
����������
�������

Citation: Tang, Y.; Gu, L.; Wang, L.

Deep Stacking Network for Intrusion

Detection. Sensors 2022, 22, 25.

https://doi.org/10.3390/s22010025

Academic Editors: Savio

Sciancalepore, Giuseppe Piro and

Nicola Zannone

Received: 15 November 2021

Accepted: 7 December 2021

Published: 22 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Deep Stacking Network for Intrusion Detection

Yifan Tang , Lize Gu * and Leiting Wang

School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China;
tyfcs@bupt.edu.cn (Y.T.); wlt562502@bupt.edu.cn (L.W.)
* Correspondence: glzisc@bupt.edu.cn

Abstract: Preventing network intrusion is the essential requirement of network security. In recent
years, people have conducted a lot of research on network intrusion detection systems. However,
with the increasing number of advanced threat attacks, traditional intrusion detection mechanisms
have defects and it is still indispensable to design a powerful intrusion detection system. This paper
researches the NSL-KDD data set and analyzes the latest developments and existing problems in
the field of intrusion detection technology. For unbalanced distribution and feature redundancy
of the data set used for training, some training samples are under-sampling and feature selection
processing. To improve the detection effect, a Deep Stacking Network model is proposed, which
combines the classification results of multiple basic classifiers to improve the classification accuracy.
In the experiment, we screened and compared the performance of various mainstream classifiers
and found that the four models of the decision tree, k-nearest neighbors, deep neural network and
random forests have outstanding detection performance and meet the needs of different classification
effects. Among them, the classification accuracy of the decision tree reaches 86.1%. The classification
effect of the Deeping Stacking Network, a fusion model composed of four classifiers, has been further
improved and the accuracy reaches 86.8%. Compared with the intrusion detection system of other
research papers, the proposed model effectively improves the detection performance and has made
significant improvements in network intrusion detection.

Keywords: intrusion detection; ensemble learning; decision tree; deep neural network; deep stacking
network; nsl-kdd

1. Introduction

With the development of the Internet of Things (IoT), device embedding and connec-
tion have generated more and more network data traffic [1]. The increase in data volume
has also led to more threats to network security. With the updating of network technology,
more and more malicious attacks and threat viruses are appearing and spreading at a
faster speed [2]. As the main means to defend against advanced threats, network intrusion
detection faces new challenges. There are two common detection methods: feature-based
detection and anomaly-based detection [3]. When the attack signature is known, signature-
based detection is very useful. Conversely, anomaly-based detection can be used for known
or unknown attacks. As a traditional network attack detection method, the intrusion
detection system based on feature detection is widely used because of its simplicity and
convenience. Its shortcomings are also obvious. The feature-based intrusion detection
system cannot detect unknown attack types and the detection accuracy is limited by the
feature size and update speed of the signature database. In recent years, researchers have
tried to introduce other technologies in intrusion detection to solve this problem, especially
the recent emergence of machine learning technology. Many researchers have applied
machine learning algorithms, such as decision trees, k-nearest neighbors, support vector
machines and deep neural networks to the field of intrusion detection and have achieved
some initial results.

However, according to the ‘no free lunch’ theorem, we cannot find the best algo-
rithm [4]. Each algorithm model may be outstanding in some aspects and inferior to other

Sensors 2022, 22, 25. https://doi.org/10.3390/s22010025 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22010025
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9126-3054
https://doi.org/10.3390/s22010025
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22010025?type=check_update&version=1

Sensors 2022, 22, 25 2 of 17

algorithms in some parts. Most traditional machine learning methods often have many
problems, such as low versatility, slow detection time, insufficient detection accuracy and
so on. So we try to use integrated learning to solve this problem. In addition, many studies
only focus on the overall detection accuracy and the detection effect for a few types of data
is often very low. How to strengthen the detection ability of small-scale samples is also one
of the problems that need to be solved at present.

This paper proposes a deep stacking network model. This model belongs to an
ensemble learning model, which integrates the advantages of various machine learning
algorithms and improves the detection rate of various attack categories in network intrusion
detection. The main contributions of this paper are summarized as follows:

• An ensemble learning system DSN is proposed, consisting of the decision tree, k-nearest
neighbor, random forest and deep neural network. DSN improves the accuracy of
intrusion detection technology and provides a new research direction for intrusion
detection.

• The proposed DSN combines the predictions of multiple basic classifier models, fus-
ing decision information and improving the generalization and robustness of the
detection model.

• We use a real NSL-KDD dataset to evaluate our proposed system. The experimental
results show that DSN has better performance than traditional methods and most
current algorithms. We consider that the proposed system has good application
prospects for IDS.

The rest of the paper organizes as follows: Section 2 briefly reviews intrusion detection
technology. Section 3 describes the dataset and the algorithms used, including decision tree,
deep neural network and deep stacking network. In Section 4, the proposed DSN algorithm
is described in detail. The experiments of choosing basic classifiers and comparison
experiments of performance analysis are given respectively in Section 5. Finally, Section 6
provides some personal opinions and conclusions, including further work afterward.

2. Related Works

In recent years, many scholars have tried to use machine learning algorithms to study
new intrusion detection methods [5]. Several studies have suggested that by selecting
relevant features, the detection accuracy and performance of IDS can be considerably
improved [6]. Hodo et al. [7] analyzed the advantages of various machine learning meth-
ods in intrusion detection and discussed the influence of FS in IDS. Janarthanan et al. [8]
conducted experiments to compare the effects of features on various machine learning
algorithms and pointed out some most important features in intrusion detection. Some
scholars focus on using Feature selection (FS) to improve intrusion detection performance.
Bamakan et al. [9] presented a novel support vector machine (SVM) with FS by Particle
swarm optimization (PSO), which improved the performance of classification for IDS.
Elmasry et al. [10] applied two PSO algorithms to perform feature selection and hyper-
parameter selection respectively, which improved the detection effect of deep learning
architectures on IDS. Thaseen et al. [11] designed a multiclass SVM with chi-square feature
selection, which reduces the time of training considerably and effectively improves the
efficiency of the algorithm.

Deep learning has achieved many successes in speech detection, image recognition,
data analysis and other fields, becoming the preferred solution to many problems. Many
scholars have also begun to use deep learning to solve intrusion detection problems.
Wu et al. [12] designed a convolutional neural network (CNN) to select features from data
sets automatically and set the weight coefficient of each class to solve the problem of sam-
ple imbalance. Muhammad et al. [13] proposed the IDS based on a stacked autoencoder
(AE) and a deep neural network (DNN), which reduced the difficulty of network training
and improved the performance of the network. Yang et al. [14] designed a DNN with an
improved conditional variational autoencoder (ICVAE) to extract high-level features, over-

Sensors 2022, 22, 25 3 of 17

come some limitations of shallow learning and further promote the progress of intrusion
detection systems.

Although machine learning and deep learning have certain advantages in intrusion
detection, the disadvantages are also obvious. A single algorithm tends to have a high
detection rate for certain attack categories while ignoring the detection effect of other attack
categories. In order to solve this problem, many scholars try to use the idea of integrated
learning to solve the problem of intrusion detection. Rahman et al. [15] proposed an
adaptive intrusion detection system based on boosting with naive Bayes as the weak (base)
classifier. Syarif [16] applied and analyzed three traditional ensemble learning methods for
intrusion detection. Gao [17] proposed an adaptive voting model for intrusion detection,
which consists of four different machine learning methods as the base classifiers, resulting
in an excellent performance.

The development of the above-mentioned intrusion detection technologies is encour-
aging, but these classification technologies still have detection deficiencies, such as being
insensitive to unknown attacks and a low detection rate when detecting a few attacks.
In order to overcome these problems, this paper uses preprocessing technology to deal
with the dataset and selects the basic classifier of ensemble learning selected to construct
the ensemble learning model DSN. Finally, the system DSN solves the above-mentioned
problems by learning the advantages of each classifier.

3. Background
3.1. NSL-KDD Dataset Introduction

The famous public KDDCUP’ 99 is the most widely used data set for the intrusion
detection system [18]. However, there are two critical problems with this data set, which
seriously affect the performance of the evaluated system. One is that many redundant
duplicate records will cause the learning algorithm to be biased towards identifying dupli-
cate records. Second, the sample ratio is seriously unbalanced and some attack categories
exceed 70%, making them too easy to be detected, which is not helpful for multi-class de-
tection. Both of these problems have seriously affected the evaluation of intrusion detection
performance. To solve these problems, Tavallaee proposed a new data set NSL-KDD [19,20],
which consists of selected records of the complete KDD data without mentioned shortcom-
ings [5]. Table 1 shows the detailed information of the dataset NSL-KDD.

Many scholars have carried out a series of studies on NSL-KDD and analysis shows
that the NSL-KDD data set is suitable for evaluating different intrusion detection mod-
els [21]. Therefore, we selected the NSL-KDD data sets to validate the proposed model.
Table 1 shows the distribution of the NSL-KDD dataset.

3.2. Decision Tree

Decision tree (DT) is a commonly used machine learning method to complete classifi-
cation and regression tasks. The decision tree model has a tree structure, starting from the
root node and branching using the essential features of the data. Each branch represents the
output of a feature and each child node represents a category. The classification decision
tree is a kind of supervised learning and the required classification model can be obtained
by giving sample training. The input data finally completes the classification task through
the judgment of each node. According to the criteria for judging branch characteristics,
decision trees can be divided into ID3, C4.5 and CART. ID3 uses a greedy strategy and uses
information gain based on information entropy as a branch criterion.

In the classification problem, take a data set D with K classes as an example. The
information entropy of probability distribution is defined as follows:

Ent(D) =
K

∑
k=1

pk log2(pk) (1)

where pk represents the probability of sample points belonging to k class.

Sensors 2022, 22, 25 4 of 17

Table 1. The class distribution of the NSL-KDD dataset.

Category Attack
Training Dataset Testing Dataset

KDD Train+ KDD Test+ KDD Test-21

normal normal 67,343 9711 2152
Subtotal 67,343 9711 2152

DoS neptune 41,214 4657 1579
smurf 2646 665 627
back 956 359 359

teardrop 892 12 12
pod 201 41 41
land 18 7 7

apache2 / 737 737
processtable / 685 85
mailbomb / 293 293
udpstorm / 2 2

Subtotal 45,927 7458 4342
Probe satan 3633 735 727

ipsweep 3599 141 141
portsweep 2931 157 156

nmap 1493 73 73
mscan / 996 996
saint / 319 309

Subtotal 11,656 2421 2402
R2L warezclient 890 / /

guess_passwd 53 1231 1231
warezmaster 20 944 944

imap 11 1 1
ftp_write 8 3 3
multihop 7 18 18

phf 4 2 2
spy 2 / /

named / 17 17
sendmail / 14 14

xlock / 9 9
xsnoop / 4 4
worm / 2 2

snmpgetattack / 178 178
snmpguess / 331 331

Subtotal 995 2754 2754
U2R buffer_overflow 30 20 20

rootkit 10 13 13
loadmodule 9 2 2

perl 3 2 2
httptunnel / 133 133

ps / 15 15
xterm / 13 13

sqlattack / 2 2
Subtotal 52 200 200

Total 125,972 22,544 11,850

Choose feature A as the split node, the conditional entropy and information gain is
defined as follows:

Ent(D|A) =
J

∑
j=1

∣∣Dj
∣∣

|D| Ent
(

Dj
)

(2)

Gain(D, A) = Ent(D)− Ent(D|A) (3)

where Dj represents the sample subset of class j in feature A.
The greater the information entropy, the higher the uncertainty of the sample set. The

essence of the classification learning process is the reduction of sample uncertainty (that

Sensors 2022, 22, 25 5 of 17

is, the process of entropy reduction). The greater the change of the information gain, the
better the classification effect of the feature on the sample set. Therefore, the feature split
with the largest information gain should be selected.

3.3. Deep Neural Network Algorithm

Deep neural network (DNN) is a deep learning algorithm widely recognized by
scholars. Figure 1 shows the basic structure of DNN. The network structure of DNN
includes the input layer, hidden layer and output layer and each layer is fully connected.
Each neuron has no connection with the neurons between the layers and is connected with
all the neurons in the next layer. After each layer of the network, there is an activation
function acting on the output, which strengthens the effect of network learning. Therefore,
DNN can also be understood as a large perceptron composed of multiple perceptrons. Take
the ith layer forward propagation calculation as an example, the formula is as follows:

xi+1 = σ
(
∑ wixi + b

)
(4)

where x represents the input value, w represents the weight coefficient matrices and b
represents the bias vector.

Sensors 2022, 21, x FOR PEER REVIEW 6 of 18

… …

a2k

a24

a23

a22

a21 a11

a12

a13

a14

a1j

o1

o2

o3

o4

om

…

…

…

…

…

…
ail

ai4

ai3

ai2

ai1

Input
Data

…

Input Layer Hidden Layer Output Layer

… …

Output
Data

Figure 1. the basic structure of DNN.

3.4. Deep Stacking Network Algorithm
Individual machine learning algorithms usually have shortcomings and cannot com-

plete complex task requirements. Therefore, we try to combine many different machine
learning algorithms to form a learning system. We call this learning system ensemble
learning and the algorithms that make up the learning system are called individual learn-
ers. Ensemble learning can be divided into two categories. One type is serialization meth-
ods that have strong dependencies between individual learners and must be generated
serially, such as boosting and AdaBoost. The other is parallelization methods that can be
generated at the same time without strong dependencies on individual learners, such as
bagging and random forest (RF).

Stacking is a combination strategy that combines the calculation results of individual
learners. Wolpert [22] put forward the idea of stacked generalization in 1992, using an-
other machine learning algorithm to combine the results of individual machine learning
devices. This method improves the performance of the algorithm, reduces the generaliza-
tion error and makes the model more widely used. Deng proposed the use of deep neural
networks as the combined layer algorithm to further improve the performance of the
stacking model, called the deep stacking network (DSN) [23].

DSN usually consists of two modules. The first module is the classifier module, com-
posed of classifiers with different classification performances and performs preliminary
prediction processing on the input data. ‘Stacking’ refers to concatenating all output pre-
dictions with the original input vector to form a new input vector for the next module.
The second module is the prediction fusion module. By training the new combined input
data obtained from the previous layer, a new network can be obtained. The network can
effectively use the output data obtained from the previous layer for further processing.
The prediction result output by the network is more accurate and closer to the true value.

4. The Proposed Intrusion Detection Method
In this paper, a deep stacking network model is designed which selects commonly

used machine learning algorithms, such as support vector machines (SVM), decision trees,
random forests, k-nearest neighbors (KNN), AdaBoost, deep neural networks (DNN), etc.,
as the basic classifiers. Through comparative testing, we select four machine learning
methods as the basic classifiers. Through data preprocessing and deep neural network
tuning, the best detection effect is finally obtained. Figure 2 shows the algorithm flow of
the proposed model, mainly includes following 7 steps:
1. Input the original NSL-KDD training data set. The pre-processing module discretizes

the string information in the data set, filters important feature selection, handles im-
balanced data and normalizes the data.

Figure 1. The basic structure of DNN.

In a multi-class network, ReLU is usually used as an activation function, the formula
is as follows:

σ(x) = max(0, x) (5)

The loss function measures the output loss of training samples and calculates the back
propagation of the network through the loss function to optimize the network structure. In
the classification task, we usually choose cross-entropy as the loss function, the formula is
as follows:

C = − 1
N ∑

x

M

∑
i=1

(yi log pi) (6)

where N represents the number of the input data set, M represents the number of categories,
yi represents whether the classification i corresponds to the real category and pi represents
the probability of predicting into category i.

3.4. Deep Stacking Network Algorithm

Individual machine learning algorithms usually have shortcomings and cannot com-
plete complex task requirements. Therefore, we try to combine many different machine
learning algorithms to form a learning system. We call this learning system ensemble
learning and the algorithms that make up the learning system are called individual learners.
Ensemble learning can be divided into two categories. One type is serialization methods

Sensors 2022, 22, 25 6 of 17

that have strong dependencies between individual learners and must be generated serially,
such as boosting and AdaBoost. The other is parallelization methods that can be generated
at the same time without strong dependencies on individual learners, such as bagging and
random forest (RF).

Stacking is a combination strategy that combines the calculation results of individual
learners. Wolpert [22] put forward the idea of stacked generalization in 1992, using another
machine learning algorithm to combine the results of individual machine learning devices.
This method improves the performance of the algorithm, reduces the generalization error
and makes the model more widely used. Deng proposed the use of deep neural networks
as the combined layer algorithm to further improve the performance of the stacking model,
called the deep stacking network (DSN) [23].

DSN usually consists of two modules. The first module is the classifier module,
composed of classifiers with different classification performances and performs preliminary
prediction processing on the input data. ‘Stacking’ refers to concatenating all output
predictions with the original input vector to form a new input vector for the next module.
The second module is the prediction fusion module. By training the new combined input
data obtained from the previous layer, a new network can be obtained. The network can
effectively use the output data obtained from the previous layer for further processing. The
prediction result output by the network is more accurate and closer to the true value.

4. The Proposed Intrusion Detection Method

In this paper, a deep stacking network model is designed which selects commonly
used machine learning algorithms, such as support vector machines (SVM), decision trees,
random forests, k-nearest neighbors (KNN), AdaBoost, deep neural networks (DNN), etc.,
as the basic classifiers. Through comparative testing, we select four machine learning
methods as the basic classifiers. Through data preprocessing and deep neural network
tuning, the best detection effect is finally obtained. Figure 2 shows the algorithm flow of
the proposed model, mainly includes following 7 steps:

1. Input the original NSL-KDD training data set. The pre-processing module discretizes
the string information in the data set, filters important feature selection, handles
imbalanced data and normalizes the data.

2. Use 10-fold cross-validation to divide the pre-processed dataset and then input the
data into various classifiers for training.

3. After using training data to conduct cross-validation training for all algorithms, select
algorithms with better detection accuracy and operational performance as the basic
classifier. Then discretize the classification results.

4. Input the predicted classification result of the training set and the original category
as the training set, initialize the parameter weights of the neural network, train the
network parameters and finally generate the Deep Stacking Network model.

5. Input the NSL-KDD testing data set. The pre-processing module discretizes the
character information in the data set, selects essential features and normalizes the data.

6. Use the trained basic classifier to initially predict the classification results and dis-
cretize the results.

7. Input the preliminary predicted classification results into the trained neural network
to obtain the prediction results of the Deep Stacking Network model.

4.1. Data Pre-Processing

Data pre-processing is a necessary step for data analysis, and it is also an essential
part of an intrusion detection system. The preprocessing stage mainly includes four
units: one-hot encoding, feature selection, data standardization, imbalance handling and
normalization.

Sensors 2022, 22, 25 7 of 17

Sensors 2022, 21, x FOR PEER REVIEW 7 of 18

2. Use 10-fold cross-validation to divide the pre-processed dataset and then input the
data into various classifiers for training.

3. After using training data to conduct cross-validation training for all algorithms, select
algorithms with better detection accuracy and operational performance as the basic
classifier. Then discretize the classification results.

4. Input the predicted classification result of the training set and the original category
as the training set, initialize the parameter weights of the neural network, train the
network parameters and finally generate the Deep Stacking Network model.

5. Input the NSL-KDD testing data set. The pre-processing module discretizes the char-
acter information in the data set, selects essential features and normalizes the data.

6. Use the trained basic classifier to initially predict the classification results and discre-
tize the results.

7. Input the preliminary predicted classification results into the trained neural network
to obtain the prediction results of the Deep Stacking Network model.

One-hot-encoding

Training
Set

Testing
Set

Imbalance Handling

Feature Selection

Pre-proposing

Data Sets

Classifier1 Classifier2

Classifier3 Classifier4

One-hot-encoding
… …

Normal

DNN Classifier

Cross-validation

Classifier Training

o1

o2

o3

o4

o5 a2k

a24

a23

a22

a21 a11

a12

a13

a14

a1j

DOS

Probe

R2L

U2R

(1) (5)
(2)

(3)

(6)

(4)

Normalization

Classifier Models

(7)

Figure 2. Deep stacking network model.

4.1. Data Pre-Processing
Data pre-processing is a necessary step for data analysis, and it is also an essential

part of an intrusion detection system. The preprocessing stage mainly includes four units:
one-hot encoding, feature selection, data standardization, imbalance handling and nor-
malization.

4.1.1. One-Hot-Encoding
There are 41 features in the NSL-KDD dataset, including 3 string features and 38 con-

tinuous value features. In machine learning, character type information cannot be used
directly and needs the encoding methods to convert it. One-hot-encoding is one of the
most commonly used methods to deal with the numeralization of categorical features [24].
It converts each character type feature into a binary vector and marks the corresponding
category as 1 and the others as 0. For example, the feature protocol_type has a total of three
attributes: tcp, udp and icmp. By one-hot-encoding, tcp is encoded into (1, 0, 0), udp is en-
coded into (0, 1, 0) and icmp is encoded into (0, 0, 1). Overall, the three character type
features protocol_type, service, flag are mapped into 84-dimensional binary values. Other-
wise, the num_outbound_cmds feature value is 0, so this feature is removed. Therefore, the
original 41-dimensional NSL-KDD can be transformed into a new 121-dimensional data
set.

4.1.2. Feature Selection
Feature selection (FS) is a commonly used method of data aggregation. In some ways,

we can select important features and remove the remaining redundant features to allevi-
ate the problem of dimensionality disaster. Similarly, removing irrelevant features can
reduce the difficulty of machine learning tasks and increase the efficiency of storage space

Figure 2. Deep stacking network model.

4.1.1. One-Hot-Encoding

There are 41 features in the NSL-KDD dataset, including 3 string features and 38 con-
tinuous value features. In machine learning, character type information cannot be used
directly and needs the encoding methods to convert it. One-hot-encoding is one of the
most commonly used methods to deal with the numeralization of categorical features [24].
It converts each character type feature into a binary vector and marks the corresponding
category as 1 and the others as 0. For example, the feature protocol_type has a total of three
attributes: tcp, udp and icmp. By one-hot-encoding, tcp is encoded into (1, 0, 0), udp is
encoded into (0, 1, 0) and icmp is encoded into (0, 0, 1). Overall, the three character type
features protocol_type, service, flag are mapped into 84-dimensional binary values. Otherwise,
the num_outbound_cmds feature value is 0, so this feature is removed. Therefore, the original
41-dimensional NSL-KDD can be transformed into a new 121-dimensional data set.

4.1.2. Feature Selection

Feature selection (FS) is a commonly used method of data aggregation. In some ways,
we can select important features and remove the remaining redundant features to alleviate
the problem of dimensionality disaster. Similarly, removing irrelevant features can reduce
the difficulty of machine learning tasks and increase the efficiency of storage space utiliza-
tion. In some machine learning algorithms, FS can help the algorithm improve detection
performance, especially decision tree algorithms [25].

4.1.3. Imbalance Handling

It can be clearly seen from the table that the training samples are imbalanced on the
NSL-KDD data set. Unbalanced training samples will cause the trained model to be biased
to recognize most sample categories, resulting in the degradation of the model’s detection
performance. Therefore, we choose to process the training samples. Commonly used
methods for processing unbalanced data sets include under-sampling and over-sampling.
The model in this paper uses undersampling to process the training samples of the data set.
From a security perspective, the intrusion detection system should identify the attack type
as much as possible and can appropriately reduce the normal traffic data in the training
sample when inputting the training sample, so that the focus of model training is to identify
the attack type. We use the non-replacement method to sample the normal flow data
randomly. Table 2 shows the sample distribution of the new data set.

Table 2. Number of New Records.

Category Number of Original Records Number of New Records

Normal 67,343 30,000
DoS 45,927 45,927

Probe 11,656 11,656
R2L 995 995
U2R 52 52
Total 125,972 88,630

Sensors 2022, 22, 25 8 of 17

4.1.4. Normalization

Different dimensions of input data usually have different dimensions and orders
of magnitude. When using machine learning, data normalization is a very necessary
measure. The transformed NSL-KDD has 121-dimensional features and there are big
differences between the features, so we use data normalization to reduce the differences for
improved performance [26]. In this paper, the zero-mean normalization and the min–max
normalization method are adopted to reduce the differences in different dimensions. The
zero-mean normalization processes the data by changing the average value to 0 and the
standard deviation to 1. The formula is as follows:

Z̃ij =
Zij − Zi

σ
(7)

where Zi and σ, respectively, represent the mean and standard deviation value of the ith
feature Zi and Z̃ij represents the feature value after normalization.

The min-max normalization scales the data to the interval [0, 1] through a linear
transformation. The formula is as follows:

Z̃ij =
Zij −min(Zi)

max(Zi)−min(Zi)
(8)

where max(Zi) and min(Zi), respectively, represent the maximum and minimum value of
the ith feature Zi and Z̃ij represents the normalized feature value between [0, 1].

4.2. Training Classifiers

The classifier module reads the preprocessed data and uses the ten-fold cross-validation
method to process the training data. In the 10-fold cross-validation method, the entire
training set is randomly divided into 10 folds, of which 9 folds work as sub-training data
and the remaining 1 fold works as sub-validation data. The read data is used for model
training. We first choose KNN, RF, SVM, DT, LR, DNN to process the data. Two standard-
ization methods are mentioned in Section 4.1. According to the different characteristics of
machine learning algorithms, we have different data standardization methods for different
algorithms. Most studies have proved that feature selection can improve the effectiveness
of decision tree algorithms [26]. Therefore, in the setting of the decision tree algorithm, the
feature selection method is used for feature selection. Commonly used feature selection
methods include the correlation coefficient method, PSO feature selection method, etc. In
this paper, the PSO method is selected as the feature selection method [27]. Table 3 shows
the different preprocessing methods of different algorithms:

Table 3. Pre-processing methods of different algorithms.

Algorithm KNN DT RF SVM LR DNN

Normalization
Method min-max / / min-max min-max zero-mean

Feature
Selection No Yes No No No No

One-Hot-
Encoding Yes Yes Yes Yes Yes Yes

Imbalance
Handling Yes Yes Yes Yes Yes Yes

The classification decision tree in this article uses the ID3 algorithm as the way to
build the tree model. First, perform feature selection, reducing the number of features of
the input data from 121 to 56. Then use the data after feature selection to input decision
tree training. Each time the feature with the largest information gain is selected as the
bifurcation node, each child node connects two branches to build a binary decision tree.
In the decision tree, choosing the bifurcation point is the key to affecting the classification
performance of the decision tree. Take the 4-layer decision tree trained on NSL-KDD data

Sensors 2022, 22, 25 9 of 17

as an example, where src_bytes is the root node of the decision tree and the decision tree
model is shown in Figure 3.

Sensors 2022, 21, x FOR PEER REVIEW 9 of 18

standardization methods are mentioned in paragraph 4.1. According to the different char-
acteristics of machine learning algorithms, we have different data standardization meth-
ods for different algorithms. Most studies have proved that feature selection can improve
the effectiveness of decision tree algorithms [26]. Therefore, in the setting of the decision
tree algorithm, the feature selection method is used for feature selection. Commonly used
feature selection methods include the correlation coefficient method, PSO feature selec-
tion method, etc. In this paper, the PSO method is selected as the feature selection method
[27]. Table 3 shows the different preprocessing methods of different algorithms:

Table 3. Pre-processing methods of different algorithms.

Algorithm KNN DT RF SVM LR DNN
Normalization Method min-max / / min-max min-max zero-mean

Feature Selection No Yes No No No No
One-Hot-Encoding Yes Yes Yes Yes Yes Yes

Imbalance Handling Yes Yes Yes Yes Yes Yes

The classification decision tree in this article uses the ID3 algorithm as the way to
build the tree model. First, perform feature selection, reducing the number of features of
the input data from 121 to 56. Then use the data after feature selection to input decision
tree training. Each time the feature with the largest information gain is selected as the
bifurcation node, each child node connects two branches to build a binary decision tree.
In the decision tree, choosing the bifurcation point is the key to affecting the classification
performance of the decision tree. Take the 4-layer decision tree trained on NSL-KDD data
as an example, where src_bytes is the root node of the decision tree and the decision tree
model is shown in Figure 3.

src_bytes<= 28.5
entropy = 1.484
samples = 88630

value = [30000, 45927, 11656, 995, 52]

count <= 3.5
entropy = 0.962
samples = 55683

value = [2143, 42123, 11373, 30, 14]

service_ecr_i <= 0.5
entropy = 0.784
samples = 32947

value = [27857, 3804, 283, 965, 38]

service_http <= 0.5
entropy = 0.938
samples = 9752

value = [1995, 255, 7461, 28, 13]

diff_srv_rate <= 0.365
entropy = 0.452
samples = 45931

value = [148, 41868, 3912, 2, 1]

hot <= 0.5
entropy = 0.498
samples = 29998

value = [27752, 960, 283, 965, 38]

src_bytes <= 292.0
entropy = 0.222
samples = 2949

value = [105, 2844, 0, 0, 0]

service_ftp_data <= 0.5
entropy = 0.649
samples = 8460

value = [767, 208, 7444, 28, 13]

dst_host_serror_rate <= 0.55
entropy = 0.326
samples = 1292

value = [1228, 47, 17, 0, 0]

Flag_SF <= 0.5
entropy = 0.209
samples = 42829

value = [136, 41551, 1140, 2, 0]

dst_host_serror_rate <= 0.78
entropy = 0.516
samples = 3102

value = [12, 317, 2772, 0, 1]

entropy = 0.512
samples = 8141

value = [526, 186, 7421, 6, 2]

entropy = 1.279
samples = 319

value = [241, 22, 23, 22, 11]

entropy = 0.117
samples = 1232

value = [1214, 2, 16, 0, 0]

entropy = 0.9
samples = 60

value = [14, 45, 1, 0, 0]

entropy = 0.031
samples = 40804

value = [111, 40682, 11, 0, 0]
entropy = 1.082
samples = 2025

value = [25, 869, 1129, 2, 0]

entropy = 0.031
samples = 40804

value = [111, 40682, 11, 0, 0]
entropy = 1.082
samples = 2025

value = [25, 869, 1129, 2, 0]

service_ftp_data <= 0.5
entropy = 0.23

samples = 28052
value = [27201, 13, 281, 544, 13]

src_bytes <= 8137.0
entropy = 1.59
samples = 1946

value = [551, 947, 2, 421, 25]

entropy = 0.105
samples = 25512

value = [25194, 13, 281, 11, 13]
entropy = 0.741
samples = 2540

value = [2007, 0, 0, 533, 0]

entropy = 1.133
samples = 945

value = [550, 0, 1, 369, 25]
entropy = 0.317
samples = 1001

value = [1, 947, 1, 52, 0]entropy = 0.0
samples = 105

value = [105, 0, 0, 0, 0]

entropy = 0.0
samples = 2844

value = [0, 2844, 0, 0, 0]
Figure 3. 4-level binary decision tree model. Figure 3. 4-level binary decision tree model.

The settings of different DNN network structures usually affect the results of training,
so this paper designs a DNN network structure with five hidden layers. According to the
proportion of the number of samples in the training sample, we reset the proportion of
each category class_weight = {1:2:3:4:5} to increase the effect of small samples in network
training, thereby improving the overall detection of the DNN network Effect. Finally, use
the softmax function to output the final category prediction results. Figure 4 shows the
network structure settings of DNN.

Sensors 2022, 21, x FOR PEER REVIEW 10 of 18

The settings of different DNN network structures usually affect the results of train-
ing, so this paper designs a DNN network structure with five hidden layers. According to
the proportion of the number of samples in the training sample, we reset the proportion
of each category class_weight = {1:2:3:4:5} to increase the effect of small samples in net-
work training, thereby improving the overall detection of the DNN network Effect. Fi-
nally, use the softmax function to output the final category prediction results. Figure 4
shows the network structure settings of DNN.

FC
 la

ye
r

In
pu

t

So
ftm

ax

20
48

Re
Lu

FC
 la

ye
r

Re
Lu

FC
 la

ye
r

Re
Lu

FC
 la

ye
r

Re
Lu

10
24

51
2

25
6

FC
 la

ye
r Class

Decision

Layer 1 Layer 2 Layer 3 Layer 4

FC
 la

ye
r

Re
Lu

Layer 5

12
8

Figure 4. DNN model structure settings.

4.3. Proposed Deep Stacking Network
The Deep Stacking Network (DSN) is divided into two layers. In the first layer, the

classifier module, each classifier has 10 different model parameter structures based on 10-
fold cross-validation. Each model performs a result prediction on its corresponding veri-
fication set and can get the prediction results of 10 verification sets. The set of 10 validation
sets corresponds to a complete training set. We superimposed the prediction results of the
10 validation sets to obtain the prediction results of a complete training set. This prediction
result on the training set can help us evaluate the performance of the classifier and use it
as the new training set input to the next layer. At the same time, each model inputs the
data that need to be predicted and the mode of the predicted values of these 10 models
are taken as the prediction result of the classifier, which is used as the new test set to input
by the next layer. Figure 5 shows the process of data ‘stacking’. So far, we have not only
made full use of the training effect of the complete training set but also used the entire
training set for model performance evaluation.

Predict
Learn
Learn
…

LearnTr
ai

ni
ng

 D
at

a Learn
Predict
Learn
…

Learn

Learn
Learn
Predict
…

Learn

Learn
Learn
Learn
…

Predict

Predict

Te
st

D
at

a

Predict Predict Predict

Predict
Predict
Predict
…

Predict

Predict

 10-Fold Cross-validation of Classifier New Features

Mode

…

…

Figure 5. 10-fold cross-validation.

In the algorithm proposed in this paper, 4 classifiers are selected as the basic classifi-
ers of Deep Stacking Network. Each classifier corresponds to a new training set and a new
test set. Then use one-hot encoding to convert the prediction results from character varia-
bles to discrete variables and the prediction results from 1-dimensional features to 5-di-
mensional features. For example, the prediction result is that Probe becomes (0, 0, 1, 0, 0).

Figure 4. DNN model structure settings.

4.3. Proposed Deep Stacking Network

The Deep Stacking Network (DSN) is divided into two layers. In the first layer,
the classifier module, each classifier has 10 different model parameter structures based
on 10-fold cross-validation. Each model performs a result prediction on its correspond-
ing verification set and can get the prediction results of 10 verification sets. The set of
10 validation sets corresponds to a complete training set. We superimposed the prediction

Sensors 2022, 22, 25 10 of 17

results of the 10 validation sets to obtain the prediction results of a complete training
set. This prediction result on the training set can help us evaluate the performance of the
classifier and use it as the new training set input to the next layer. At the same time, each
model inputs the data that need to be predicted and the mode of the predicted values of
these 10 models are taken as the prediction result of the classifier, which is used as the new
test set to input by the next layer. Figure 5 shows the process of data ‘stacking’. So far, we
have not only made full use of the training effect of the complete training set but also used
the entire training set for model performance evaluation.

Sensors 2022, 21, x FOR PEER REVIEW 10 of 18

The settings of different DNN network structures usually affect the results of train-
ing, so this paper designs a DNN network structure with five hidden layers. According to
the proportion of the number of samples in the training sample, we reset the proportion
of each category class_weight = {1:2:3:4:5} to increase the effect of small samples in net-
work training, thereby improving the overall detection of the DNN network Effect. Fi-
nally, use the softmax function to output the final category prediction results. Figure 4
shows the network structure settings of DNN.

FC
 la

ye
r

In
pu

t

So
ftm

ax

20
48

Re
Lu

FC
 la

ye
r

Re
Lu

FC
 la

ye
r

Re
Lu

FC
 la

ye
r

Re
Lu

10
24

51
2

25
6

FC
 la

ye
r Class

Decision

Layer 1 Layer 2 Layer 3 Layer 4

FC
 la

ye
r

Re
Lu

Layer 5

12
8

Figure 4. DNN model structure settings.

4.3. Proposed Deep Stacking Network
The Deep Stacking Network (DSN) is divided into two layers. In the first layer, the

classifier module, each classifier has 10 different model parameter structures based on 10-
fold cross-validation. Each model performs a result prediction on its corresponding veri-
fication set and can get the prediction results of 10 verification sets. The set of 10 validation
sets corresponds to a complete training set. We superimposed the prediction results of the
10 validation sets to obtain the prediction results of a complete training set. This prediction
result on the training set can help us evaluate the performance of the classifier and use it
as the new training set input to the next layer. At the same time, each model inputs the
data that need to be predicted and the mode of the predicted values of these 10 models
are taken as the prediction result of the classifier, which is used as the new test set to input
by the next layer. Figure 5 shows the process of data ‘stacking’. So far, we have not only
made full use of the training effect of the complete training set but also used the entire
training set for model performance evaluation.

Predict
Learn
Learn
…

LearnTr
ai

ni
ng

 D
at

a Learn
Predict
Learn
…

Learn

Learn
Learn
Predict
…

Learn

Learn
Learn
Learn
…

Predict

Predict

Te
st

D
at

a

Predict Predict Predict

Predict
Predict
Predict
…

Predict

Predict

 10-Fold Cross-validation of Classifier New Features

Mode

…

…

Figure 5. 10-fold cross-validation.

In the algorithm proposed in this paper, 4 classifiers are selected as the basic classifi-
ers of Deep Stacking Network. Each classifier corresponds to a new training set and a new
test set. Then use one-hot encoding to convert the prediction results from character varia-
bles to discrete variables and the prediction results from 1-dimensional features to 5-di-
mensional features. For example, the prediction result is that Probe becomes (0, 0, 1, 0, 0).

Figure 5. 10-fold cross-validation.

In the algorithm proposed in this paper, 4 classifiers are selected as the basic classifiers
of Deep Stacking Network. Each classifier corresponds to a new training set and a new test
set. Then use one-hot encoding to convert the prediction results from character variables to
discrete variables and the prediction results from 1-dimensional features to 5-dimensional
features. For example, the prediction result is that Probe becomes (0, 0, 1, 0, 0). Therefore,
a total of 20-dimensional training set features and 20-dimensional test set features can be
obtained. Combining the original classification label of the training set with the features
of the new training set is the input of the new training set. The features in this training
set can also be called appearance features. These appearance features can help us train to
get the influence relationship of each basic classifier in the network. Figure 6 shows the
composition of the new training set and test set.

Sensors 2022, 21, x FOR PEER REVIEW 11 of 18

Therefore, a total of 20-dimensional training set features and 20-dimensional test set fea-
tures can be obtained. Combining the original classification label of the training set with
the features of the new training set is the input of the new training set. The features in this
training set can also be called appearance features. These appearance features can help us
train to get the influence relationship of each basic classifier in the network. Figure 6
shows the composition of the new training set and test set.

Predict
Predict
Predict
…

Predict

Predict

Predict
Predict
Predict
…

Predict

Predict
Predict
Predict
…

Predict

Predict
Predict
Predict
…

Predict

Classifier1

Original
Training

Label

Predict Predict Predict Final
Predict

Classifier2 Classifier3 Classifier4
Training Features

Testing Features

Training Label

Testing Label

Figure 6. The composition of the new training set and test set.

In the second layer, the prediction fusion module, we use a simple neural network
for decision fusion. Since decision fusion does not need to explore the deep relationship
between features and labels, we use a hidden layer of neural network for model training.
The neural network structure is shown in Figure 7. Adjust the network parameters by
inputting a new training set, use the ReLU function as the activation function and use the
softmax function to adjust before outputting to get the final classification result.

FC
 la

ye
r

In
pu

t

So
ftm

ax

12
8

Re
Lu

FC
 la

ye
r Class

Decision

Layer 1
Figure 7. DSN model structure settings.

5. Experimental Results and Analysis
5.1. Performance Evaluation

In this article, nine indicators commonly are used in intrusion detection to evaluate
the performance of the intrusion detection system, including four confusion matrix indi-
cators of true positive (TP), true negative (TN), false positive (FP), false negative (FN) and
five evaluation indicators of accuracy (ACC), precision, recall rate, F1-score, multi-class
accuracy (MACC). Table 4 shows the confusion matrix.

Figure 6. The composition of the new training set and test set.

Sensors 2022, 22, 25 11 of 17

In the second layer, the prediction fusion module, we use a simple neural network
for decision fusion. Since decision fusion does not need to explore the deep relationship
between features and labels, we use a hidden layer of neural network for model training.
The neural network structure is shown in Figure 7. Adjust the network parameters by
inputting a new training set, use the ReLU function as the activation function and use the
softmax function to adjust before outputting to get the final classification result.

Sensors 2022, 21, x FOR PEER REVIEW 11 of 18

Therefore, a total of 20-dimensional training set features and 20-dimensional test set fea-
tures can be obtained. Combining the original classification label of the training set with
the features of the new training set is the input of the new training set. The features in this
training set can also be called appearance features. These appearance features can help us
train to get the influence relationship of each basic classifier in the network. Figure 6
shows the composition of the new training set and test set.

Predict
Predict
Predict
…

Predict

Predict

Predict
Predict
Predict
…

Predict

Predict
Predict
Predict
…

Predict

Predict
Predict
Predict
…

Predict

Classifier1

Original
Training

Label

Predict Predict Predict Final
Predict

Classifier2 Classifier3 Classifier4
Training Features

Testing Features

Training Label

Testing Label

Figure 6. The composition of the new training set and test set.

In the second layer, the prediction fusion module, we use a simple neural network
for decision fusion. Since decision fusion does not need to explore the deep relationship
between features and labels, we use a hidden layer of neural network for model training.
The neural network structure is shown in Figure 7. Adjust the network parameters by
inputting a new training set, use the ReLU function as the activation function and use the
softmax function to adjust before outputting to get the final classification result.

FC
 la

ye
r

In
pu

t

So
ftm

ax

12
8

Re
Lu

FC
 la

ye
r Class

Decision

Layer 1
Figure 7. DSN model structure settings.

5. Experimental Results and Analysis
5.1. Performance Evaluation

In this article, nine indicators commonly are used in intrusion detection to evaluate
the performance of the intrusion detection system, including four confusion matrix indi-
cators of true positive (TP), true negative (TN), false positive (FP), false negative (FN) and
five evaluation indicators of accuracy (ACC), precision, recall rate, F1-score, multi-class
accuracy (MACC). Table 4 shows the confusion matrix.

Figure 7. DSN model structure settings.

5. Experimental Results and Analysis
5.1. Performance Evaluation

In this article, nine indicators commonly are used in intrusion detection to evaluate the
performance of the intrusion detection system, including four confusion matrix indicators
of true positive (TP), true negative (TN), false positive (FP), false negative (FN) and five
evaluation indicators of accuracy (ACC), precision, recall rate, F1-score, multi-class accuracy
(MACC). Table 4 shows the confusion matrix.

Table 4. Confusion Matrix.

Predicted Attack Predicted Normal

Actual Attack TP FN
Actual Normal FP TN

The four confusion matrix indicators are defined as follows:

1. True Positive (TP): Attack records that are correctly detected as attack ones.
2. False Positive (FP): Normal records that are incorrectly detected as attack ones.
3. True Negative (TN): Normal records that are correctly detected as normal ones.
4. False Negative (FN): Attack records that are incorrectly detected as normal ones.

The six evaluation indicators are defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F1− score =
2TP

2TP + FN + FP
(12)

The ACC is usually an indicator of traditional binary classification tasks. According
to the standard of multi-attack classification, multi-class accuracy (MACC) is proposed,
which can help us better compare the performance of classifiers.

MACC =
Number of samples successfully classified

Total number of samples
(13)

Sensors 2022, 22, 25 12 of 17

5.2. Experimental Setup

The proposed system is performed by a laboratory computer with Intel(R) Core(TM)
i7-9750H CPU@ 2.60 GHz and 16.00 GB of RAM using Python on system Windows 10.
All experiments are performed on the preprocessed NSL-KDD dataset. Firstly, select the
appropriate basic classifier by screening the appropriate machine learning algorithm. After
selecting the basic classifier, we conduct experiments on the complete system to evaluate
the performance of the model.

Figures 3 and 6 show the structures of two neural networks used in the system, DNN
and DSN. The number of neurons in the hidden layer in DNN is 2048-1024-512-256-128, the
number of neurons in the hidden layer in DSN is 128, the activation function of the hidden
layer is ReLU and the activation function of the output layer is Softmax. The optimization
algorithm of two networks is Adam [28], where two important parameters need to be set,
named the learning rate and the number of epochs.

When the learning rate of the network is too high, the loss function of networks will
oscillate without convergence. If the learning rate is too low, the slow convergence rate
will hinder the update of networks. Therefore, choosing an appropriate learning rate
is very important for network performance optimization. In this experiment, a set of
learning rates [0.1, 0.01, 0.001, 0.0001, 0.00001] is selected as the candidate parameters of
the two networks and the accuracy of the network on the verification set is used as the
measurement standard. Similarly, the number of iterations is also critical to the optimization
of the network. A large number of epochs will cause the network to waste time cost and it is
easy to cause the network to overfit. The small number of epochs will result in insufficient
network convergence and poor model learning performance. This experiment finds the
appropriate number of iterations from the changing law of the loss function value during
network training.

In order to find the right parameters, we use the 10-fold cross-validation method
mentioned in Section 4.2 to find the best parameters. For the basic classifier DNN, as
shown in Figure 8, the learning rate is optimal between 0.0001 and 0.00001 and finally set
to 0.00003. As shown in Figure 9, the experiment shows that the training loss basically does
not change after 50 iterations. We set the number of iterations to 50. For DSN, as shown in
Figure 10, the learning rate reaches the maximum accuracy at 0.001. We choose 0.001 as
the learning rate. As shown in Figure 11, the loss function of the network stabilizes after
20 iterations, so we choose to set the number of iterations to 20.

Sensors 2022, 21, x FOR PEER REVIEW 13 of 18

appropriate number of iterations from the changing law of the loss function value during
network training.

In order to find the right parameters, we use the 10-fold cross-validation method
mentioned in Section 4.2 to find the best parameters. For the basic classifier DNN, as
shown in Figure 8, the learning rate is optimal between 0.0001 and 0.00001 and finally set
to 0.00003. As shown in Figure 9, the experiment shows that the training loss basically
does not change after 50 iterations. We set the number of iterations to 50. For DSN, as
shown in Figure 10, the learning rate reaches the maximum accuracy at 0.001. We choose
0.001 as the learning rate. As shown in Figure 11, the loss function of the network stabilizes
after 20 iterations, so we choose to set the number of iterations to 20.

0.1 0.01 0.001 0.0001 0.00001

Figure 8. The accuracy of DNN changes when different learning rates are set.

Figure 9. The training loss of DNN changes when different epochs are set.

Figure 8. The accuracy of DNN changes when different learning rates are set.

Sensors 2022, 22, 25 13 of 17

Sensors 2022, 21, x FOR PEER REVIEW 13 of 18

appropriate number of iterations from the changing law of the loss function value during
network training.

In order to find the right parameters, we use the 10-fold cross-validation method
mentioned in Section 4.2 to find the best parameters. For the basic classifier DNN, as
shown in Figure 8, the learning rate is optimal between 0.0001 and 0.00001 and finally set
to 0.00003. As shown in Figure 9, the experiment shows that the training loss basically
does not change after 50 iterations. We set the number of iterations to 50. For DSN, as
shown in Figure 10, the learning rate reaches the maximum accuracy at 0.001. We choose
0.001 as the learning rate. As shown in Figure 11, the loss function of the network stabilizes
after 20 iterations, so we choose to set the number of iterations to 20.

0.1 0.01 0.001 0.0001 0.00001

Figure 8. The accuracy of DNN changes when different learning rates are set.

Figure 9. The training loss of DNN changes when different epochs are set. Figure 9. The training loss of DNN changes when different epochs are set.

Sensors 2022, 21, x FOR PEER REVIEW 14 of 18

0.1 0.01 0.001 0.0001 0.00001

Figure 10. The accuracy of DSN changes when different learning rates are set.

Figure 11. The training loss of DSN changes when different epochs are set.

In the feature selection of DT, try to select a different number of features to test the
classification effect. As shown in the Figure 12, when the number of features is 56, the best
accuracy of 99.78% can be achieved. Therefore, the number of DT feature selections in this
article is set to 56. The parameters of other basic classifiers are set according to the default
parameters provided by the Sklearn library.

Figure 10. The accuracy of DSN changes when different learning rates are set.

Sensors 2022, 21, x FOR PEER REVIEW 14 of 18

0.1 0.01 0.001 0.0001 0.00001

Figure 10. The accuracy of DSN changes when different learning rates are set.

Figure 11. The training loss of DSN changes when different epochs are set.

In the feature selection of DT, try to select a different number of features to test the
classification effect. As shown in the Figure 12, when the number of features is 56, the best
accuracy of 99.78% can be achieved. Therefore, the number of DT feature selections in this
article is set to 56. The parameters of other basic classifiers are set according to the default
parameters provided by the Sklearn library.

Figure 11. The training loss of DSN changes when different epochs are set.

Sensors 2022, 22, 25 14 of 17

In the feature selection of DT, try to select a different number of features to test the
classification effect. As shown in the Figure 12, when the number of features is 56, the best
accuracy of 99.78% can be achieved. Therefore, the number of DT feature selections in this
article is set to 56. The parameters of other basic classifiers are set according to the default
parameters provided by the Sklearn library.

Sensors 2022, 21, x FOR PEER REVIEW 15 of 18

10 30 50 70 90

99.7

Figure 12. Accuracy of decision tree using different number of features.

In order to establish a good ensemble learning model, it is first necessary to screen
the basic classifiers with excellent performance. In the experiment, a 10-fold cross-valida-
tion method was used to evaluate the performance of the six selected algorithms. We con-
sider the effect of the algorithm from the perspective of the predicted success rate of each
attack type so that the characteristics of each classifier can be analyzed, which will help us
choose a good basic classifier to improve the performance of the entire intrusion detection
system. Table 5 shows the results of cross-validate on the new training set.

Table 5. Detection performance of cross-validate on new training set.

Model Normal DoS Probe R2L U2R MACC Time (s)
KNN 99.78% 99.91% 99.51% 94.17% 59.62% 99.72% 82
DT 99.7% 99.97% 99.65% 96.68% 67.31% 99.78% 0.7
RF 99.79% 99.93% 99.62% 95.68% 42.31% 99.76% 1.2

SVM 99.5% 99.88% 98.92% 94.47% 34.61% 99.53% 1212
DNN 98.75% 99.99% 99.55% 95.97% 73.07% 99.57% 162

LR 98.92% 99.25% 98.05% 87.23% 38.46% 98.8% 33

From the table, it is appreciated that three algorithms of KNN, DT and RF have out-
standing performance in detection accuracy. Among them, RF has the best performance
in detecting Normal categories, DT has the best performance in detecting Probe and R2L
categories and DNN has the best performance in detecting DoS and U2R categories. In
terms of time spent, DT used the shortest time and SVM used the longest due to slow
modeling. Stacked generalization requires us to choose the classifiers to be good and dif-
ferent, so we choose KNN, DT, RF and DNN that have outstanding performance in vari-
ous aspects as the basic classifier of the DSN network.

5.3. Results and Discussion
Tables 6 and 7 respectively show the performance of each classifier on the test set and

the performance results of the DSN model on the NSL-KDD test set. From the perspective
of accuracy, DT and DNN have reached high accuracy. Among them, RF has the best per-
formance in detecting Normal categories, DT has the best performance in detecting Probe
and R2L categories and DNN has the best performance in detecting DoS and U2R catego-
ries. This is basically the same as the previous results on the validation set and meets the
different requirements of a good classifier. The DSN model is not prominent in each attack
category, but it combines the advantages of four basic classifiers, improves the overall

Figure 12. Accuracy of decision tree using different number of features.

In order to establish a good ensemble learning model, it is first necessary to screen the
basic classifiers with excellent performance. In the experiment, a 10-fold cross-validation
method was used to evaluate the performance of the six selected algorithms. We consider
the effect of the algorithm from the perspective of the predicted success rate of each attack
type so that the characteristics of each classifier can be analyzed, which will help us choose
a good basic classifier to improve the performance of the entire intrusion detection system.
Table 5 shows the results of cross-validate on the new training set.

Table 5. Detection performance of cross-validate on new training set.

Model Normal DoS Probe R2L U2R MACC Time (s)

KNN 99.78% 99.91% 99.51% 94.17% 59.62% 99.72% 82
DT 99.7% 99.97% 99.65% 96.68% 67.31% 99.78% 0.7
RF 99.79% 99.93% 99.62% 95.68% 42.31% 99.76% 1.2

SVM 99.5% 99.88% 98.92% 94.47% 34.61% 99.53% 1212
DNN 98.75% 99.99% 99.55% 95.97% 73.07% 99.57% 162

LR 98.92% 99.25% 98.05% 87.23% 38.46% 98.8% 33

From the table, it is appreciated that three algorithms of KNN, DT and RF have
outstanding performance in detection accuracy. Among them, RF has the best performance
in detecting Normal categories, DT has the best performance in detecting Probe and R2L
categories and DNN has the best performance in detecting DoS and U2R categories. In
terms of time spent, DT used the shortest time and SVM used the longest due to slow
modeling. Stacked generalization requires us to choose the classifiers to be good and
different, so we choose KNN, DT, RF and DNN that have outstanding performance in
various aspects as the basic classifier of the DSN network.

5.3. Results and Discussion

Tables 6 and 7 respectively show the performance of each classifier on the test set and
the performance results of the DSN model on the NSL-KDD test set. From the perspective
of accuracy, DT and DNN have reached high accuracy. Among them, RF has the best
performance in detecting Normal categories, DT has the best performance in detecting

Sensors 2022, 22, 25 15 of 17

Probe and R2L categories and DNN has the best performance in detecting DoS and U2R
categories. This is basically the same as the previous results on the validation set and
meets the different requirements of a good classifier. The DSN model is not prominent in
each attack category, but it combines the advantages of four basic classifiers, improves the
overall classification accuracy and also solves the problem of the low accuracy of a single
algorithm in certain categories of attack recognition. In terms of training and testing time,
the proposed model is acceptably higher than most algorithms and lower than SVM. The
multi-class detection accuracy of DSN reached 86.8%, the best performance.

Table 6. Detection performance for different classifiers based on the NSL-KDD testing+.

Model Normal DoS Probe R2L U2R ACC MACC Recall Precision F1-Score Time (s)

KNN 92.78% 84.88% 71.29% 5.08% 9% 78.81% 76.41% 64.02% 92.18% 75.56% 283
DT 96.81% 85.43% 91.6% 50.5% 13% 89.56% 86.1% 78.01% 97.37% 86.62% 1.7
RF 97.41% 80.56% 70.84% 12.34% 4% 80.29% 77.76% 62.89% 97.22% 76.37% 2.4

SVM 96.11% 78.5% 48.23% 9.38% 1.5% 76.38% 73.7% 56.76% 92.26% 70.28% 1722
DNN 88.45% 91.24% 78.52% 46% 19% 85.33% 82.5% 78.01% 91.49% 84.21% 237

LR 92.81% 79.38% 64.93% 1.56% 3.0% 76.34% 73.58% 61.22% 89.23% 72.62% 63

Table 7. Detection performance of the proposed DSN.

Model Normal DoS Probe R2L U2R ACC MACC Recall Precision F1-Score Time (s)

DSN 97.32% 90.7% 90.08% 49.02% 18% 90.41% 86.8% 78.82% 96.65% 86.83% 1652

In order to better demonstrate the performance of this system in intrusion detection,
we will compare the proposed model with the intrusion detection algorithms proposed by
seven scholars, including DNN, RNN, Ensemble Voting and SAAE-DNN. Table 8 shows
the classification accuracy of the algorithm on NSL-KDD Test+ and NSL-KDD Test-21,
respectively. The classification accuracy of DSN on NSL-KDD Test+ is 86.8% and the
classification accuracy on NSL-KDD Test-21 is 79.2%, which is significantly higher than
other comparison algorithms.

Table 8. Comparison results based on NSL-KDD.

Author Method Data Set ACC MACC

Proposed method DSN NSL-KDD Test+ 90.41% 86.8%
Pham [29] Bagging NSL-KDD Test+ / 84.25%

Kanakarajan [30] GAR-forest NSL-KDD Test+ / 85.05%
GAO [17] Ensemble Voting NSL-KDD Test+ / 85.2%
Tang [31] SAAE-DNN NSL-KDD Test+ 87.74% 82.14%
Yang [14] ICVAE-DNN NSL-KDD Test+ 85.97% /

Proposed method DSN NSL-KDD Test-21 83.19% 79.2%
Yin [32] RNN-IDS NSL-KDD Test-21 / 64.67%

Yang [33] MDPCA-DBN NSL-KDD Test-21 / 66.18%
Tang [31] SAAE-DNN NSL-KDD Test-21 / 77.57%

6. Conclusions and Future Work

This paper proposes a novel intrusion detection approach called DSN that integrates
the advantage of four machine learning methods. For the real network dataset NSL-
KDD, we use Pre-processing to normalize data. In the experiment, four of the six machine
learning methods were selected as the basic classifiers for ensemble learning. The integrated
learning model DSN gathers the advantages of four different classifiers and improves the
performance of the algorithm. Compared with other researches, it is proved that our
ensemble model effectively improves the detection accuracy. The DSN proposed in this
article has a good application prospect, which is worthy of further exploration.

The data used in the experiment is NSL-KDD, which is an unbalanced data set.
Therefore, the use of this data set for training will inevitably lead to the learning result
biased towards the majority of samples. How to use limited training samples to improve the
adaptability of multi-classification is the key to solving the problem. Ensemble learning is an

Sensors 2022, 22, 25 16 of 17

excellent method that can improve the performance of the model in a short time. However,
it is not advisable to use ensemble learning methods blindly. Different algorithms are
suitable for different classification situations. It is necessary to select the correct algorithm
as the basic classifier to fundamentally improve the overall effect of the model. From the
condition of model optimization, the most important thing is to optimize the data, followed
by the optimization algorithm and finally, the parameters of the optimization algorithm.

Future work will focus on improving IDS performance. I consider the detection cost
of each algorithm for different attack categories as a measurement standard and design a
new IDS. At the same time, I will choose other intrusion detection data sets collected from
reality to experiment with the intrusion detection performance of the algorithm. Designing
an intrusion detection system capable of parallel processing and learning is our next step
of work.

Author Contributions: Data curation, Y.T.; Funding acquisition, L.G.; Investigation, Y.T. and L.W.
Methodology, Y.T.; Software, Y.T.; Supervision, Y.T. and L.G.; Validation, L.W. and L.G.; Visualization,
L.W.; Writing—original draft, Y.T.; Writing—review & editing, Y.T., L.W. and L.G. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no extrenal funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: NSL-KDD Dataset. Available online: https://www.unb.ca/cic/
datasets/nsl.html (accessed on 6 December 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, Y.; Li, P.; Wang, X. Intrusion detection for IoT based on improved genetic algorithm and deep belief network. IEEE Access

2019, 7, 31711–31722. [CrossRef]
2. Ali, M.H.; Al Mohammed, B.A.D.; Ismail, A.; Zolkipli, M.F. A new intrusion detection system based on fast learning network and

particle swarm optimization. IEEE Access 2018, 6, 20255–20261. [CrossRef]
3. Kind, A.; Stoecklin, M.P.; Dimitropoulos, X. Histogram-based traffic anomaly detection. IEEE Trans. Netw. Serv. Manag. 2009, 6,

110–121. [CrossRef]
4. Shalev-Shwartz, S.; Ben-David, S. Understanding Machine Learning: From Theory to Algorithms; Cambridge University Press:

Cambridge, UK, 2014.
5. Dhanabal, L.; Shantharajah, S.P. A study on NSL-KDD dataset for intrusion detection system based on classification algorithms.

Int. J. Adv. Res. Comput. Commun. Eng. 2015, 4, 446–452.
6. Nkiama, H.; Said, S.Z.; Saidu, M. A subset feature elimination mechanism for intrusion detection system. Int. J. Adv. Comput. Sci. Appl.

2016, 7, 148–157. [CrossRef]
7. Hodo, E.; Bellekens, X.; Hamilton, A.; Tachtatzis, C.; Atkinson, R. Shallow and deep networks intrusion detection system:

A taxonomy and survey. arXiv 2017, arXiv:1701.02145.
8. Janarthanan, T.; Zargari, S. Feature selection in UNSW-NB15 and KDDCUP’99 datasets. In Proceedings of the 2017 IEEE 26th

International Symposium on Industrial Electronics (ISIE), Edinburgh, UK, 19–21 June 2017; pp. 1881–1886.
9. Bamakan, S.M.H.; Wang, H.; Yingjie, T.; Shi, Y. An effective intrusion detection framework based on MCLP/SVM optimized by

time-varying chaos particle swarm optimization. Neurocomputing 2016, 199, 90–102. [CrossRef]
10. Elmasry, W.; Akbulut, A.; Zaim, A.H. Evolving deep learning architectures for network intrusion detection using a double PSO

metaheuristic. Comput. Netw. 2020, 168, 107042. [CrossRef]
11. Thaseen, I.S.; Kumar, C.A. Intrusion detection model using fusion of chi-square feature selection and multi class SVM. J. King

Saud Univ. Comput. Inf. Sci. 2017, 29, 462–472.
12. Wu, K.; Chen, Z.; Li, W. A novel intrusion detection model for a massive network using convolutional neural networks.

IEEE Access 2018, 6, 50850–50859. [CrossRef]
13. Muhammad, G.; Hossain, M.S.; Garg, S. Stacked autoencoder-based intrusion detection system to combat financial fraudulent.

IEEE Internet Things J. 2020. [CrossRef]
14. Yang, Y.; Zheng, K.; Wu, C.; Yang, Y. Improving the classification effectiveness of intrusion detection by using improved

conditional variational autoencoder and deep neural network. Sensors 2019, 19, 2528. [CrossRef]
15. Rahman, C.M.; Farid, D.M.; Rahman, M.Z. Adaptive intrusion detection based on boosting and naïve Bayesian classifier. Int. J.

Comput. Appl. 2011, 24, 12–19.

https://www.unb.ca/cic/datasets/nsl.html
https://www.unb.ca/cic/datasets/nsl.html
http://doi.org/10.1109/ACCESS.2019.2903723
http://doi.org/10.1109/ACCESS.2018.2820092
http://doi.org/10.1109/TNSM.2009.090604
http://doi.org/10.14569/IJACSA.2016.070419
http://doi.org/10.1016/j.neucom.2016.03.031
http://doi.org/10.1016/j.comnet.2019.107042
http://doi.org/10.1109/ACCESS.2018.2868993
http://doi.org/10.1109/JIOT.2020.3041184
http://doi.org/10.3390/s19112528

Sensors 2022, 22, 25 17 of 17

16. Syarif, I.; Zaluska, E.; Prugel-Bennett, A.; Wills, G. Application of bagging, boosting and stacking to intrusion detec-
tion. In Proceedings of the 8th International Conference on Machine Learning and Data Mining in Pattern Recognition,
Berlin, Germany, 13–20 July 2012; Springer: Berlin/Heidelberg, Germany; pp. 593–602.

17. Gao, X.; Shan, C.; Hu, C.; Niu, Z.; Liu, Z. An adaptive ensemble machine learning model for intrusion detection. IEEE Access 2019,
7, 82512–82521. [CrossRef]

18. KDDCup. KDD Cup Dataset. Available online: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html (accessed on
19 January 2019).

19. NSL-KDD Dataset. Available online: https://www.unb.ca/cic/datasets/nsl.html (accessed on 6 December 2021).
20. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings of the 2009

IEEE Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, ON, Canada, 8–10 July 2009;
pp. 1–6.

21. Revathi, S.; Malathi, A. A detailed analysis on NSL-KDD dataset using various machine learning techniques for intrusion
detection. Int. J. Eng. Res. Technol. 2013, 2, 1848–1853.

22. Wolpert, D.H. Stacked generalization. Neural Netw. 1992, 5, 241–259. [CrossRef]
23. Deng, L.; He, X.; Gao, J. Deep stacking networks for information retrieval. In Proceedings of the 2013 IEEE International

Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 3153–3157.
24. Jie, L.; Jiahao, C.; Xueqin, Z.; Yue, Z.; Jiajun, L. One-hot encoding and convolutional neural network based anomaly detection.

J. Tsinghua Univ. (Sci. Technol.) 2019, 59, 523–529.
25. Sugumaran, V.; Muralidharan, V.; Ramachandran, K.I. Feature selection using decision tree and classification through proximal

support vector machine for fault diagnostics of roller bearing. Mech. Syst. Signal Process. 2007, 21, 930–942. [CrossRef]
26. Yu, L.; Pan, Y.; Wu, Y. Research on data normalization methods in multi-attribute evaluation. In Proceedings of the International

Conference on Computational Intelligence and Software Engineering, Wuhan, China, 11–13 December 2009; pp. 1–5.
27. Zhang, Y.; Gong, D.; Hu, Y.; Zhang, W. Feature selection algorithm based on bare bones particle swarm optimization.

Neurocomputing 2015, 148, 150–157. [CrossRef]
28. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
29. Pham, N.T.; Foo, E.; Suriadi, S.; Jeffrey, H.; Lahza, H.F.M. Improving performance of intrusion detection system using ensemble

methods and feature selection. In Proceedings of the Australasian Computer Science Week Multiconference, Brisbane, Australia,
29 January–2 February 2018; pp. 1–6.

30. Kanakarajan, N.K.; Muniasamy, K. Improving the accuracy of intrusion detection using gar-forest with feature selection.
In Proceedings of the 4th International Conference on Frontiers in Intelligent Computing: Theory and Applications (FICTA) 2015,
Durgapur, India, 16–18 November 2015; Springier: New Delhi, India; pp. 539–547.

31. Tang, C.; Luktarhan, N.; Zhao, Y. SAAE-DNN: Deep Learning Method on Intrusion Detection. Symmetry 2020, 12, 1695. [CrossRef]
32. Yin, C.; Zhu, Y.; Fei, J.; He, X. A deep learning approach for intrusion detection using recurrent neural networks. IEEE Access

2017, 5, 21954–21961. [CrossRef]
33. Yang, Y.; Zheng, K.; Wu, C.; Niu, X.; Yang, Y. Building an effective intrusion detection system using the modified density peak

clustering algorithm and deep belief networks. Appl. Sci. 2019, 9, 238. [CrossRef]

http://doi.org/10.1109/ACCESS.2019.2923640
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.unb.ca/cic/datasets/nsl.html
http://doi.org/10.1016/S0893-6080(05)80023-1
http://doi.org/10.1016/j.ymssp.2006.05.004
http://doi.org/10.1016/j.neucom.2012.09.049
http://doi.org/10.3390/sym12101695
http://doi.org/10.1109/ACCESS.2017.2762418
http://doi.org/10.3390/app9020238

	Introduction
	Related Works
	Background
	NSL-KDD Dataset Introduction
	Decision Tree
	Deep Neural Network Algorithm
	Deep Stacking Network Algorithm

	The Proposed Intrusion Detection Method
	Data Pre-Processing
	One-Hot-Encoding
	Feature Selection
	Imbalance Handling
	Normalization

	Training Classifiers
	Proposed Deep Stacking Network

	Experimental Results and Analysis
	Performance Evaluation
	Experimental Setup
	Results and Discussion

	Conclusions and Future Work
	References

