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Abstract: In contrast to conventional digital images, high-dynamic-range (HDR) images have a
broader range of intensity between the darkest and brightest regions to capture more details in a
scene. Such images are produced by fusing images with different exposure values (EVs) for the same
scene. Most existing multi-scale exposure fusion (MEF) algorithms assume that the input images are
multi-exposed with small EV intervals. However, thanks to emerging spatially multiplexed exposure
technology that can capture an image pair of short and long exposure simultaneously, it is essential
to deal with two-exposure image fusion. To bring out more well-exposed contents, we generate a
more helpful intermediate virtual image for fusion using the proposed Optimized Adaptive Gamma
Correction (OAGC) to have better contrast, saturation, and well-exposedness. Fusing the input
images with the enhanced virtual image works well even though both inputs are underexposed or
overexposed, which other state-of-the-art fusion methods could not handle. The experimental results
show that our method performs favorably against other state-of-the-art image fusion methods in
generating high-quality fusion results.

Keywords: two-exposure image fusion; gamma correction; high dynamic imaging

1. Introduction

Image fusion has been a crucial low-level image processing task for various applica-
tions, such as multi-spectrum image fusion [1,2], multi-focus image fusion [3], multi-modal
image fusion [4], and multi-exposure image fusion [5]. Among these applications, thanks
to smartphones’ prevalence with their built-in cameras, multi-exposure image fusion is
one of the most common applications. Since most natural scenes have a larger ratio of light
to dark than what a single camera shot can capture, a single-shot image usually cannot
present details of high dynamic ranges, thus having under- or overexposed parts for the
scene. When a camera captures an image, its sensors can only catch a limited luminance
range during a specific exposure time, resulting in a so-called low-dynamic-range image.
An image taken for short exposure tends to be dark, while it is bright for long exposure,
as shown in Figure 1a. Fusing differently exposed low-dynamic-range (LDR) images to
obtain a high-dynamic-range (HDR) image requires extracting well-exposed (highlighted)
regions from each LDR image to generate an excellent fused image, which has been very
challenging.

Several research works have been performed for Multi-scale Exposure Fusion (MEF) [6–8].
In general, it is common to fuse LDR images using a weighted sum, where the weight
associated with each input LDR is determined in a pixel-wise fashion [6–8]. Mertens
et al. [6] proposed the fusion of images in a multi-scale manner based on pixel contrast,
saturation, and well-exposedness to ease content inconsistency issues in the fused results.
However, this often yields halo artifacts in its fusion results. In [7,8], the authors addressed
the artifacts by applying modified guided image filtering to weight maps to eliminate halos
around edges.
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(a) (b)
Figure 1. An example of the proposed two-exposure image fusion. (a) An input image pair with two
exposures. (b) The fused image using the proposed method.

The abovementioned methods produce good results using a sequence of images
exposed in a small interval of different exposure values (EV). Thanks to advanced sensor
technology, a camera with Binned Multiplexed Exposure High-Dynamic-Range (BME-
HDR) or Spatially Multiplexed Exposure High-Dynamic-Range (SME-HDR) technology
can simultaneously capture an image pair with short- and long-exposure image sensors.
The captured pair has only a negligible difference, possibly caused by local motion blur
between them. The existing MEF methods may not work well with two exposure images,
since none of the inputs may have well-exposed contents. In addition, weighted-sum
fusion based on well-exposedness may not be able to deal with highlighted regions of a
short-exposure image that are darker than dark parts in a long-exposure image, resulting
in the method ignoring contents in the short-exposure image. Yang et al. [9] proposed
the production of an intermediate virtual image with a medium exposure based on an
image pair with two exposures to help generate better fusion results. Nevertheless, it does
not work in situations where highlighted regions of both input LDR images are not well
exposed.

In recent years, deep convolutional neural networks (CNNs) have gained tremendous
success in low-level image processing works. In MEF, CNN-based methods [10,11] can
better learn features from input multiple-exposure images and fuse them into a nice image.
However, the fused images often lack image details [12], since spatial information may be
lost when features pass through deep layers. Xu et al. [13] proposed a unified unsupervised
image fusion network trained based on the importance and information carried by the two
input images to generate fusion results. However, these learning-based methods can only
produce a fused image based on the two input images’ interpolation. They cannot deal
with cases where both of the input images do not have highlighted regions/contents.

This paper presents a two-exposure fusion framework that generates a more helpful
intermediate virtual image for fusion using the proposed Optimized Adaptive Gamma Cor-
rection (OAGC). The virtual image has better contrast, saturation, and well-exposedness,
and it is not restricted to being an interpolated version of the two input images. Fusing
the input images with their virtual image processed by OAGC works well even though
both inputs have no well-exposed contents or regions. Figure 1b shows an example where
the proposed framework can still generate a good fusion result for when both of the input
images lack highlighted regions (Figure 1a). Our primary contributions are three-fold:

• Our image fusion framework adopting the proposed OAGC can produce better fusion
results for two input images with various exposure ratios, even when both of the
input images lack well-exposed regions.

• The proposed framework with OAGC can also adapt to single-image enhancement.
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• We conduct an extensive experiment using a public multi-exposure dataset [14] to
demonstrate that the proposed fusion framework performs favorably against the
state-of-the-art image fusion methods.

2. Related Work

MEF-based methods produce fusion results using a weighted combination of the
input images based on each pixel’s “well-exposedness”. In [15], fusion weight maps were
calculated based on the correlation-based match and salience measures of the input images.
With the weight maps, one can fuse the input images into one by using the gradient
pyramid.

Mertens et al. [6] constructed fusion weight maps based on contrast, saturation, and
exposedness of the input images. Differently from [15], the fusion was performed with the
Gaussian and Laplacian pyramids. The problem was that using the smoothed weight maps
in fusion often causes halo artifacts, especially around the edges. The method proposed
in [7] addressed this issue by applying an edge-preserving filter (weighted guided image
filtering [16]) to fusion weight maps. Kou et al. [8] further proposed an edge-preserving
gradient-domain guided image filter (GGIF) to avoid generating halo artifacts in the
fused image. To extract image details, Li et al. [7] proposed a weighted structure tensor
to manipulate details presented in a fused image. In general, MEF-based methods can
generate decent fusion results.

General MEF algorithms [6,8] that require a sequence of images with different exposure
ratios as the inputs may not work with only two input images. Yang et al. [9] proposed
the use of the MEF algorithm for two-exposure-ratio image fusion, where an intermediate
virtual image with a medium exposure is generated to help produce a better fusion result.
However, the virtual image’s intensity and exposedness are bounded by the two input
images, which often fails to work for cases where two images are both underexposed and
overexposed. Yang’s method [9] can only generate both the intermediate and fusion results
with approximate medium exposure between its two input images. The problem is that
medium exposure between the inputs may still be under- or overexposure. Image fusion
will not improve visual quality. We will discuss this issue more in the next section.

In the following paragraphs, we introduce the techniques adopted in the work of
Yang et al., including the generation of the virtual image and fusion weights and the multi-
scale image fusion. Before continuing, we define several notations that are used here. Let
I ∈ RM×N×3 be a color image. We denote I(c) as the color channel c, where c ∈ {R, G, B}
stand for the red, green, and blue channels. I(m, n) represents the pixel located at (m, n),
where 0 ≤ m < M and 0 ≤ n < N. M and N are the image width and height. Let Y be the
luminance component or the grayscale version of I. Note that the values of images in this
paper are normalized to [0, 1].

2.1. Quality Measures and Fusion Weight Maps

In HDR imaging, an image taken at a certain exposure may contain underexposed or
overexposed regions, which are less informative and should be assigned fewer weights in
multi-exposure fusion. The input’s contrast, saturation, and well-exposedness determine
a pixel’s weight at (m, n) [6]. The contrast of a pixel, denoted by C(m, n), is obtained by
applying a 3× 3 Laplacian filter to a grayscale version of the image:

C(m, n) = |4Y(m, n)−Y(m− 1, n) − Y(m, n− 1)−Y(m + 1, n)−Y(m, n + 1)|. (1)

Let C =
(
C(m, n)

)
be the map of the contrast of I; therefore,

C = |4Y− Yl − Yr − Yu − Yd|,

where Yl , Yr, Yu, and Yd are obtained from Il , Ir, Iu, and Id; i.e., shifting I one pixel left,
right, up, and down, respectively. The saturation of the pixel, denoted by S(m, n), is
obtained by computing the standard deviation across the red, green, and blue channels:
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S(m, n) =
√

1
3 ∑c∈{R,G,B}

[
I(c)(m, n)− Ī(m, n)

]2, (2)

where
Ī(m, n) = 1

3 ∑c∈{R,G,B} I(c)(m, n).

The well-exposedness of the pixel, E(m, n), is defined as:

E(m, n) = exp
[
− 1

2σ2 ∑c∈{R,G,B}

(
I(c)(m, n)− ξ

)2
]

, (3)

where σ = 0.2 and ξ = 0.5. Essentially, E is a normal distribution centered at 0.5 with a
standard deviation of 0.2. The maps of saturation and well-exposedness of I can, respec-
tively, be represented as S =

(
S(m, n)

)
and E =

(
E(m, n)

)
. Next, the weight of the pixel

for fusion is computed using:

W̃(m, n) = Cωc(m, n)Sωs(m, n)Eωe(m, n), (4)

where ωc, ωs, and ωe can be adjusted to emphasize or ignore one or more measures.
Considering a set of P images I1, . . . , IP for image fusion, the weight of this pixel in the pth
image is normalized by the sum of the weights across all the images at the same pixel:

Wp(m, n) =
W̃p(m, n)

∑P
p′=1 W̃p′(m, n)

. (5)

The weight map of the image Ip is represented as Wp =
(
Wp(m, n)

)
.

2.2. Multi-Scale Fusion

In the MEF algorithm [6], a fusion image, Î, is obtained through multi-scale image
fusion based on the standard Gaussian and Laplacian pyramids. For each input image Ip

in the set of
{

Ip
}P

p=1, the Laplacian pyramid, L(l)
{

Ip
}

, and the Gaussian pyramid of its

weight map, G(l)
{

Wp
}

, in the lth level are constructed by applying the Gaussian pyramid
generation [17]. In this level, the overall Laplacian pyramid is collapsed by performing
weighted averaging on the Laplacian pyramids from all of the input images in the set:

L(l)
{

Î
}
=

P

∑
p=1

(
G(l)

{
Wp
}
�L(l)

{
Ip
})

, (6)

where � denotes element-wise multiplication. Finally, the fusion image, Î, is reconstructed
by collapsing the Laplacian pyramids L(l)

{
Î
}

.
Applying edge-preserving filtering to preserve edges in the weight maps before

averaging the Laplacian pyramids in Equation (6) can reduce halo artifacts in fused images.
In [9], the GGIF [18] was adopted to smooth the weight maps Wp and to preserve the
significant change as well. Let Ωρ(m0, n0) be the square local patch with a radius of ρ
centered at (m0, n0), and let (m, n) be a pixel in the patch. In Ωρ(m0, n0), the weight

map in the lth level of the pth image, W(l)
p (m, n), is the linear transform of the luminance

component, Y(l)
p (m, n):

Y(l)
p (m, n) = a(l)p,(m0,n0)

W(l)
p (m, n) + bp,(m0,n0), (7)

where a(l)p,(m0,n0)
and b(l)p,(m0,n0)

are the coefficients and are assumed to be constant in Ωρ(m0, n0).

a(l)p,(m0,n0)
and b(l)p,(m0,n0)

can be obtained by minimizing the objective function:
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ΛGIF = ∑
m,n∈

Ωρ(m0,n0)

[(
a(l)p,(m0,n0)

W(l)
p (m, n) + b(l)p,(m0,n0)

− Y(l)
p (m, n)

)2
− ε

(
a(l)p,(m0,n0)

)2
]

, (8)

where ε is a constant for regularization. The variance of the intensities within this local
patch, σ2

Y(l)
p ,Ω

, is computed when solving for the coefficients in Equation (8).

In GGIF, a 3 × 3 local window, Ψ, is applied to the pixels within Ωρ(m0, n0) for
capturing the structure within Ωρ(m0, n0) by computing the variance within Ψ, σ2

Y(l)
p ,Ψ

[18].

This local window makes GGIF a content-adaptive filter; thus, GGIF produces fewer halos
and better preserves the edge than the GIF. In GGIF, the regularization term is designed
to yield:

ΛGG = ∑
m,n∈

Ωρ(m0,n0)

[(
a(l)p,(m0,n0)

W(l)
p (m, n) + b(l)p,(m0,n0)

−Y(l)
p (m, n)

)2
− λ

(
a(l)p,(m0,n0)

− ζ(m0,n0)

)2

ΓYk (m0, n0)

, (9)

where ΓYk (m0, n0) and ζ(m0,n0) are computed according to the product of σ
Y(l)

p ,Ω
and σ

Y(l)
p ,Ψ

(the standard deviations of the pixels within Ωρ(m0, n0) and Ψ), and λ is a constant for

regularization. The filter coefficients a(l)p,(m0,n0)
and b(l)p,(m0,n0)

can solved by minimizing ΛGG

in Equation (9).
The fused image Î can be obtained by fusing the Laplacian pyramids of the input

images taken at different exposures using the weight maps retrieved from the Gaussian
pyramids, G(l)

{
Wp
}

. Note that the weight maps are filtered using GGIF, as described in
Equation (9), to preserve edges.

2.3. Virtual Image Generation

In [9], Yang et al. proposed the modification of two differently exposed images to
have the same medium exposure using the intensity mapping function based on the cross-
histogram between two images, called the comparagram (Ref. [19]), and fused them to
produce an intermediate virtual image. Let I1 and I2 be the two input images and let F12
and F21 be the intensity mapping functions (IMFs) that map I1 to I2 and I2 to I1. Based
on [19], the IMFs that map the two images to the same exposure, denoted as F13 and F23,
are computed as

F13(z)(Ii) = (zF12(z))0.5, F23(z) = (zF21(z))0.5, (10)

where z is a pixel intensity. The two modified images with the same exposure are Ĩi =
Fi3(Ii), i = 1, 2. The desired virtual image Iv is computed by fusing Ĩ1 and Ĩ2 using the
weighting functions adopted in [9]. The two-exposure-fusion image in [9] is obtained by
fusing I1, I2, and Iv based on the MEF algorithm [8].

As described previously, Yang’s method often fails to produce a satisfying fusion
result when the medium exposure between inputs is still under- or overexposure. The
proposed method addresses this issue by improving the contrast, saturation, and well-
exposedness for the intermediate virtual image to generate better fusion results under
different input conditions.

3. Proposed Method

The algorithm in [9] can work for two images with a large difference between their
exposure ratios. In this case, the intermediate virtual image with medium exposure helps
bridge the dynamic range gap between the two inputs. Thus, it can improve the quality
of the fusion result. However, if the two inputs’ exposure is under- or overexposure, the
generated virtual image would not help fusion. Thus, the quality of the fused image is not
improved much.
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For example, to fuse Figure 2a,b, both of which look overexposed, the virtual image Iv
(Figure 2c) generated by [9] with medium exposure between the inputs is still overexposed
and, thus, not helpful for the fusion result (Figure 2e). We propose Optimized Adaptive
Gamma Correction (OAGC) to enhance the intermediate virtual image to have better
contrast, saturation, and well-exposedness (Figure 2d) so that it can improve the fusion
quality and produce a better result (Figure 2f).

Figure 2. Comparison of intermediate virtual images. (a,b): Input images I1 and I2; (c,d) are the
intermediate virtual images using [9] and our method; (e,f) are the fusion results using [9] and ours.

In OAGC, we derive an optimal γ based on the input’s contrast, saturation, and well-
exposedness by formulating an objective function based on these image quality metrics
and apply it to the input image using gamma correction. Let Y(m, n) be the luminance
of a pixel. One can gamma-correct the image Y to alter its luminance through the power
function as follows:

Yγ(m, n) = ηY(m, n)γ, (11)

where Yγ is the corrected image, η and γ are positive scalars, and η is usually set to 1 [20].
Here, the notation Yγ in bold represents the entire image, while Yγ(m, n) stands for the
pixel located at (m, n). If γ < 1, it stretches the contrast of shadow regions (pixel intensities
less than the mid-tone of 0.5), and features in these regions become discernible, whereas if
γ > 1, it stretches the contrast of bright regions (intensities larger than 0.5), and features in
the regions become perceptible. For γ = 1, it is linear mapping.

To derive the optimal gamma, we design an objective function as follows:

f (γ) = q1‖ĉ(γ)‖2 + q2‖ŝ(γ)‖2 + q3‖ê(γ)‖2 + δ‖r̂(γ)‖2, (12)

where ĉ(γ) = kc1− vec(Cγ), ŝ(γ) = ks1− vec(Sγ), ê(γ) = ke1− vec(Eγ), and r̂(γ) =
vec(Iv − Iγ), where Cγ, Sγ, and Eγ are the maps of quality measures computed based on
the gamma-corrected version of the input image, denoted as Iγ. Here, the virtual image
Iv is used as the input, which is Iγ := Iγ

v . We set kc, ks, and ke to 4, 0.5, and 1 according
to the upper bounds of the corresponding quality measures (contrast, saturation, and
well-exposednesse; refer to the Appendix A for the derivation). The term with r̂(γ) in
the objective function prevents the corrected image from deviating the input too much.
Hence, minimizing the objective function f (γ) is to maximize all three quality measures:
the contrast, saturation, and well-exposedness. q1, q2, and q3 are the weighting factors for
the contributions from different quality measures (independent from ωc, ωs, and ωe in
Equation (4) and are all set to 1

3 . δ is a small, fixed scalar and is set to 0.1 in the present
study. 1 is the vector of 1s, vec(·) is the vectorization of a matrix, and ‖·‖ represents the
2-norm of a vector. The regularization term is added to avoid possible color distortion
caused by gamma correction.
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The optimal gamma, γ∗, which aims to increase contrast, saturation, and well-exposedness
simultaneously, can be obtained by minimizing the optimization function f (γ):

γ∗ = arg min
γ

f (γ). (13)

Since there is no closed-form solution for Equation (13), we apply the gradient descent
to iteratively approximate it:

γ(k+1) = γ(k) + α(k)
d

dγ
f (γ)

= γ(k) + α(k)

[
q1

(
d

dγ
ĉ(γ)

)T
ĉ(γ) + q2

(
d

dγ
ŝ(γ)

)T
ŝ(γ)

+ q3

(
d

dγ
ê(γ)

)T
ê(γ) + δ

(
d

dγ
r̂(γ)

)T
r̂(γ)

]
,

(14)

where

d
dγ

ĉ(γ) = −sgn

 ∑
c∈{R,G,B}

t(c)
(

4i(c)
γ

v − i(c)
γ

v,l − i(c)
γ

v,r − i(c)
γ

v,u − i(c)
γ

v,d

)]

×

 ∑
c∈{R,G,B}

t(c)
(

4i(c)
γ

v � log iv − i(c)
γ

v,l � log iv,l − i(c)
γ

v,r � log iv,r

−i(c)
γ

v,u � log iv,u − i(c)
γ

v,d � log iv,d

)]
,

(15)

with iv,l , iv,r, iv,u, and iv,d being the vectorization of Iv,l , Iv,r, Iv,u, and Iv,d, as well as t(R),
t(G), and t(B) being 0.299, 0.587, and 0.114 respectively.

d
dγ

ŝ(γ) = −1
9

2 ∑
c∈{R,G,B}

(
i(c)

(2γ)

v � log i(c)v

)
− i(R)γ

v � i(G)γ

v � log
(

i(R)γ

v + i(G)γ

v

)
− i(G)γ

v � i(B)γ

v � log
(

i(G)γ

v + i(B)γ

v

)
− i(B)γ

v � i(R)γ

v � log
(

i(B)γ

v + i(R)γ

v

)]
� sγ,

(16)

with � being the element-wise division,

d
dγ

ê(γ) =
eγ

2σ2 � ∑
c∈{R,G,B}

[(
2i(c)

2γ

v − i(c)
γ

v

)
� log i(c)v

]
, (17)

d
dγ

r̂(γ) = ∑
c∈{R,G,B}

[(
i(c)

(2γ)

v − i(c)
(γ+1)

v

)
� log i(c)v

]
, (18)

and α(k) is the adjustable learning rate.
Figure 3 shows the flowchart of the presented two-exposure image fusion framework,

where the two inputs are taken in the same scene at different exposure ratios. The vir-
tual image is first generated using the intensity mapping function [9]. Next, we solve
Equation (12) to find the optimal gamma value γ∗ for the virtual image, which enhances
the contrast, saturation, and well-exposedness of Iv. The final fused image, Î, is obtained
by applying the MEF algorithm [8,9] to the fusion of two input images and Iγ.
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Figure 3. Flowchart of the proposed method. Note that the images of Gaussian and Laplacian
pyramids are contrast-enhanced for display.

4. Experimental Results

In the experiment, we compared the proposed method against state-of-the-art image
fusion methods, which included Kou’s method [8], DeepFuse [10], Yang’s method [9],
and U2Fusion [13]. We adopted the SICE datasest [14] and collected 116 image pairs that
consisted of various scenes to evaluate the performance. The presented algorithm was
implemented using MATLAB R2019b on a MacBook Pro with an Intel i5 dual-core processor
at 2.7 GHz and 8 GB 1867 MHz DDR3 RAM. We present a performance evaluation with a
qualitative visual comparison and a quantitative objective assessment in the following.

4.1. Qualitative Assessment

We compared different fusion results under various input conditions. First, Figure 4
shows the fusion results of using the compared image fusion algorithms [8–10,13] and our
presented framework. As can be seen, one input image is underexposed, and the other
is overexposed in the two cases, where the fusion results should have middle exposure
between the two inputs. All of the compared methods worked fine in such cases, although
U2fusion’s [13] fusion results were a little darker than the others’ results.

       
       

       
       

(a) (b) (c) (d) (e) (f) (g) 

 
Figure 4. Comparison of the results obtained using different fusion methods with an underexposed
and an overexposed input. (a,b) show the input images squared in red. The fusion results were
obtained using (c) Kou’s method [8], (d) DeepFuse [10], (e) Yang’s method [9], (f) U2Fusion [13], and
(g) the proposed method.

Figure 5 shows image fusion cases where the difference between the two input images’
EVs was not large. Thus, fusion methods that can only produce results with medium
exposure between the inputs do not work. As shown, all of the compared methods except
for the proposed framework output fusion results similar to the input images, and were
thus unable to reveal more details than the inputs. In contrast, the proposed framework
produced an intermediate virtual image enhanced by OAGC with additional well-exposed
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highlighted contents and generated better fusion results. Therefore, we can further improve
the overall image visibility by revealing details in regions that are too dark or bright.

       
       

       
       

       
       

       
       

(a) (b) (c) (d) (e) (f) (g) 

 
Figure 5. Comparisons of the fusion results using different algorithms, where the two input images
had smaller exposure differences. (a,b) show the input images squared in red. The fusion results
were obtained using (c) Kou’s method [8], (d) DeepFuse [10], (e) Yang’s method [9], (f) U2Fusion [13],
and (g) the proposed method.

4.2. Quantitative Assessment

Objectively, we compare the performance of our presented framework against other
image fusion methods using five benchmark metrics: the Naturalness Image Quality Eval-
uator (NIQE) [21], Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) [22],
No-Reference Image Quality Assessment (NR-IQA) [23], and discrete entropy (DE) [24].
The NIQE [21] is a no-reference image quality metric that is trained on pristine images with-
out subjective scores from humans. Therefore, it can measure image quality degradation
if any distortions exist, but is correlated little with human perceptuality. A smaller value
means a better quality. BRISQUE [22] is a natural scene statistics-based distortion-generic
no-reference image quality assessment model that is trained on images with known distor-
tions and subjective quality scores. It can evaluate losses of naturalness of an image caused
by possible distortions. A BRISQUE value ranges between 0 and 100. A smaller value
means worse visual quality. NR-IQA [23] is another no-reference image quality metric
for HDR images that is constructed using deep CNNs while considering image saliency,
and it constructs deep CNNs to extract quality features across the HDR and LDR domains.
DE [24] can represent the information contained in an information source, i.e., if an image
has higher entropy, it contains more information. Consequently, it is often used to measure
the richness of image details. It is defined as:

DE(I) = −
L−1

∑
l=0

pI(l) log(pI(l)), (19)

where I is a grayscale image, L represents the largest pixel intensity value, and pI(l) is the
probability density function of a given grayscale intensity l.

Table 1 shows the quantitative performance of different fusion methods, where the
scores are averaged over all of the test images. As can be seen, the results demonstrate
that the presented framework achieved the best scores in all four categories, meaning that
our fusion results looked natural with the fewest distortions (having the lowest NIQE [21]
and lowest BRISQUE values [22]). In assessing the HDR image quality (NR-IQA [23]),
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our method performed favorably against other fusion methods. Our method could also
preserve the most image details in the fusion results (largest DE value [24]).

Table 1. Quantitative comparisons of different fusion methods. The scores are averaged over all of
the test images. The values in bold represent the best scores.

NIQE ↓ BRISQE ↓ NR-IQA ↑ DE ↑

Kou [8] 2.7866 22.7140 43.6202 6.9171
DeepFuse [10] 2.9555 31.5365 32.9696 6.9564

Yang [9] 2.7895 23.0660 43.5312 6.8617
U2Fusion [13] 3.421 35.5939 34.5449 6.4195

Proposed 2.7339 21.7120 43.8968 6.9814

4.3. Extension to Single Image Enhancement

As stated previously, the proposed framework works well for two-exposure image
fusion in cases where the difference between the two input images’ EVs varies. In recent
years, fusion-based single image enhancement methods have attracted much attention [14].
We can also extend our framework to single image enhancement by applying OAGC to
the input image, I, to yield a quality-improved image Iγ. Then, both I and Iγ are fused to
obtain an enhancement result.

Figure 6 compares the results obtained using various single image enhancement
methods, including global histogram equalization (HE) [25], CVC [26], AGCWD [27],
EPMP [28], SICE [14], and the proposed method. As shown, the conventional HE tended to
over-enhance/introduce noise to the processed images (Figure 6b), since the input images
had over- and underexposed regions. SICE [14] only performed well for the second row
of Figure 6, where the input image was underexposed. For the other cases, it tended to
overexpose the input images. The other methods [26–28] could only enhance the contrast
of the input images, while the proposed framework not only did that, but also revealed
unseen details from the input and increased the color vividness (Figure 6g).

Figure 6. Comparison of single image enhancement results using different algorithms. (a) Input
image; the enhanced results obtained using (b) HE [25], (c) CVC [26], (d) AGCWD [27], (e) EPMP [28],
(f) SICE [14], and (g) the proposed method (fusing I and Iγ).

4.4. Analysis of OAGC

Convergence of Gradient Descent: To further analyze the process of attaining the target
gamma value γ∗ in OAGC, we take the case in the top row of Figure 5 as an example to
show the iterative steps of finding γ∗ for the intermediate virtual image Iv. Figure 7 shows
that it takes about 66 steps for the objective function f (γ) to converge with gradient descent,
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and it attains γ∗ = 0.434. The value of the objective function changes from the initial 2.690
to 2.688. As γ = γ∗, ê(γ) reaches its minimum, and ĉ(γ) is close to its minimum while
ŝ(γ) is at its maximum, indicating that contrast, saturation, and well-exposedness are all
maximized. This also shows that solving the objective function strikes a balance among
these three measures.

Figure 7. The progressive process of attaining γ∗ for an intermediate virtual image using Equation (12)
(taking Iv in the top row of Figure 5 as an example).

To further attest to the effectiveness of OAGC, Figure 8 shows the trend of values of
the objective function and its quality measure terms using the grid-search method on γ. As
seen, the minimum of the objective function is 2.688 when γ = 0.434, consistently with the
γ∗ obtained using gradient descent.

Figure 8. The grid search of γ∗ (taking Iv in the top row of Figure 5 as an example).

Limitation of OAGC: Using OAGC, we can attain a gamma coefficient γ∗ from the
input image by optimizing the objective function in Equation (12), and we can then apply
gamma correction to the input to generate a corrected image whose contrast, saturation,
and well-exposedness are improved. However, if both of the input images have no content
at all for the same regions due to extremely low or high exposure, even OAGC cannot help
generate or restore those regions from nothing. Figure 9 shows a failure case of OAGC,
where both of the input images are very underexposed and bear little content. Figure 9c
shows the intermediate virtual images obtained using the intensity mapping algorithm
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described in [9], which is similar to the interpolation of the inputs, and the result is still very
dark and lacks content. After applying OAGC to it (γ∗ = 0.2015), the processed virtual
image (Figure 9d) presents more details than before. Still, it inevitably has noise in some
regions (such as the door and the banner on the façade).

Figure 9. Limitation of OAGC. (a,b) Input images. (c) Virtual image Iv using [9]; (d) virtual image
processed using OAGC Iγ.

5. Conclusions

This paper presented a two-exposure image fusion framework that utilizes the pro-
posed OAGC to bring out additional well-exposed contents from an intermediate virtual
image derived from the two inputs. It can work better for the input images with various
combinations of exposure ratios and can produce more well-exposed fusion results. In ad-
dition, the proposed framework with OAGC can easily adapt to single image enhancement.
The experimental results have demonstrated that the proposed method performs favorably
against the state-of-the-art image fusion methods.
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Appendix A. Upper Bounds of the Quality Measures

Since the luminance of the pixel is Y(m, n) ∈ [0, 1], the upper bound of its contrast
value C(m, n) is:

C(m, n) = |4Y(m, n)−Y(m− 1, n) − Y(m, n− 1)−Y(m + 1, n)−Y(m, n + 1)| ≤ 4. (A1)

For exposedness, E(m, n) is shown as:

E(m, n) = exp
[
− 1

2σ2 ∑c∈{R,G,B}

(
I(c)(m, n)− ξ

)2
]
≤ 1, (A2)

where E(m, n) = 1 when I(c)(m, n) = ξ.
The saturation S(m, n) is defined as in Equation (2). Let Ī(m, n) be the mean of all the

channels of this pixel; i.e.,

Ī(m, n) =
1
3 ∑

c∈{R,G,B}
I(c)(m, n).
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The upper bound of S(m, n) can be obtained from:

S2(m, n) =
1
3 ∑

c∈{R,G,B}

[
I(c)(m, n)− Ī(m, n)

]2

=
1
3

 ∑
c∈{R,G,B}

I(c)(m, n)2 − 2 Ī(m, n) ∑
c∈{R,G,B}

I(c)(m, n) + 3 Ī(m, n)2


=

1
3

 ∑
c∈{R,G,B}

I(c)(m, n)2 − 3 Ī(m, n)2

.

Because I(c)(m, n) ∈ [0, 1],

∑
c∈{R,G,B}

I(c)(m, n)2 ≤ ∑
c∈{R,G,B}

I(c)(m, n) = 3 Ī(m, n).

This indicates that

S(m, n)2 ≤ Ī(m, n)− Ī(m, n)2

= −( Ī(m, n)− 0.5)2 + 0.25 ≤ 0.25.

Therefore, the upper bound of S(m, n) = 0.5.
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