to compare the specific
force components before and after the rotation, so as to achieve the calibration of IMU
error parameters. Zhanghua Zhou [6] proposed a 10-position calibration method, which
has low requirements on the accuracy of the turntable. Chamberlain L [7] designed an
18-position calibration scheme, which can attain the calibration accuracy requirements of
navigation-level SINS within 20 min and is currently widely used. Joos [8] pointed out
that the systematic calibration method can improve the calibration accuracy of the space
microgravity measurement accelerometer. Grewal [9] designed a 51-dimensional state filter
and a 12-dimensional state filter to estimate the gyroscope parameters and accelerometer
parameters. Cai analyzed the influence of the accelerometer’s nonlinear scaling factor in the
calibration based on norm-observation and used the particle swarm algorithm to solve the
problem of solving complex nonlinear observation equations [10]. Yu Xudong [11] used the
latitude and longitude error as the observation to accurately identify the drift of the laser
gyroscope. Liu Bing [12] designed a systematic calibration method based on a high-order
Kalman filter algorithm. Shi Wenfeng [13] designed a ten-position systematic calibration
path and established a 33-dimensional Kalman filter to estimate the error parameters. Yu
Hailong [14] designed a 33 dimensional Kalman filter, which considered the quadratic error
coefficient of the accelerometer, and verified it through simulation experiments.

Due to the mechanical structure and installation error, the sensitive points of the three
accelerometers and the sensitive point of IMU do not coincide. So the measuring points
of the three accelerometers are different, which will cause navigation errors. This error
effect is called the inner lever arm effect. Weng Jun included the non-synchronization of
the accelerometer in Kalman’s state variables and perfected the calibration error model [15].
Literature [16–18] considered the size effect of the accelerometer and the accelerometer-
gyro time asynchronous error. Literature [19] designed a 25-position rotation arrangement
method, which additionally considered the quadratic error of the accelerometer and the
error of the inner lever arm, and verified the feasibility of the calibration path. The above-
mentioned internal lever arm effect research is aimed at the fixed lever arm compensation
under the static state of the gyroscope. When the MDRLG working, high-frequency
dithering is introduced, which will cause the size effect error of the accelerometer. At
present, the research on the compensation method of the size effect caused by the dithering
of the MDRLG is rare.

Since the signal of the accelerometer needs to pass a Voltage Frequency Converter (VF)
or a Current Frequency Converter (IF), there is a time delay relative to the gyroscope signal.
The asynchronous time between gyroscope and accelerometer would generate navigation
errors. Literature [20,21] modeled asynchronous time between auxiliary sensors (such as
GPS) and SINS and gave the compensation method. At present most studies about the
compensation for the asynchronous time were about the compensation between auxiliary
sensors and SINS. However, few studies were about the compensation method of IMU
asynchronous time.

In the current study, the error parameters of the accelerometer are considered to be
fixed values. Since the accelerometer output is sensitive to the working temperature, the
error parameters of the accelerometer will change accordingly when the accelerometer is
working in an environment with drastic temperature changes. so it is necessary to compen-
sate the error parameters of the accelerometer to eliminate the calibration parameter errors
caused by temperature changes. The currently widely used temperature compensation
method mainly uses polynomial fitting to obtain the fitting relationship between the output
of the accelerometer and the temperature, and then establishes the temperature error model
of the zero offsets and the scale factor [22] and compensates in the algorithm. Research on
temperature error compensation in calibration is still rare.

In order to solve the above-mentioned problems, in this article, we analyze the impact
of the dithering of laser MDRLG on navigation accuracy. The analysis results show that
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during the dithering along the MDRLG sensitive axis, the mechanical dithering will cause
the size effect error of the accelerometers on the other two axes and the solution is given.
We model the size effect error of the accelerometer caused by the mechanical dithering
of MDRLG and gave the error compensation method. Since there is a slight time delay
between the signal of the MDRLG and the signal of the accelerometer, which will cause
navigation time delay error. In this article, we analyze the impact of the signal’s time delay
of the accelerometer on navigation error and give a calibration method for the time delay.
Since the output of the accelerometer is sensitive to the working temperature, when the
accelerometer is working in a temperature-changing environment, the error parameters
of the accelerometer are changing. An error model including temperature coefficient is
established to solve the problem that the error parameters of accelerometer vary with
temperature. Finally, on the basis of the above-mentioned errors, we also consider the inner
and outer lever arm errors and derive the continuous linear SINS error model considering
the above-mentioned error parameters, and use the Kalman filter to estimate the error
parameters. A 43 dimensional (43-D) filter is designed to realize the accurate estimation of
the above-mentioned error, and the observability of the proposed state is analyzed using
PWCS and Singular Value Decomposition (SVD) methods.

2. Reference Frame Definition

The reference coordinate frames involved in this article are defined as follows.
i Coordinate frame: Earth-centered initially fixed (ECIF) orthogonal reference coordinate.
e Coordinate frame: Earth-centered earth fixed (ECEF) orthogonal reference coordinate.
b Coordinate frame: Orthogonal reference coordinate aligned with right– forth–up

(RFU) axes.
n Coordinate frame: Orthogonal reference coordinate aligned with actual east–north–up

(ENU) geodetic axes.
g Coordinate frame: Nonorthogonal reference coordinate aligned with gyro-sensitive axes.
a Coordinate frame: Nonorthogonal reference coordinate aligned with accelerometer-

sensitive axes.

3. Modeling and Error Analysis for Systematic Calibration of Sins
3.1. System Configuration of the SINS

The system configuration for SINS with MDRLG is shown in Figure 1. The SINS
mainly includes a solving computer circuit board and an Inertial Measurement Unit (IMU).
The IMU consists of three MDRLGs and three accelerometers. The three MDRLGs and
accelerometers are placed in an orthogonal structure. Due to the error in the machining of
the orthogonal structure. The MDRLGs and accelerometers installations are nonorthogonal.
The unit vectors of the sensitive axes of three MDRLGs are xb, yb and zb, respectively. The
unit vectors of the sensitive axes of three accelerometers are xa, ya and za, respectively.

Figure 1. SINS with MDRLG structure.
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3.2. Modeling and Error Analysis for Dithering of the MDRLG

It is assumed that the three accelerometers of the SINS are installed in the b(OXbYbZb)
coordinate frame. As shown in Figure 2, the sensitive points of the three accelerometers are
Rx, Ry, and Rz. The position vectors relative to the sensitive point O of the system(origin of
the b(OXbYbZb) coordinate frame) are rb

x, rb
y and rb

z , and the unit vectors in the direction of
the accelerometer’s sensitive axes are Eb

Rx, Eb
Ry, and Eb

Rz. When the rotational angular veloc-

ity of the system relative to the inertial space is ωb
ib, the output of the three accelerometers

is as follows:

f b
RI =

[
f b
o + ωb

ib ×
(

ωb
ib × rb

I

)
+ ω̇b

ib × rb
I

]
· Eb

R(I = x, y, z) (1)

In Equation (1), f b
RI represents the output of the I-axis accelerometer in the b coordinate

frame, and f b
o represents the acceleration at point O in the b coordinate frame.

Figure 2. Schematic diagram of size effectt.

Hypothesize f b
oI = f b

o × Eb
RI . Substituting Equation (2) into Equation (1), Equation (1)

can be written as follows:

f b
rI = f b

RI − f b
ol =

[
ωb

ib ×
(

ωb
ib × rb

I

)]
× Eb

Rl +
[
ω̇b

ib × rb
I

]
× Eb

RI (2)

Equation (2) is the expression of the accelerometer size effect error, where the first term
on the right is the centripetal acceleration, and the second term is the tangential acceleration.
It can be seen that the size effect error is the additional interference acceleration generated
by the accelerometer installation deviation rb

I under the action of the angular movement of
the SINS. This error is proportional to the distance of the accelerometer from the sensitive
point of the system.

After the installation error of the inertial device of the SINS is compensated, the
sensitive axes of three accelerometers and three MDRLGs are, respectively, parallel and
consistent with the OXb-axis, OYb-axis and OZb-axis of the b coordinate frame, then

Eb
Rx =

[
1 0 0

]
Eb

Ry =
[

0 1 0
]

Eb
Rz =

[
0 0 1

] (3)
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Hypothesize

ωb
ib =

[
ωb

ibx ωb
iby ωb

ibz

]T
,

rb
x =

[
rb

xx rb
xy rb

xz

]T
,

rb
y =

[
rb

yx rb
yy rb

yz

]T
,

rb
z =

[
rb

zx rb
zy rb

zz

]T

(4)

By substituting Equations (3) and (4) into Equation (2), we can obtain the size effect
error of acceleration in the b coordinate frame as follows:

f b
r =

 f b
rx

f b
ry

f b
r=

 =


−rb

xx

[(
ωb

iby

)2
+
(

ωb
ibz

)2
]
+ rb

xy

(
ωb

ibxωb
iby − ω̇b

ibz

)
+ rb

xz

(
ωb

ibxωb
ibz + ω̇b

iby

)
rb

yx

(
ωb

ibxωb
iby + ω̇b

ibz

)
− rb

yy

[(
ωb

ibx

)2
+
(

ωb
ibz

)2
]
+ rb

yz

(
ωb

ibyωb
ibz − ω̇b

ibx

)
rb

ix

(
ωb

ibxωb
ibz − ω̇b

iby

)
+ rb

zy

(
ωb

ibyωb
ibz + ω̇b

ibx

)
− rb

zz

[(
ωb

ibx

)2
+
(

ωb
iby

)2
]

 (5)

The frequency offset technology of mechanical dithering is usually used to overcome
the lock-up effect of the MDRLG and the SINS with MDRLG is always in a high-frequency
dynamic motion state, which will cause the size effect error of the accelerometer. The signal
of MDRLG is processed by an internal digital filtering algorithm and the output of MDRLG
only contains the actual angular velocity ωb

ib of the SINS. Therefore, due to the lack of
measurement information of the angular velocity of the dithering of MDRLG, it is difficult
to algorithmically compensate for the size effect error of the accelerometer caused by the
dithering of MDRLG. The corresponding research and solution can only be carried out in
the IMU structure design, error compensation, and calibration test. The dithering signal of
the MDRLG can generally be expressed as:

ωb
ib=A cos(Ωt) (6)

In Equation (6), ωb
ib is the angular velocity of the dithering of MDRLG; A is the

amplitude of the dithering of MDRLG; Ω is the frequency of the dithering of MDRLG; t is
the time.

For the convenience of analysis, only the size effect error of the accelerometer caused
by MDRLG on one axis is considered. Suppose the angular velocity caused by obxb-axis
MDRLG is ωjx, the amplitude of the dithering of obxb-axis MDRLG is Ax, the frequency
of the dithering of obxb-axis MDRLG is Ωx, and the angular velocity of the dithering of
MDRLG on the other two axes is 0, then

ωb
ib =

 ωjx
0
0

 =

 Ax cos(Ωxt)
0
0

 (7)

By substituting Equation (7) into Equation (5), the size effect error of the accelerometer
caused by the dithering of obxb-axis MDRLG can be obtained as:

δ f b
rs =

 δ f b
rsx

δ f b
rsy

δ f b
rs=

 =


0

−rb
yy A2

x
2 + rb

yz AxΩ sin(Ωt) +
−rb

yy A2
x

2 cos(2Ωt)
−rb

zz A2
x

2 − rb
zy AxΩ sin(Ωt) + −rb

zz A2
x

2 cos(2Ωt)

 (8)

It can be seen from Equation (8) that the dithering of obxb-axis MDRLG will cause
the size effect errors of the accelerometers on obyb-axis and obzb-axis. The size effect errors
are in the form of oscillation, consisting of a constant value component, a first-order
component of the dithering frequency, and a second-order component of the dithering
frequency. The main factor affecting the system accuracy is the constant component, which
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is mainly related to the dithering amplitude of MDRLG, and the relationship with the
dithering frequency of MDRLG is not obvious. We can write the velocity and position
errors as follows:

δvns =

 0
−rb

yy A2
x

2 t
−rb

zz A2
x

2 t

 δPns =

 0
−rb

yy A2
x

2 t2

−rb
zz A2

x
2 t2

 (9)

It can be seen from Equation (9) that the velocity error and position error caused by the
dithering of the MDRLG are a linear function and a quadratic function of time, respectively.

Assuming that the size effect errors caused by the dithering of the three MDRLG
installed on the IMU are the superposition of the size effect error caused by the dithering
of each MDRLG alone, the maximum size effect error of the accelerometer caused by the
dithering of the three MDRLGs installed on the IMU is

δ f b
r =

 δ f b
rx

δ f b
ry

δ f b
r=

 =


− rb

xx A2
y

2 − rb
xx A2

z
2

− rb
yy A2

x
2 − rb

yy A2
z

2

− rb
zz A2

x
2 − rb

zz A2
y

2

=
 −

(A2
y+A2

z)

2 rb
xx

− (A2
x+A2

z)
2 rb

yy

− (A2
x+A2

y)

2 rb
zz

 (10)

In Equation (10), the amplitude AI(I = x, y, z) can generally be detected and output
by the built-in sensor of the MDRLG. It can be seen that the size effect error caused by the
dithering of the MDRLG in the IMU is related to the dithering amplitude of the MDRLG
installed on the sensitive axis of IMU. When the amplitude of the MDRLGs installed on
the three axes of the IMU remains unchanged, the specific force error is a constant value,
which is equivalent to the zero-bias of the accelerometer.

The traditional systematic calibration method does not consider the influence of the
dithering of MDRLG. The marked zero-bias ∇′I is the combination of the size effect error
δ f b

rI caused by the dithering of MDRLG and the real zero-bias ∇I of the accelerometer, not
the real zero offset. The traditional systematic calibration method is performed under the
assumption that the amplitude of the dithering of MDRLG is constant. However, in practice,
it has been found that the dithering amplitude of MDRLG is affected by vibration, structural
environment, and the performance of the dithering mechanism built into the MDRLG. The
dithering amplitude of the MDRLG is variable, so it is inaccurate to compensate for the
navigation error with constant zero bias. In this article, an error model of the accelerometer
considering the size effect error of the dithering of the MDRLG is established, which can
calibrate the real zero-bias of the accelerometer. We can see the detailed error model of the
accelerometer in Sections 3.4.2 and 3.4.3. During navigation error compensation, the real
zero-bias of accelerometer ∇I is directly compensated, and the size effect δ f b

rI that caused
by the dithering of the MDRLG is calculated and compensated in real-time.

The velocity and position errors caused by the dithering of the MDRLG is shown
as follows:

δvn =


(− rb

xx A2
y

2 − rb
xx A2

z
2 )t

(− rb
yy A2

x
2 − rb

yy A2
z

2 )t

(− rb
zz A2

x
2 − rb

zz A2
y

2 )t

 δPn =


(− rb

xx A2
y

2 − rb
xx A2

z
2 )t2

(− rb
yy A2

x
2 − rb

yy A2
z

2 )t2

(− rb
zz A2

x
2 − rb

zz A2
y

2 )t2

 (11)

It can be seen from Equation (11) that the velocity error and position error caused by the
dithering of the MDRLG are a linear function and a quadratic function of time, respectively.

3.3. Modeling and Error Analysis for Time Delay of Accelerometer
3.3.1. Error Modeling

For general SINS, it can be considered that the output time of the MDRLG is the
sampling time of the system, and the accelerometer signal needs to be converted by IF or
VF, so there is a time delay δta between the accelerometer and the system sampling time.



Sensors 2022, 22, 278 7 of 24

Navigation error will be caused by sampling delay of accelerometer when SINS working in
a dynamic environment.

The sensitive axes of the accelerometer components are used as the reference of the
coordinate frame for specific force updates. The body coordinate frame b determined
by the MDRLG components is converted to the B coordinate frame determined by the
sensitive axes of the accelerometers. The theoretical specific force conversion Equation is
f n
SF = Cn

B f B
SF, and the actual calculated value considering the effect of the time delay of the

accelerometers is

∆ f A
SF = Cn

b f A
SF = Cn

b Cb
B f B

SF ≈ Cn
b [I + (∆ f )×] f B

SF (12)

where
∆ f =

(
ωb

ib − Cb
nωn

in

)
× δta (13)

ωn
in =

 − vN
RM+h

ωie cos L + vE
RN+h

ωie sin L + vN
RN+h

 (14)

During the calibration process, the velocity of the IMU is close to zero, and the angular
velocity of the earth’s rotation is much smaller than the angular velocity of the turntable.
Therefore, we can simplify Equation (13) as

∆ f = ωb
ib × δta (15)

Substitute Equation (15) into Equation (12)

∆ f n
SF = Cn

b ωb
ib × f A

SF × δta (16)

3.3.2. Analysis of Time Delay Error of Accelerometer

Assume that the b coordinate frame coincides at the n coordinate frame of the initial
position of the SINS. The SINS rotates at an angle of ω at a constant speed around the obxb
axis from the initial position. Suppose the posture matrix Cn

b at time t during the rotation is:

Cn
b =

 1 0 0
0 cos ωt sin ωt
0 − sin ωt cos ωt

 (17)

f A
SF = [ 0 g sin ωt −g cos ωt ] (18)

Ignoring the influence of the earth’s rotation angular velocity ωib during the rotation,
then ωib = [ θx 0 0 ]T . Due to mechanical error, the installation of gyro is not orthogonal.
Assuming the installation error matrix is Cb2

b , the specific force error generated by the
rotation of the SINS is

∆ f n
SF =

 1 0 0
0 cos ωt sin ωt
0 − sin ωt cos ωt

× Cb2
b ωb

ib × f A
SF × δta (19)

Equation (19) can be simplified as follows:

∆ f n
SF = Cb2

b δta

 1 0 0
0 cos ωt sin ωt
0 − sin ωt cos ωt

 ω
0
0

×
 0

g sin ωt
−g cos ωt

 = Cb2
b δtaωg

 0
1
0

 (20)
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The velocity and position errors caused by the time delay of accelerometerare can be
written as

δvn = Cb2
b δtaωg

 0
t
0

 δPn = Cb2
b δtaωg

 0
0.5t2

0

 (21)

It can be seen from the Equation (21) that in the process of rotation, the MDRLG-
accelerometer asynchronous time mainly affects the north direction error. In order to verify
the correctness of the above derivation, we conduct the following rotation simulation
experiment. Assuming that the asynchronous time is 1 ms, the angular velocity of the
sensitive axis of each body coordinate frame is 5◦/s, the error resolution is 1 × 10−5, and
each simulation time is 50 s, the rotation simulation results are shown in Figure 3.

Figure 3. Simulate navigation errors.

The navigation error propagation obtained by computer simulation in Figure 3 is the
same as (21); therefore, the rotation along pitch axes would cause the north navigation error.
The above derivation is a relatively ideal situation.

3.4. IMU Calibration Parameters and Model of Inertial Device Output Error
3.4.1. Model of IMU Calibration Parameters

The three coordinate axes of the b frame (body coordinate frame) are, respectively, xb,
yb and zb, the unit vectors of the three sensitive axes of gyros in the IMU are xg, yg and zg,
respectively. Then the pulse that the MDRLG output per unit time can be written as Ng

x
Ng

y
Ng

z

 =

 Sg
x 0 0

0 Sg
y 0

0 0 Sg
z

 xg · xb xg · yb xg · zb

yg · xb yg · yb yg · zb

zg · xb̄ z · yb zg · zb

 ωb
x

ωb
y

ωb
z

+

 bg
x

bg
y

bg
z

+
 ng

x
ng

y
ng

z

 (22)

In Equation (22), ωb
ib =

[
ωb

x ωb
y ωb

z

]T
is the projection of the input angular

velocity vector in the b frame, Ng =
[

Ng
x Ng

y Ng
z
]T

is the pulse output per unit time of
MDRLG , Sg

I , bg
I (I = x, y, z) represents the scale factor and zero bias of the I-axis MDRLG,

respectively, and Mb
g =

 xg • xb xg • yb xg • zb

yg • xb yg • yb yg • zb

zg • xb zg • yb zg • zb

 is the dot product of the sensitive

axis vector of the MDRLGs and axis vector of the body coordinate frame. The matrix
realizes the conversion of the vector from the body coordinate frame to the sensitive-axis
coordinate frame of the MDRLGs and reflects the installation relationship of the MDRLGs.
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We can set the unit vectors of the three accelerometers sensitive axes as xa, ya, za and
the pulse that the accelerometer output per unit time can be written as Na

x
Na

y
Na

z

 =

 Sa
x 0 0

0 Sa
y 0

0 0 Sa
z

 xa · xb xa · yb xa · zb

ya · xb ya · yb ya · zb

za · xb za · yb za · zb

 f b
x

f b
y

f b
z

+

 ba
x

ba
y

ba
z

+
 f b

rxm
f b
rym

f b
rzm

+

 na
x

na
y

na
z

 (23)

In Equation (23), f b =
[

f b
x f b

y f b
z

]T
is the representation of the specific force vector

in the b frame, Na =
[

Na
x Na

y Na
z

]T
is the pulse that the accelerometer output per unit

time, Sa
I and ba

I are the scale factor and zero bias of the I-axis accelerometer, respectively.

From Equation (10), it can be seen that f b
rm =

 f b
rxm

f b
rym

f b
r=m

 =

 −0.5rb
xx(A2

y + A2
z)

−0.5rb
yy(A2

x + A2
z)

−0.5rb
zz(A2

x + A2
y)

 is

the maximum size effect error of the accelerometer caused by the dithering of MDRLG,

Mb
a =

 xa • xb xa • yb xa • zb

ya • xb ya • yb ya • zb

za • xb za • yb za • zb

 is the installation relationship matrix of accelerometers,

na
I refers to the noise measured by the I-axis accelerometer.

Under ideal installation conditions, the sensitive axes of the MDRLGs and the sensitive
axes of accelerometers coincide with the axes of the body coordinate frame, respectively.
Therefore, the installation relationship matrix Mb

g and Mb
a are unit arrays. However, there

must be an installation error when the IMU is assembled. Assuming that the installation
error angle is a small angle, the installation relationship matrix can be approximately
written as:

Mb
g =

 xg • xb xg • yb xg • zb

yg • xb yg • yb yg • zb

zg • xb zg • yb zg • zb

 ≈
 1 −γ

g
xz γ

g
xy

−γ
g
yz 1 −γ

g
yx

−γ
g
zy −γ

g
zx 1

 (24)

Mg
a =

 xa • xb xa • yb xa • zb

ya • xb ya • yb ya • zb

za • xb za • yb za • zb

 ≈
 1 −γa

xz γa
xy

γa
yz 1 γa

yx
−γa

zy γa
zx 1

 (25)

In Equations (24) and (25), γ
g
ij(i, j = x, y, z) and γa

ij(i, j = x, y, z) are the installation
error angles of the MDRLGs and accelerometers, respectively.

The coordinate frame of the turntable has always been used as the reference coordinate
frame during discrete calibration. Since the coordinate frame of the turntable is not used
as the reference for systematic calibration, a new reference frame must be established and
constrained. Take the body coordinate frame xbybzb as the reference coordinate frame,
xb coincides with the sensitive axis unit vector of the MDRLG, xg, yb is located in the
xgyg plane, zb, xb and yb form a right-handed rectangular coordinate frame, the sensitive
axis xayaza of accelerometers can be projected to the body coordinate frame through 6
angles superior.

Installation errors are considered small angles. Therefore, the relationship between
the three sensitive axes of the MDRLGs and the axis of b frame can be written as:

xb = xg

yb = yg + xg · γg
yz

zb = zg + yg · γg
zx − xg · γg

zy

(26)
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The relationship between the unit vectors of the three sensitive axes of accelerometers
can be written as:

xb = xa − ya · γa
zx + za · γa

xy
yb = ya + xa · γa

yz − za · γa
yx

zb = za − xa · γa
zy + ya · γa

zx

(27)

Write Equations (26) and (27) in matrix form as follows:

Mb
g =

 1 0 0
γ

g
yz 1 0
−γ

g
zy γ

g
zx 1

 Mb
a =

 1 −γa
xz γa

xy
γa

yz 1 −γa
yx

−γa
zy γa

zx 1

 (28)

According to the input-output relationship expressed by Equations (22) and (23), the
angular velocity and specific force measurement results can be obtained from the pulse
output of the IMU.

ωb
ib =

 xg · xb xg · yb xg · zb

yg · xb yg · yb yg · zb

zg · xb zg · yb zg · zb

−1 Sg
x 0 0

0 Sg
y 0

0 0 Sg
z

−1 Ng
x − bg

x − ng
x

Ng
y − bg

y − ng
y

Ng
z − bg

z − ng
z


=KgNg −ω0 − δω

(29)

f b =

 xa · xb xa · yb xa · zb

ya · xb ya · yb ya · zb

za · xb za · yb za · zb

−1 Sa
x 0 0

0 Sa
y 0

0 0 Sa
z

−1 Na
x − ba

x + f b
rxm − na

x
Na

y − ba
y + f b

rym − na
y

Na
z − ba

z + f b
r=m − na

z


=KaNa − f0+ f b

r − δ f

(30)

Kgand Ka include the scale factors and installation relationship items of the MDRLGs
and the accelerometers, respectively, which can be written as:

Kg =


Sg

x

(
xg · xb

)
Sg

x

(
xg · yb

)
Sg

x

(
xg · zb

)
Sg

y

(
yg · xb

)
Sg

y

(
yg · yb

)
Sg

y

(
yg · zb

)
Sg

z

(
zg · xb

)
Sg

z

(
zg · yb

)
Sg

z

(
zg · zb

)

−1

(31)

Ka =


Sa

x

(
xa · xb

)
Sa

x

(
xa · yb

)
Sa

x

(
xa · zb

)
Sa

y

(
ya · xb

)
Sa

y

(
ya · yb

)
Sa

y

(
ya · zb

)
Sa

z

(
za · xb

)
Sa

z

(
za · yb

)
Sa

z

(
za · zb

)

−1

(32)

Assuming that the installation error angle is a small angle, then Kgand Ka can be
written approximately as

Kg ≈

 Sg
x 0 0

Sg
yγ

g
yz Sg

y 0
−Sg

z γ
g
zy Sg

z γ
g
zx Sg

z

−1

Ka ≈

 Sa
x −Sa

xγa
xz Sa

xγa
xy

Sa
yγa

yz Sa
y −Sa

yγa
yx

−Sa
zγa

zy Sa
zγa

zx Sa
z


−1

(33)

Equations (29) and (30) are the calibration parameter models of IMU used in this article,
matrix Kg, Ka and zero bias vector ω0, f0 are the calibration parameters to be estimated.
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3.4.2. Output Error Model of the MDRLG

According to the calibration parameter models of IMU (Equations (29) and (30)), the
establishment of the error model of the MDRLG needs to consider the scale factor error,
installation error and zero bias. The output error model of MDRLG is as follows:

δωb
ib =

 δSg
x 0 0

0 δSg
y 0

0 0 δSg
z

 1 0 0
γ

g
yz 1 0
−γ

g
yz γ

g
yz 1


 ωb

ibx
ωb

iby
ωb

ibz

+
 εx

εy
εz

 (34)

In Equation (34), δωb
ib is the angular velocity measurement error,

ωb
ib = [ ωb

ibx ωb
iby ωb

ibz ] is the angular velocity vector in the b frame, and ε I is the
zero bias of the MDRLG.

3.4.3. Output Error Model of the Accelerometer

According to the calibration parameter model of IMU, the establishment of the error
model of the accelerometer needs to consider the scale factor error, installation error, and
zero bias. From Equation (11), it can be seen that the dithering of the MDRLG will generate
the size effect error, which needs to be considered in the error model. The output of the
accelerometer is sensitive to the working temperature. In this article, the scale factor error
caused by temperature change is introduced in the output error model of the accelerometer.
The output error model of the accelerometer can be written as follows:

δ f b =

 δSa
x 0 0

0 δSa
x 0

0 0 δSa
x

 1 −γ
g
xz −γ

g
xy

γ
g
yz 1 −γ

g
yx

−γ
g
zy γ

g
zx 1

 f b
x

f b
y

f b
z

+

 ∇x
∇y
∇z

+

 δ f b
rx

δ f b
ry

δ f b
r=


+

 ∆TaxKTx 0 0
0 ∆TayKTy 0
0 0 ∆TazKTz

 f b
x

f b
y

f b
z

 (35)

In Equation (35), f b = [ f b
x f b

y f b
z ] is the specific force vector in the b frame,

∇I(I = x, y, z) is the zero bias of the MDRLG, KTI is the temperature scale factor er-
ror of the MDRLG, ∆TaI is the temperature change rate, δ f b

r is the size effect error of
accelerometers caused by the dithering of the MDRLG, and the Equation is shown in the
Equation (10).

4. Design of Systematic Calibration Based on Kalman Filter
4.1. Outer Lever Arm Effect

When the actual SINS is calibrated, the rotation center of the turntable does not
coincide with the sensitive center of the IMU, there is a lever arm vector between the
observation point and the sensitive center of the IMU. Assuming that the lever arm vector
from the sensitive center of the IMU to the observation point is lb . The observation of
velocity and position can bewritten as

vobv = vn
e + Cn

b

(
ωb

eb × lb
)

(36)

pobv = p + diag


1

RM+h 0 0
0 1

(RN+h) cos L 0
0 0 1

Cn
b lb (37)

In Equation (36), ωb
eb is the expression of the rotation angular velocity of the body

coordinate frame relative to the earth coordinate frame in the body coordinate frame.
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4.2. Calibration Filter Design for SINS

In this article, we design a 43-D Kalman filter to estimate all SINS errors during the
systematic calibration process. These errors are including general IMU errors, time delay
error of accelerometer, temperature error coefficient, inner lever arm error, and outer lever
arm error. The state variables of the proposed filter are written as follows:

X = [φTδvnT
e δpTXT

g XT
a δlbTδrbTδta]

T (38)

In Equation (38), δp =
[

δL δλ δh
]T is the position error vector, Xg is the error

vector of MDRLGs, Xa is the error vector of accelerometers, δlbTis the outer lever arm
vector, δrbT is the inner lever arm vector. Based on Equation (34) and Equation (35), Xg and
Xa can be written as follows:

Xa =
[

δka
11 δkg

21 δkg
31 δkg

12 δkg
22 δkg

32 δka
13 δka

23 δka
33

∇x ∇y ∇z δKTa
x δKTa

y δKTa
z

] (39)

Define the navigation coordinate frame as the local geographic coordinate frame
(North-Sky-East Coordinate System). The navigation error equation of the inertial naviga-
tion frame can be written as follows:

ϕ̇ = −ωn
in × ϕ + δωn

in − Cn
b δωb

ib
δvn

e =
(

Cn
b f b
)
× ϕ−

(
2ωn

ie + ωn
en
)
× δvn

e −
(
2δωn

ie + δωn
en
)
× vn

e + δgn
l + Cn

b δ f b

δL̇ = δvN
RM+h −

vN δh
(RM+h)2

δλ̇ = δvE
(RN+h) cos L + vE sin LδL

(RN+h)cos2L −
vEδh

(RN+h)2 cos L
δḣ = δvU

(40)

In Equation (40), ϕ is the attitude errors, ωn
in = ωn

ie +ωn
en is the projection of the rotation

angular velocity of the navigation coordinate frame relative to the inertial coordinate frame
in the navigation coordinate frame, vn

e =
[

vN vU vE
]T is the ground speed, L,λ, h are

the local geographic latitude, longitude and altitude, respectively, RM, RN are the radius of
the earth’s meridian circle and the radius of the unitary circle, respectively, δωb

ib, δ f b are
the angle error and the specific force measurement error, respectively.

The error propagation Equation (40) is rewritten into a matrix form to obtain the state
equation of the Kalman filter as follows:

Ẋ = FX + Wu (41)

Utilizing Equations (38)–(40), we can obtain the elements of the F matrix as follows:

F =



−
[
ωn

in×
]

F12 F13 F14 03×15 03×3 03×3 03×1 03×1[(
Cn

b f b
)
×
]

F22 F23 03×9 F25 03×3 F27 F28 F29

03×3 F32 F33 03×9 03×15 03×3 03×3 03×1 03×3
09×3 09×3 09×3 09×9 09×15 09×3 09×3 09×1 03×3
015×3 015×3 015×3 015×9 015×15 015×3 015×3 015×1 03×3
03×3 03×3 03×3 03×9 03×15 03×3 03×3 03×1 03×3
03×3 03×3 03×3 03×9 03×15 03×3 03×3 03×1 03×3
01×3 01×3 01×3 01×9 01×15 01×3 01×3 01×1 03×3


(42)

In Equation (42)

F12 =

 0 0 1
RN+h

0 0 tan L
RN+h

−1
RM+h 0 0
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F13 =


−ωie sin L 0 −vE

(RN+h)2

ωie cos L + vE
(RN+h)cos2L 0 −vE tan L

(RN+h)2

0 0 vN
(RM+h)2


F14 = −Cn

b

[
Ng

x I3×3

[
01×2

Ng
y I2×2

][
02×1
Ng

z

]
I3×3

]
F22 = −[(2ωn

ie + ωn
en)×] + [vn

e×]F12

F23 = [vn
e×]

F13 +

 −ωie sin L 0 0
ωie cos L 0 0

0 0 0


F25 = Cn

b

[
Na

x I3×3 Na
y I3×3 Na

z I3×3 I3×3 (Na)2
]

Na =

 Na
x 0 0

0 Na
y 0

0 0 Na
z



F32 =


1

RM+h 0 0
0 0 1

(RM+h)
0 1 0



F33 =


0 0 −vN

(RM+h)2

vE
(RN+h) sin L 0 −vE

(RN+h)2 cos L
0 0 0

 (43)

Utilizing Equation (12), we can obtain the F27 as

F27 = Ma
b ·
[(

ωb
ib×
)2

+
(

ω̇b
ib×
)]
−

 0.5rb
xx(A2

y + A2
z)

0.5rb
yy(A2

x + A2
z)

0.5rb
zz(A2

x + A2
y)

 (44)

Utilizing Equation (19), we can obtain F28 as:

F28 = Cn
b ωb

ib × f b
SF (45)

Utilizing Equation (38), we can obtain F29 as:

F29 =

 Na
x∆Tax 0 0

0 Na
y ∆Tay 0

0 0 Na
z ∆Taz

 (46)

The outer lever arm effect is mainly used in the measurement equation. In order to
obtain the velocity and position reference in the Kalman filter, we take the outer lever arm
effect into consideration. The measurement variables function is written as:

Z =

 vn
e + Cn

b

[(
ωb

ib − CnT
b ωn

ie

)
× δlb

]
− vobv

p + diag
(

1
RM+h , 1

(RN+h) cos L , 1
)

Cn
b δlb − pobv

 = HX + V (47)

The measurement matrix H can be written as:

H =

[
H11 I3×3 H13 H14 03×15 Cn

b

[
ωb

eb×
]

03×7

H21 03×3 H23 03×9 03×15 H26 03×7

]
(48)
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Utilizing Equations (39)–(41) , we can obtain the elements of H as:

H11 =
[(

Cn
b

(
ωb

eb × lb
))
×
]
− Cn

b

[
lb×

]
Cb

n[ω
n
ie×]

H13 = Cn
b

[
lb×

]
Cb

n

 −ωie sin L 0 0
ωie cos L 0 0

0 0 0


H14 = −Cn

b

[
lb×

][
Ng

x I3×3

[
01×2

Ng
y I2×2

][
02×1
Ng

z

]
I3×3

]

H23 =


1 0 −ln

x
(RM+h)2

ln
y sin L

(RN+h)cos2L 1
−ln

y

(RN+h)2 cos L
0 0 1


H26 = diag

[
1

RM + h
,

1
(RN + h) cos L

, 1
]

(49)

The state model and the measurement model are both linear, and we utilize the Kalman
filter to estimate the state variables. Kalman filtering process is organized as follows:

(1) One step prediction of state

X̂k,k−1 = Φk,k−1X̂k−1 (50)

In Equation (50), X̂k−1 is the state variable at time k− 1, X̂k,k−1 is the one step prediction
of state variable, Φk,k−1 is the state transition matrix.

(2) One step prediction of mean square error

Pk,k−1 = Φk,k−1Pk−1ΦT
k,k−1 + Γk−1Qk−1ΓT

k−1 (51)

In Equation (51), Pk−1 is the error matrix at time k− 1, Pk,k−1 is the prediction error
matrix, Qk−1 is the covariance matrix at time k− 1, Γk−1 is the input control matrix at time
k− 1.

(3) Gain matrix

Kk = Pk,k−1HT
k

(
HkPk,k−1HT

k + Rk

)−1
(52)

In Equation (52), Hk is the observation matrix at time k, Kk is the gain matrix at time k,
Rk is the measurement noise covariance matrix at time k.

(4) State estimation

X̂k = X̂k,k−1 + Kk

(
Zk − HkX̂k,k−1

)
(53)

In Equation (53), X̂k is the state variable at time k, Zk is observation matrix at time k.
(5) Mean square error estimation

Pk = (I − Kk Hk)Pk,k−1 (54)

In Equation (54), I is the unit matrix.
The systematic calibration process of SINS is shown in Figure 4. The diagram consists

of the coarse calibration process and the calibration process that utilizes the Kalman filter.
In the first process, we can obtain an inaccurate IMU output Ng

x,y,z and Na
x,y,z to guarantee

the linearity of the Kalman filter. In the second process, the state equation is updated by the
output Ng

x,y,z and Na
x,y,z of the IMU, and the measurement equation is updated by entering

the initial value of the error of outer lever arms δlb
x,y,z. Finally, we use the Kalman filter to

estimate SINS error. After the second process, we can obtain the SINS errors that we want.
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Figure 4. Schematic diagram of size effect.

The rotation excitation method we adopt is the arrangement method designed by
Camberlein [7]. This rotation excitation method can effectively calibrate the zero bias, scale
factor error, and installation error of the inertial device. The Euler angle change of IMU in
the systematic calibration is shown in Figure 5. The temperature of the SINS rises when it
is operating. We use this temperature change as a temperature excitation for systematic
calibration. During the systematic calibration test, we pasted the DS18B20 temperature
sensor on the surface of the accelerator to collect the temperature of the accelerometer
in real-time.

4.3. Analysis of Observable Degree

To verify the validity of the 43-dimensional Kalman filter model designed in the
previous section to excite the SINS error parameters, an observability matrix (SOM) is
introduced to discuss the observability of the system. The observability matrix Qs(r) is

Qs(r) =
[

QT
1 QT

2 QT
3 L QT

r
]T (55)

When the rank of SOM Qs(r) = n, the system is completely observable, if Qs(r) < n,
the system is not completely observable. In order to intuitively judge the convergence
speed and accuracy of the state variable estimation, SVD analysis is carried out on the
basis of PWCS to calculate the observable degree of each state variable. The larger the
singular value corresponding to the system state variable, the higher the corresponding
observability, and the easier it is to estimate in Kalman filtering. Perform singular value
decomposition of SOM:

Qs(r) = U ∑ VT (56)

In Equation (56): Both matrices U and V are orthogonal matrices. ∑ =
[

Srxr 0rx|m−r|
]T

,
where S is the diagonal matrix, diag

{
σ1 σ2 · · · σr

}
is called the singular value of

matrix Qs(r). According to the projection transformation relationship, projection of initial
vector X0 in space extended by [σ1v1, σ2v2, · · · σrvr] is transformed to observation value Y.
Therefore, at least r observation values are required to uniquely determine the state X0.
When σ1 > 0, the initial state can be determined according to the measurement information:
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Figure 5. Observability analysis.
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X0 =
r

∑
i=1

(
uT

i Y
σi

)
vi (57)

According to Equation (56), the singular value of the SOM matrix represents the radius
of the ellipsoid formed by the estimated initial state. The larger the singular value, the
smaller the radius of the ellipsoid, the stronger the estimation of the initial state and the
more observable the state variable is. The expression of observability is as follows:

ηj = σi/σ0i = 12 . . . (58)

In Equation (58): ηj represents the observability of the j-th state component, σ0 repre-
sents the singular value of external observations, and σi is the singular value that maximizes
uT

i Yvi/σi(i = 12 . . . r).
In this article, we use the above methods to analyze the 43-D Kalman filter system.

After the filtering, the rank of the Qs(r) matrix is 43 (full rank), indicating that all the state
variable of the system is observable. The graph in Figure 4 is the observability histogram of
the last 13 state variable. The order of the abscissa is δKTa

x , δKTa
y , δKTa

z , δrb
x, δrb

y, δrb
z , δlb

x, δlb
y,

δlb
z , δta, δKTa

x , δKTa
y , δKTa

z . There are seven state variable (δrb
x, δrb

y, δrb
z , δta, δKTa

x , δKTa
y , δKTa

z )
among them are the newly introduced component in this article. Their observability is
shown in Figure 5.

The larger the SV value of the corresponding state variable, the better the observability
of the corresponding state. If the diagonal element is greater than 10−4, it is considered to
be a non-zero element, then the corresponding state variable is observable. Figure 5 shows
the observed histogram of each state variable over five time periods during the calibration
process. We can see that each state variable has a SV value greater than 10−4 that occurs
at least once in five observation degree histograms, indicating that each state variable is
significant. Each error parameter that needs to be calibrated can be effectively stimulated,
so the calibration method is effective.

5. Test Results and Analysis
5.1. Calibration Test

The calibration experimental system includes a high precision three-axis turntable, a
certain type of SINS with MDRLG, turntable control terminal, and SINS data acquisition
device. The angular resolution of the three-axis turntable used in the experiment is better
than 1 arc second. The IMU of the SINS used in the calibration experiment is equipped
with three MDRLGs and three accelerometers. The bias stability of the MDRLG and
the accelerometers are 0.005◦/h and 35µg, respectively. A DS18B20 temperature sensor
made by Maxim (an American semiconductor company) is installed on the surface of each
accelerometer to measure the surface temperature of the accelerometer. The test equipment
is shown in Figure 6.

In order to verify the effectiveness of the systematic calibration results, we need to
analyze the variable of the Kalman filter during the process of actual systematic calibration.
In order to judge whether the state variables of the Kalman filter converges, the estimate
covariance (diagonals) has to be drawn. If the state variable is observable, the diagonal
element of the corresponding estimate covariance matrix (P matrix) needs to converge
to zero. The state estimation curve has to converge to a constant. The estimation curves
during the systematic calibration process are shown in Figures 7–14.
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Figure 6. The diagram of the experimental system.

Figure 7. Gyro-scale factor errors.
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Figure 8. Gyro installation errors.

Figure 9. Accelerometer scale factor errors.

Figure 10. Accelerometer installation errors.
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Figure 11. Accelerometer nonlinear scale factor errors.

Figure 12. Inner/outer lever arms.

Figure 13. Asynchronous time.
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Figure 14. Temperature coefficient errors.

The diagonal elements of the P matrix are starting to converge after about 2000 s,
and the convergence time of the state estimation curve is consistent with the estimation
covariance curve. Combined with the previous SVD-based observability analysis, we can
conclude that the 43-D Kalman filter is observable when utilizing the rotation path shown
in Table 1. All IMU error parameters are starting to converge after about 2000 s, indicating
that the calibration method proposed in this article can effectively calibrate the temperature
error coefficient of accelerometer, time delay coefficient of accelerometer, and inner lever
arm parameters. At the same time, it can effectively calibrate conventional IMU error
parameters such as IMU scale factor error, installation error, and zero bias.

Table 1. Rotation path of systematic calibration.

Number Rotation Angle/Axis Attitude after Rotation (XYZ)

1 +90Y NED

2 +180Y UEN

3 +180Y DES

4 +90Z UEN

5 +180Z EDN

6 +180Z WUN

7 +90X EDN

8 +180X ENU

9 +180X ESD

10 +90X ENU

11 +90X EUS

12 +90X ESD

13 +90Z EDN

14 +90Z DWN

15 +90Z WUN

16 +90Y UEN

17 +90Y SEU

18 +90Y DES
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5.2. Static Swing Navigation Test

To verify the error feedback effect of the error parameters, a three-axis turntable swing
navigation experiment is carried out. The rocking motion can fully stimulate the lever arm
effect, which is used to verify the feedback effect of the calibration parameters. The swing
mode of the turntable is shown in Table 2. The total duration of the navigation experiment
is 48 h.

Table 2. Vibration patterns.

Vibration Axis (IMU) Amplitude Frequency

x-axis 2° 0.4
y-axis 3° 0.3
z-axis 4° 0.4

To verify the error compensation effects of mechanical dithering of the MDRLG, the
temperature error coefficient, the time delay coefficient of the accelerometer and inner lever
arm in the navigation test. Under the same 18-sequence calibration path, the filters shown
in Table 1 are used for system-level calibration. Each filter contains error items are shown
in Table 3.

Table 3. Each Kalman filter model contains error components.

Filter Model Contains Error Components

36D-P Kalman filter IMU scale factor error, installation error, zero offset, outer lever
arm error

39D-P Kalman filter IMU scale factor error, installation error, zero offset, outer lever
arm error
inner lever arm error δrbT

40D-P Kalman filter IMU scale factor error, installation error, zero offset, outer lever
arm error
inner lever arm error δrbT , time delay factor δta

43D-P Kalman filter IMU scale factor error, installation error, zero offset, outer lever
arm error
inner lever arm error δrbT , time delay factor δta
Temperature error coefficientktI(I = x, y, z)

43D-B Kalman filter IMU scale factor error, installation error, zero offset, outer lever
arm error

(Consider the dithering inner lever arm error δrbT , time delay factor δta
of MDRLG Temperature error coefficientktI(I = x, y, z)
compensation model)

In Table 3, the filter model of type P is the calibration model that does not consider
the mechanical dithering of the MDRLG, and the filter model of type B is the calibration
model that takes the mechanical dithering of the MDRLG into consideration. We use the
calibration results of each filter model to perform the navigation solution experiment at
the same time, and the horizontal positioning error of the navigation experiment is shown
in Figure 15. The horizontal position accuracy from high to low is the 43D-B filter, 43D-P
filter, 40D-P filter, 39D-P filter, 36D-P filter, indicating that the calibration of each parameter
is effective. Comparing the navigation accuracy based on 40D-P filter compensation with
that based on 43D-P filter compensation, it can be concluded that the navigation accuracy
of the SINS after temperature compensation of accelerometer is significantly improved.
The maximum horizontal positioning error of navigation based on 36D-P filter calibration
exceeds18.7 nautical miles. The accuracy of each stage of 48-h navigation based on 43D-
B dimensional filter calibration is significantly better than other filters. The maximum
horizontal positioning error is better than 11.2 nautical miles, and navigation accuracy
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increased by 40.1%. It can be seen that using the systematic calibration method proposed
in this article to feedback the IMU calibration parameters can effectively improve the
navigation accuracy of the SINS.

Figure 15. The positioning errors of navigation.

6. Conclusions

Aiming at the problem of high-precision calibration of SINS, in this article we propose
a systematic calibration method based on a 43-D Kalman filter. Algorithm analysis and
experimental results show that:

(1) The size effect error of dithering of the MDRLG compensation method derived
in this article can effectively improve navigation accuracy. The analysis shows that the
influence of dithering of the MDRLG on the navigation accuracy is mainly related to
the amplitude of dithering, and the relationship with the frequency of dithering is not
obvious. The velocity error and position error caused by the dithering of the MDRLG are,
respectively, a linear function and a quadratic function of time.

(2) An error model of the accelerometer delay time and specific force measurement
is established. The velocity error and position error caused by the time delay of the
accelerometer are a linear function and a quadratic function of time, respectively.

(3) In order to solve the above-mentioned problem, we derive a continuous linear
43-D SINS error model considering the above-mentioned two error parameters and expand
the temperature coefficients of accelerometers, inner lever arm error, outer lever arm error
parameters to achieve high-precision calibration of SINS. Observability analysis shows
that after the 18-bit rotation sequence, each state is observable. The calibration test shows
that the calibration method can effectively calibrate all state errors. The static swing test
shows that after the calibration parameters are compensated for multiple error sources, the
maximum positioning error of the 48-hour navigation level is 11.2 nautical miles. Compared
with the calibration that does not consider the compensation for dithering of the MDRLG,
the time delay of accelerometer, temperature coefficient of accelerometer, and inner lever
arm error, navigation accuracy has been improved by 40.1%.
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