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Abstract: Ultrasonic sensors have been extensively used in the nondestructive testing of materials for
flaw detection. For polycrystalline materials, however, due to the scattering nature of the material,
which results in strong grain noise and attenuation of the ultrasonic signal, accurate detection of flaws
is particularly difficult. In this paper, a novel flaw-detection method using a simple ultrasonic sensor
is proposed by exploiting time-frequency features of an ultrasonic signal. Since grain scattering
mostly happens in the Rayleigh scattering region, it is possible to separate grain-scattered noise from
flaw echoes in the frequency domain employing their spectral difference. We start with the spectral
modeling of grain noise and flaw echo, and how the two spectra evolve with time is established.
Then, a time-adaptive spectrum model for flaw echo is proposed, which serves as a template for the
flaw-detection procedure. Next, a specially designed similarity measure is proposed, based on which
the similarity between the template spectrum and the spectrum of the signal at each time point is
evaluated sequentially, producing a series of matching coefficients termed moving window spectrum
similarity (MWSS). The time-delay information of flaws is directly indicated by the peaks of MWSSs.
Finally, the performance of the proposed method is validated by both simulated and experimental
signals, showing satisfactory accuracy and efficiency.

Keywords: ultrasonic sensor; nondestructive testing; flaw detection; grain noise; adaptive template
matching

1. Introduction

Ultrasonic sensors have been widely used as a nondestructive testing (NDT) method
to detect hidden flaws in materials. The well-known ultrasonic pulse-echo method, first
proposed by Pellam and Galt [1], is based on the important property of ultrasound that
the ultrasonic pulse signal can be reflected at inhomogeneities and discontinuities in the
material, and the reflected signal contains valuable information on the condition of the
material or structure. Based on this simple property of ultrasound, great advances have
been made both in ultrasonic sensor technology [2–5] and related NDT methodologies [6–8].
Embedded ultrasonic sensors are also widely used as an effective tool for structural health
monitoring (SHM) purposes [9,10]. More recently, novel NDT methods based on coda
wave interferometry (CWI) have been proposed as a promising technique to detect multiple
cracks [11] and to monitor weld fatigue crack growth [12]. However, when using ultrasonic
sensors for the inspection of highly scattering materials such as concrete, heat-treated
stainless steel, and alloys, the received signals are usually contaminated by strong noise
from both the electronic system of the instruments and scattering by the microstructure
of the material (also known as the grain) being tested. Due to its origin, the latter is often
called grain noise or structural noise. Encountered mostly in the testing of coarse-grain
materials, grain noise will contaminate the defect echo in the ultrasonic signal, or even
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completely submerge it, which greatly limits the effectiveness of defect detection, even
with the help of a modern, sophisticated ultrasonic sensor system. Additionally, the spectra
of flaw echo and grain noise show significant overlapping, making the elimination or
suppression of grain noise a challenging task.

To reduce noise or to enhance the SNR of the signal, several signal-processing tech-
niques have been proposed. One well-known frequency diversity technique is split spec-
trum processing (SSP) [13–15]. SSP first divides the spectrum of the received signal into
several sub-bands to which nonlinear processing, such as minimization or polarity thresh-
olding, is applied; they are then transformed back to the time domain, and finally, they are
recombined to form the de-noised signal. This processing can be effective for flaw detection
if parameters are tuned properly, but it also inevitably produces distorted waveforms,
and the performance highly depends on the parameter selection [16]. Approaches such
as wavelet transform [17–20] and S-transform [21,22] are also widely researched. While
wavelet analysis possesses many desirable properties by means of analytical functions
that are local in both time and frequency, the major drawback of this method is that its
performance depends on the selection of the mother wavelet function, the thresholds, the
decomposition level of the signal, as well as the order of the mother wavelet function.
Recently, signal-processing techniques adopting the idea of sparse signal representation
for noise suppression were also developed and show good potential [16,23–25]; however,
these methods are too complicated and inefficient for practical use.

When an ultrasonic pulse propagates inside a coarse-grain material, the pulse will
interact with both grains and flaws, which results in the distortion of the pulse due to
scattering and attenuation. As reported in [26], grain sizes D often range from 10 µm up to
140 µm. For ultrasonic nondestructive testing, ultrasonic sensors with frequencies from
2 MHz to 10 MHz (wavelengths λ range from 0.5 mm to 3 mm) are commonly seen in
practice. Because of the ratio of the wavelength to grain diameter λ/D � 1, grain scattering
mostly happens in the Rayleigh scattering region, where attenuation is dependent on the
fourth power of frequency [26]. An ultrasonic pulse propagating through such a medium
will suffer spectral distortion due to the higher rate of attenuation of high-frequency
components compared to low-frequency components. On the other hand, the amplitude of
grain scattering is proportional to the second power of frequency in the Rayleigh scattering
region [27]; therefore, high-frequency components will have larger backscattered intensity
compared to low-frequency components. A flaw, though, can be viewed as a geometrical
reflector, and thus the reflection is regarded as independent of frequency [28]. As a result, a
difference can be found in the interaction of the incident ultrasonic pulse between the grain
and flaw, although both the grain-scattered signal, which forms grain noise eventually, and
the flaw-reflected echo suffer from frequency-dependent attenuation. This subtle difference,
if taken advantage of properly, could be helpful for flaw detection.

On the basis of the above analysis, this paper presents a novel methodology by
exploiting the time-frequency feature of ultrasonic signal for flaw detection in highly
scattering materials using a conventional normal-incidence longitudinal wave ultrasonic
sensor. However, one of the factors limiting effective flaw detection is that the attenuation
coefficient of ultrasound in the material is mostly unknown beforehand, and its estimation
is not easy in NDT practice. In this study, a new method for estimating the attenuation
coefficient is also developed. We start with the spectral modeling of grain noise and
flaw echo, and how the two spectra evolve with time is established. Then, a time-adaptive
spectrum model for flaw echo is proposed, which serves as a template for the flaw-detection
procedure. Next, a sparseness-promoting similarity measure is proposed, based on which
the similarity between the template spectrum and the spectrum of the signal at each point
is evaluated sequentially, revealing a series of similarity coefficients called the moving
window spectrum similarity (MWSS), which only contains a few nonzero entries. The
peaks of MWSSs will directly indicate the time delays of the flaw echoes, and the location
of flaws can be readily obtained using the time-of-flight principle.
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This work mainly focuses on the detection of flaws using a simple ultrasonic sensor
working in pulse-echo mode. This fundamental testing scheme is the basis of many
advanced ultrasound-based techniques, such as ultrasonic array imaging [5,7]. The rest of
this paper is organized as follows. Section 2 is devoted to a detailed analysis of the spectral
characteristics of each component of the ultrasonic NDT signal. In Section 3, the proposed
methodology is presented in detail. In Sections 4 and 5, we demonstrate our method by
synthetic ultrasonic signals and signals from a laboratory-conducted ultrasonic NDT of
a stainless steel block that contains prefabricated flaws, respectively. In the final section,
some conclusive remarks are drawn, and a discussion is presented.

2. Modeling of the Ultrasonic NDT Signal

Consider a typical ultrasonic NDT scenario conducted in the pulse–echo method, and
the specimen being inspected is a block of coarse-grained material. Due to the coarse-
grained microstructure of the material, scattering will occur when the out-going ultrasonic
pulse from the transmitter impinges on the boundaries of the grains that are randomly
distributed in the space domain, generating echoes that seem to be randomly distributed in
time. These echoes picked up the receiver are usually referred to as backscattering noise,
also known as grain noise or structural noise. Furthermore, the stochastic disturbance in the
circuits of instruments of the ultrasonic NDT system also creates a type of noise. Therefore,
the measured ultrasonic signal y(t) can be written as y(t) = e(t) + g(t) + w(t), where e(t)
refers to the echoes reflected by flaws in the block, and g(t) and w(t) are backscattered
grain noise and the electrical white Gaussian noise from the circuits, respectively.

2.1. Modeling of Grain Noise

In pulse-echo mode where a transducer is working as both the transmitter and receiver,
the scattered wave by a scatterer in the material under inspection in the time domain can
be modeled as the convolution of the impulse response of a grain scatterer r(t, λ) and the
impinging ultrasonic wave h(t, λ) on the scatterer:

g(t) = h(t, λ) ∗ r(t, λ) (1)

where ∗ denotes the convolution operator. The impulse response function r(t, λ) gives
a mathematical description of the backscattered wave as a function of wavelength λ (or
equivalently, frequency) in the time domain. It is also worthwhile noting that impinging
ultrasonic pulse h(t, λ) is the convolution of transmitted pulse u(t, λ) and attenuation func-
tion a(t, λ), since the transmitted pulse will experience frequency-dependent attenuation
during its flight from the transmitter to the scatterer. Therefore, the backscattered echo by a
grain scatterer received by the receiver can be expressed as:

g(t) = u(t, λ) ∗ a(t, λ) ∗ r(t, λ) (2)

In the frequency domain, the expression of the above equation can be written as:

G( f ) ∝ |A( f )||S( f )||R( f )||U( f )| (3)

where A( f ) is the transfer function corresponding to the attenuation characteristics and is
expressed as [24]:

A( f ) ∝ exp[−2
∫ z

0 α(z, f )dz]
= exp

{
−2
∫ z

0 [αa(z, f ) + αs(z, f )]dz
} (4)

with z being the position of grain scatterer. In Equation (4), α(z, f ) is the frequency-
dependent attenuation coefficient defined as the sum of the scattering coefficient αs(z, f )
and the absorption coefficient αa(z, f ). In the Rayleigh scattering region, where the wave-
length λ is larger than the average grain diameter D, the scattering coefficients αs(z, f ) vary
with the third power of the grain diameter and the fourth power of frequency, while the
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absorption coefficient increases αa(z, f ) linearly with frequency [29]. R( f ) is the frequency-
dependent scattering function. In the Rayleigh scattering region, R( f ) is proportional to
the second power of frequency; thus, high-frequency components will have larger backscat-
tered intensity compared to low-frequency components. S( f ) is the frequency-modulation
function due to the sum of grain scatterers with random orientations [30]; it represents the
random distribution of phases of grain scatterers. U( f ) is the frequency response of the
transducer and can be modeled as a Gaussian-shaped spectrum.

2.2. Modeling of a Flaw Echo

Similar to grain noise, a flaw echo can also be modeled as a convolution between the
impinging ultrasonic pulse and the impulse response function of a flaw, also considering
the effect of frequency-dependent attenuation:

e(t) = u(t, λ) ∗ a(t, λ) ∗ p f (t, λ) (5)

where p f (t, λ) is the impulse response function of a flaw. Generally, a flaw can be viewed
as a geometrical reflector since its size is larger than the ultrasonic wavelength; thus, the
reflection at a flaw is regarded independent of frequency and p f (t, λ) has no impact on the
frequency-domain expression of a flaw echo. Therefore, the frequency-domain expression
of a flaw echo can be written as:

E( f ) ∝ |A( f )||U( f )| (6)

3. The Proposed Flaw-Detection Method

The modeling in Section 2 shows that the spectrum of a flaw echo will exhibit a
slightly different pattern when compared to the spectrum of grain noise, as can be observed
by comparing Equations (3) and (6). The distortion of a flaw echo is mainly caused by
frequency-dependent attenuation that high-frequency components attenuate more than
low-frequency components; thus, the spectrum of a flaw echo shows a downward shift
compared to the frequency spectrum of the transmitted ultrasonic pulse. On the other
hand, the spectrum of grain noise will be influenced by frequency-dependent attenuation,
frequency-dependent scattering, and the randomness of the orientations of grains. Since
high-frequency components have higher scattering strength in the Rayleigh scattering
region, the spectrum of grain noise shows an upward shift. Utilizing these features, we
propose a novel flaw-detection method as follows.

3.1. Estimating the Spectrum of a Flaw Echo

Since frequency-dependent attenuation is the main cause of a distorted flaw echo, and
its impact is explicit in the frequency domain, the spectrum information can be almost
predicted using the model given by Equation (6). The spectrum of the transmitted pulse
can be easily obtained by performing a fast Fourier transform (FFT) on the time domain
echo reflected by a plane reflector in the far field of the transducer. Generally, the spectrum
of the transmitted pulse can be assumed to have a Gaussian shape, which is given as:

U( f ) = exp[−( f − fc)
2/2s2] (7)

where fc is the center frequency and s is a parameter that controls the frequency bandwidth
or the duration of the pulse in the time domain.

In the Rayleigh scattering region, it can be seen from Equation (4) that the attenuation
of a pulse during its propagation in the material is due to the combined influence of
material scattering and absorption. However, the absorbing term is usually insignificant
and negligible when compared to the scattering term [29]; therefore, we only consider the
latter in the attenuation model, which can be expressed as follows:

A( f , t) = exp[−1
2

α(2π f )4vt] (8)
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where v is the longitudinal velocity of sound in the material being inspected. Equation (8)
describes the attenuation of the pulse when it travels a distance d = vt. Apparently, the
attenuation term is also a function of time, or equivalently a function of distance. From
Equation (8), it is observed that once the attenuation coefficient α is given, the attenuation
of a pulse during its propagation can be estimated, using the model given in Equation (6).
For example, if a potential flaw echo exists at a time point ti in the measured signal, the
spectrum of this flaw echo can be estimated as the product of Equations (7) and (8).

Since the spectrum for a potential flaw at any given time can be predicted, if there
is a flaw at ti, in the measured signal, then the local spectrum of the signal will exhibit
a high degree of similarity to the predicted spectrum. Based on this principle, a novel
flaw-detection approach can be developed. First, the predicted spectrum of a flaw echo
at a given time point ti is estimated and served as a template. At the same time, the local
spectrum of the signal at ti, obtained by performing FFT on a narrow window of data, is
compared with the template in terms of similarity, revealing a similarity coefficient. By
moving the window sequentially along the time axis, a series of similarity coefficients
termed MWSS can be generated for the whole signal. The peaks of MWSSs will directly
indicate the time delays of the flaw echoes. The location of flaws can be readily obtained
using the time-of-flight principle. However, the value of the attenuation coefficient α needs
to be determined first.

3.2. Estimation of Attenuation Coefficient

It can be seen that the attenuation coefficient α is of vital importance in predicting
the spectrum of a flaw echo. Unfortunately, the value of α is not usually available and not
easy to measure in practice. In this study, a simple approach for estimating the attenuation
coefficient is presented.

Now, suppose a pulse is propagating in the material, and the pulse has a Gaussian-
shaped spectrum given in Equation (7). After propagating a distance of d in the material,
the frequency spectrum of the pulse can be predicted by Equation (6), given as:

Q(d)( f ) = exp[−( f − fc)
2/2s2] · exp[−8π4αd f 4]

= exp[− 16π4αds2+ f 2+ fc
2−2 fc f

2s2 ]
(9)

By taking the first-order derivative of Q(d)( f ) with respect to f and setting it to zero,
the new center frequency fd can be obtained. After some appropriate rearrangements, the
following relation can be found:

32π4αs2d fd
3 + fd − fc = 0 (10)

In practice, the echo reflected by the bottom of the specimen can be extracted and used
to estimate the attenuation coefficient. The center frequency of the bottom-reflected echo,
denoted as fb, can be easily obtained by FFT. The distance traveled by the bottom-reflected
echo equals two times the thickness of the specimen l. After substituting d = 2l into
Equation (10), the attenuation coefficient α can be estimated as:

α =
fc − fb

64π4s2 fbl
(11)

3.3. Flaw Detection by Adaptive Template Matching

In Figure 1, the proposed procedure is demonstrated. A narrow window of data is first
selected, and the FFT operation is performed on the windowed data to extract its spectrum
Pi. The determination of window size depends on the duration of the transmitted pulse,
the spatial resolution, and the constraints of spectral analysis techniques. In this study, the
widely used Hamming window function is adopted before FFT calculation. The width of
the window is set to be slightly larger than the duration of the transmitted pulse. During the
propagation of an ultrasonic pulse in the material, due to frequency-dependent attenuation,
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the frequency bandwidth decreases, and thus the duration of the pulse becomes longer. In
practice, the width of the window can be chosen as the duration of the echo reflected by
the bottom of the specimen, which is theoretically the longest pulse in the measured signal.
This window length can give good spectral estimates without distorting the spectrum.
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If the center of the time window is ti, the template spectrum Ti for this time window
can be constructed by combining Equations (7) and (8); that is, Ti = exp[−( f − fc)

2/2s2] ·
exp[− 1

2 α(2π f )4vti]. Since for each ti, the template predicts a spectrum for a potential
flaw echo centered at ti by considering frequency-dependent attenuation and the traveled
distance di = vti, it can be seen that this template is adaptive to the signal distortion at any
given time ti.

It should be noted that testing conditions such as temperature and moisture will
influence the sound velocity in the material. For each testing, the measurement of sound
velocity in the material should be conducted to consider the influence of environmental
conditions. Another important factor that should be considered is the load effect. As
has been confirmed in earlier works [9,11], wave velocity is strongly related to the elastic
properties of the propagation medium. A linear relationship between wave propagation
velocity and elastic strain exists when a limited load is acting on the material. However,
when the strain variation exceeds a certain level, the linear relationship is broken. Moreover,
temperature variation may also indirectly create internal strain changes in the material
being tested, leading to a velocity variation [9]. In this study, an experimental study is
conducted in lab conditions with negligible temperature and moisture variations; therefore,
the measured sound velocity in the specimen can be viewed as a constant. For general
ultrasonic NDT practice, the influence of temperature and load condition should be properly
evaluated and compensated. For example, optimal baseline selection [31], baseline signal
stretch [32], dynamic time warping [33], and the iterative compensation method [34] have
been proposed for temperature compensation for guided wave signals. If temperature
variation is uniform, the iterative compensation method can produce a more precise stretch
factor. In the case where temperature distribution is uneven, it is suggested that multiple
stretch factors are applied to different segments [34].

To evaluate the degree of similarity between the local spectrum Pi and template Ti,
an appropriate similarity measure should be designed. A correlation coefficient is widely
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used as the measure of similarity for template-matching purposes [35]. For the two vectors
Pi and Ti, the correlation coefficient between them is calculated by

C =
Pi × Ti√
‖Pi‖2 · ‖Ti‖2

=
〈Pi, Ti〉√

〈Ti, Ti〉 · 〈Pi, Pi〉
(12)

where 〈Ti, Pi〉 = Ti
T · Pi is the inner product of Pi and Ti. The maximum value of C is 1.0

and is obtained when Pi and Ti are proportional.
It is worthwhile noting that the calculation of correlation coefficient is a linear opera-

tion and is appropriate for data that are best described by second-order correlations. In fact,
the correlation coefficient is based only on second-order correlations without taking the
high-order statistics into account. It is well known that the distribution of the noisy signal
is highly irregular and all the “structures” of interest in a spectrum, such as peaks and
fluctuations, cannot be described by second-order correlations. This motivates the use of a
nonlinear analysis technique that can represent the nonlinear structure of the two spectra.
An earlier study showed that by mapping the variables into high-dimensional space before
calculating the correlation coefficient, high-order statistics of the variables can be exploited,
leading to better detection performance [36].

To better evaluate the degree of similarity between the local spectrum Pi and template
Ti, we propose a specially designed similarity measure. First, both Pi and Ti are nonlinearly
mapped into a high-dimensional space F by P̃i = Φ(Pi) and T̃i = Φ(Ti), respectively,
where Φ(·) denotes the mapping operation. In this study, the map Φ(·) and the space F
are determined implicitly by the choice of a kernel function κ, which computes the inner
product of mapped Pi and Ti via:

κ(Pi, Ti) = 〈Φ(Pi), Φ(Ti)〉 (13)

It has been proven that if κ is a positive, definite kernel, then a map of Φ(·) into an inner
product space F exists, such that Equation (13) holds, and the space F has the structure of a
so-called Reproducing Kernel Hilbert Space (RKHS) [37]. Using the normalized variables
in the feature space, the equation above becomes:

κ̃(Pi, Ti) =

〈
Φ(Pi)

‖Φ(Pi)‖
,

Φ(Ti)

‖Φ(Ti)‖

〉
=

κ(Pi, Ti)√
κ(Pi, Pi) · κ(Ti, Ti)

(14)

Essentially, Equation (14) is equivalent to calculating the correlation coefficient be-
tween Φ(Pi) and Φ(Ti). In this study, a Gaussian kernel function is used, which has the
following form:

κ(Pi, Ti) = exp(−‖Pi − Ti‖2/2σ2) (15)

where σ > 0 is a parameter that controls the flexibility of the kernel. Note that the
denominator in Equation (14) equals 1. It is important to point out that both Pi and Ti are
normalized before evaluating their similarity. Therefore, the similarity between Pi and Ti
can be calculated by:

MWSS(i) = κ̃(Pi, Ti)

= exp(−‖Pi − Ti‖2/2σ2)
(16)

This similarity measure above combines two commonly used similarity criteria, the
correlation coefficient and the sum of squares of deviations. It can be seen that this similarity
measure decays the entries with a low degree of similarity at an exponential scale, such
that they are forced to be near zero, and at the same time, preserves the few entries with a
high degree of similarity.

The detection of flaws is facilitated by searching the peak values of the MWSS. If
MWSS peaks at tj,j=1,2,3,···, the locations of flaws can be obtained as dj,j=1,2,3,··· =

1
2 vtj,

using the time-of-flight principle.
The procedure of the proposed method is summarized as follows:
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(1) Measure sound velocity in the material and estimated attenuation coefficient using
Equation (11);

(2) Move a time window along the time axis of the measured signal at a fixed step of
1 sample, and the center of the time window is ti;

(3) For the time window at ti, calculate the spectrum of the windowed data Pi by FFT,
and construct the template spectrum Ti = exp[−( f − fc)

2/2s2] · exp[− 1
2 α(2π f )4vti];

(4) Calculate the similarity between Pi and Ti using Equation (16);
(5) Repeat the above steps until the whole signal is analyzed. Each time window produces

1 entry for MWSSs.
(6) Plot MWSSs verse time. The peaks of MWSSs reveal the time delays of flaw echoes as

well as the bottom of the specimen.
(7) Calculate the depths of flaws by the time-of-flight principle.

4. Simulation Study

A simulation study was conducted to investigate the performance of the proposed
method for a flaw echo signal contaminated with noises. We considered a typical ultrasonic
NDT scenario shown in Figure 2, where an ultrasonic transducer with a center frequency
of 2 MHz was used to detect a flaw located (indicated by a star) at a depth of 90 mm below
the surface. The parameters for generating simulated signals are as follows: attenuation
coefficient α = 10−28, the velocity of the longitudinal wave in the material v = 6000 m/s,
and the number of grain scatterers K = 2500. Therefore, the wavelength in the specimen is
λ = 3 mm. Comparing wavelength to the grain size, which is assumed to be D = 90 µm,
it is seen that λ/D � 1; thus, scattering occurs in the Rayleigh region. To generate grain
noise, the model proposed in [38] is employed. In this model, the frequency spectrum of
grain noise is given by:

G(ω) = Ht(ω) · Ht(ω) · Hmat(ω) (17)

where Ht(ω) is modeled as a Gaussian-shaped spectrum and is the frequency response of
the transducer, which serves as both transmitter and receiver. Hmat(ω) is the frequency
response of the material. ω = 2π f is the angular frequency. In the Rayleigh region, Hmat(ω)
can be expressed as:

Hmat(ω) =
K

∑
k=1

βk
ω2

xk
exp(−2αxkω4) exp(−2jωxk/v) (18)

where α is the attenuation coefficient, xk is the position of the kth grain scatterer relative
to the transducer and can be modeled as a uniformly distributed random variable such
that xk ∈ (0, l), where l is the thickness of the specimen. K is the number of grains in the
ensonified area. Obviously, K is also a random variable, which can be empirically estimated
by K ≈ 2l

D
, with D being the mean diameter of grains. The scattering coefficient of the kth

grain scatterer βk is also a random variable but follows a Rayleigh statistic [39]. In a similar
way, the frequency response of a flaw can be expressed as:

E(ω) = Ht(ω) · Ht(ω) · exp(−2αd f lawω4) · exp(−2jd f law/v) (19)

The frequency spectrum and waveform of the transmitted pulse are given in Figure 3a,b,
respectively. Based on the model above, the spectra of flaw echo and grain noise are
obtained, as shown in Figure 3c. By inverse FFT, the time-domain signal of flaw echo and
grain noise can be generated.

To quantitatively characterize noise level, the local signal-to-noise ratio (LSNR) is
defined, which is the signal-to-noise ratio within the time window that contains a flaw
echo. Suppose the window length is lw; the noise is denoted as n(t) = g(t) + w(t), which
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is the sum of grain noise and white Gaussian noise. The local signal-to-noise ratio can be
defined as:

LSNR = 10 × lg[
p+lw/2

∑
i=p−lw/2

e(i)2/
p+lw/2

∑
i=p−lw/2

n(i)2] (20)
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Figure 3. (a) Spectrum of the transmitted pulse. (b) Waveform of the transmitted pulse. (c) The
spectra of flaw echo (solid blue line) and grain noise (solid black line). (d) The simulated noisy signal;
LSNR = 0 dB.

The generated time-domain signals contain 1024 samples sampled at a sampling
frequency of 25 MHz. After the generation of flaw echo, grain noise, and white Gaussian
noise, the three are superimposed to form the noisy signal, and the amplitude of the flaw
echo is adjusted to give the designated value of LSNR. In Figure 3d, the simulated noisy
signal with LSNR = 0 dB is shown, and it is observed that the pattern of grain noise is very
similar to the actual flaw echo.

By implementing the proposed method, the obtained MWSS is demonstrated in
Figure 4. The peak of MWSS occurs at tf = 30.56 µs, revealing a depth of flaw of 91.7 mm.
Compared with the actual flaw depth of 90 mm, the detection result is very accurate, with
a relative error of just 1.9%.
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In Figure 5, spectra of the time windows adjacent to the peak of MWSS are shown
along with their corresponding template spectra. It can be observed that at t = 30.56 µs, the
spectrum of windowed data is very close to its template spectrum, and all the time windows
away from t = 30.56 µs show significant differences between the spectra of windowed data
and template spectra. Notice that the sum of squares of deviations (SSD) between Pi and
Ti is the norm term in Equation (16); therefore, the MWSSs for these time windows will
be much lower than the MWSS at t = 30.56 µs. The normalized MWSS values for the time
windows in Figure 5 are tabulated in Table 1. Most of the MWSS values are close to zero,
which can also be observed in Figure 4b.
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Table 1. Normalized MWSSs for the time windows shown in Figure 5.

Time Window 29.76 µs 29.96 µs 30.16 µs 30.36 µs 30.56 µs

MWSS
(normalized) 1.2 × 10−85 1.3 × 10−87 4.8 × 10−65 5.1 × 10−46 1

Time window 30.76 µs 30.96 µs 31.16 µs 31.36 µs

MWSS
(normalized) 1.3 × 10−40 5.9 × 10−56 4.4 × 10−158 1.0 × 10−268

5. Experimental Studies

To further evaluate the performance of the proposed method for flaw detection, we
conduct a flaw-detection experiment shown in Figure 6. The specimen under inspec-
tion is a heat-treated type 304 stainless steel block with a cross-section dimension of
82 mm × 59 mm (height by width, respectively). The heat treatment is implemented at a
temperature of 1250 ◦C for 8 h, followed by quenching in a water bath. Empirically, grain
sizes D ≈ 120 µm will be formed. Two side-drilled 2 mm-diameter holes are considered as
flaws, and they are located about 31 mm and 51 mm below the top surface, respectively,
as shown in Figure 6a. A transducer with a center frequency of 5 MHz (type 5P20 made
by Shantou Institute of Ultrasonic Instruments Co., Ltd., Shantou, China) is used. A-scan
signals are digitized by an A/D converter (ADVANTECH PCI-9820) and sampled at a
sampling frequency of 60 MHz. The experimental setup is demonstrated in Figure 6b.
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Figure 6. (a) Heat-treated stain steel specimen with two flaws. (b) The setup of the experiment system.

Sound velocity is measured first. The measurement of sound velocity is based on the
time-of-flight principle. The thickness of the specimen is measured ten times using a Vernier
caliper and the results are averaged, yielding the thickness of the specimen l = 81.4 mm.
The round-trip travel time of the ultrasonic pulse reflected by the bottom of the specimen is
28.4 µs; therefore, the sound velocity equals v = 5735 m/s. Up until now, one can notice
that the wavelength in the specimen is λ ≈ 1 mm; thus, λ/D � 1, so the scattering is in
the Rayleigh region.

To estimate the attenuation coefficient, the transmitted pulse from the transducer and
the bottom-reflected echo should be obtained first. In practice, the former can be obtained
by positioning the transducer normally to a plane reflection in the far field and measuring
the reflected signal. In this study, the plane-reflected waveform is shown in Figure 7a,
where the reflected pulse is highlighted and shown in Figure 7b. The frequency spectrum
of this pulse is obtained by FFT and given in Figure 7c. To better measure the center
frequency, a Gaussian function is employed to fit the calculated spectrum, and the fitting
result is also shown in Figure 7c. The estimated center frequency of the transmitted pulse is
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fc = 5.27 mHz. A signal obtained from the NDT experiment is presented in Figure 7d, from
which the bottom-reflected pulse can be identified in the highlighted region. The waveform
and frequency spectrum of the bottom-reflected pulse are shown in Figure 7e,f, respectively.
The center frequency of the bottom-reflected pulse is fb = 2.70 mHz. Substituting fc and fb
into Equation (11) yields an attenuation coefficient α = 3.41 × 10−28.
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Case 1: Single flaw detection. In this case, the transducer is positioned right above the
upper flaw. The measured signal from the testing is presented in Figure 8a. Strong grain
noise can be observed from the measured signal. Implementing the proposed method, the
detection results are shown in Figure 8b. The obtained MWSSs clearly reveal the upper flaw
as well as the bottom of the specimen. The detected depths of the upper flaw and bottom of
the specimen are given in Table 2. Comparing the detection results with their actual values,
it is observed that high detection accuracy can be obtained by the proposed method.

Case 2: Simultaneous detection of two flaws. In Figure 9a, an experimental signal
obtained when the transducer is positioned between the two flaws so the received signal
contains two flaw echoes is presented. Using the proposed method, the resulting MWSSs
are shown in Figure 9b, from which three peaks are clearly identified, revealing time delays
corresponding to the upper flaw, the lower flaw, and bottom of the specimen, respectively.
It can be observed from the experimental signal that the echo reflected by the lower flaw
has a higher LSNR than the upper flaw; therefore, the MWSS value for the lower flaw is
higher. Although the flaws are indistinguishable from the time-domain signal, they can be
successfully identified by the proposed method.
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Table 2. Detection results of the proposed method for case 1.

Upper Flaw Bottom

Detected depth (mm) 32.9 82.1
Actual depth (mm) 31.0 81.4

Absolute error (mm) 1.9 0.7
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Using the time-of-flight principle, the depths of the flaws are obtained and compared
with their actual values. The results are tabulated in Table 3, showing satisfactory accuracy
of the proposed method.
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Table 3. Detection results of the proposed method for case 2.

Upper Flaw Lower Flaw Bottom

Detected depth (mm) 32.9 49.6 81.6
Actual depth (mm) 31.0 51.0 81.4

Absolute error (mm) 1.9 1.4 0.2

6. Conclusions

In this work, a novel approach is proposed for flaw detection in highly scattering
materials using a simple ultrasonic sensor. The feature that the spectrum of a flaw echo
shows a different pattern compared to that of grain noise at a given time is exploited,
facilitating the detection of flaws by an adaptive template-matching scheme. Moreover,
a new method for estimating the frequency-dependent attenuation coefficient, which is
easy to use in practice, is also developed. This approach has been demonstrated both in a
simulation study and experimental studies and in both cases, the flaw-detection accuracy
is high, showing the good performance of the proposed method.

It should be noted that although the main aim in this work is to develop an efficient
method to detect flaws in applications where grain noise is present, it is safe to conclude
that the proposed method works even better if the noise is white Gaussian from the fact that
spectrum of white Gaussian noise shows a more pronounced difference from that of a flaw
echo. It has shown the capability for effective flaw detection and potential for applications
in the field, once the effects of changing environmental and operational conditions such as
temperature variations and load conditions, etc., are fully taken into account, yet mitigation
against such effects remains an open problem.
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