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Abstract: In this paper, the problem of the identification of undesirable events is discussed. Such
events can be poorly represented in the historical data, and it is predominantly impossible to learn
from past examples. The discussed issue is considered in the work in the context of two use cases in
which vibration and temperature measurements collected by wireless sensors are analysed. These
use cases include crushers at a coal-fired power plant and gantries in a steelworks converter. The
awareness, resulting from the cooperation with industry, of the need for a system that works in
cold start conditions and does not flood the machine operator with alarms was the motivation for
proposing a new predictive maintenance method. The proposed solution is based on the methods of
outlier identification. These methods are applied to the collected data that was transformed into a
multidimensional feature vector. The novelty of the proposed solution stems from the creation of a
methodology for the reduction of false positive alarms, which was applied to a system identifying
undesirable events. This methodology is based on the adaptation of the system to the analysed
data, the interaction with the dispatcher, and the use of the XAI (eXplainable Artificial Intelligence)
method. The experiments performed on several data sets showed that the proposed method reduced
false alarms by 90.25% on average in relation to the performance of the stand-alone outlier detection
method. The obtained results allowed for the implementation of the developed method to a system
operating in a real industrial facility. The conducted research may be valuable for systems with a
cold start problem where frequent alarms can lead to discouragement and disregard for the system
by the user.

Keywords: outlier detection; XAI; false positive reduction; multidimesional timeseries analysis;
vibration measurements; predictive maintenance

1. Introduction

The widespread use of sensors in industry allows for data acquisition, which, com-
bined with advanced methods of analysis, can significantly improve and optimise produc-
tion. Therefore, the data can be used not only to monitor the current state of the process and
devices, but also to predict this state. The application of predictive methods to sensory data
representing production process, including machine condition, allows for early identifica-
tion and prediction of the faulty or hazardous process state [1] or machine break down [2,3].
Preventing industry equipment failures, known as Predictive Maintenance (PdM), has
developed over years and currently uses a variety of data-driven analytical methods.

Application of classification and regression methods [4] is possible when there is
a sufficient representation of failures in historical data. Only such a representation will
allow the use of machine learning methods to generate a model that can predict machine
breakdown in the future. As maintenance services try to keep the machines in good
condition, the problem is that the number of events describing a machine failure may be
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small or even zero. In such a case, it is not possible to generate a classifier, however, outlier
detection methods can be applied to identify measurements representing the upcoming
failure state of the machine.

The motivation for this work is related to the analysis of two use cases that are
industry-based. The first issue is related to the process of coal crushing, which is applied
in a coal-fired power plant. In this case, the monitored machine is a crusher that prepares
the fuel for feeding to the boiler. The second issue is related to the process of a raw
material transportation for a converter steel plant in a foundry. In this case, the monitored
machine is a gantry being one of the key elements of the production line. In the case of
both of these industrial machines, the analysis was based on vibration and temperature
measurements that were collected. Furthermore, in both cases, the collected measurements
contain too few examples representing a failure to generate a classifier that allows failure
prediction. This shows that in some cases, prediction of machine failure can not be based
on the supervised machine learning approach. Therefore, a system is required that is able
to identify undesirable events without knowing historical examples and report them as
alarms. However, there is a risk that the operator responsible for the maintenance of the
process and the condition of the machines will be flooded with the number of events and
will completely stop paying attention to the tool that was intended for support.

The aim of this study is to present a data-driven method analysing sensory data
to predict machine failure or identify its deteriorating condition, so that users can plan
maintenance work and avoid unplanned downtime. This method was prepared based on
real-life data with the assumption that the created solution will be used in industry as a
result of the implemented project.

The goal of the method is to operate on sensor data transformed into a multidimen-
sional feature vector and, as in classic SCADA systems, to report events and wait for
their handling. The method is adaptive, and it utilises a sliding window to analyse the
consecutive batches of data. Additionally, the method is interactive—it takes into account
the operator’s justification of the current machine state and utilises it in further operation.
Finally, the method uses eXplainable Artificial Intelligence (XAI) solutions to explain what
influenced the recommendation of an alarm. Interactivity and explainability are designed
in the system to reduce the number of false positive alarms.

The contribution of this work includes:

• Data-driven, adaptive, and interaction-oriented method to identify undesirable events
where such events are underrepresented,

• wWrkflow with particular emphasis on data preprocessing, anomaly identification,
and process optimisation,

• Application of explainable artificial intelligence methods to outlier identification,
• Comprehensive presentation of both the system performing the identification task

and its operation within the presented case studies.

The paper is organised as follows. Section 2 presents an overview of previous research
related to the presented topics. Section 3 describes the proposed method, its assumptions,
components, and the proposed measures of the method evaluation. Section 4 presents
the industrial facilities whose monitoring motivated the research presented and for which
experimental studies were carried out. Section 5 presents the experiments conducted to
evaluate the proposed method on both collected real data sets and the synthetic data set.
Section 6 summarises the research presented.

2. Related Works

The paper refers to application of outlier analysis of stream sensor data coming from
crushers and gantries. In this section, a brief review of outlier detection methods and PdM
applications will be presented.
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2.1. Outlier Analysis

Outlier analysis—also known as anomaly detection—is one of the popular data anal-
ysis goals. It assumes that there exist typical and non–typical observations in the data.
Even if such assumptions are quite intuitive, it is quite hard to provide a proper and
strict definition of the anomaly. One of the oldest definitions [5] claims that “an outlying
observation is one that appears to deviate markedly from other members of the sample in
which it occurs”. Several years later [6], a different approach was presented—an outlier is
an observation that deviates so much from the other observations so as to arouse suspicions
that it was generated by a different mechanism. In the work [7], an outlier is defined as
the observation that is inconsistent with the rest of data. Such an approach was later [8]
explained in more detail: An outlier is the observation that does not follow the same model
as the rest of the data.

In the paper [9], three different anomaly type divisions are provided:

• due to their range:

– Point—only single observation is considered to be an outlier,
– Collective—the group of observations similar to each other is considered to be

outliers as all of them behave differently from other data;

• Due to their scope:

– Local—the observation generally differs from its neighbors, the difference from
other data is not so significant,

– Global—the observation differs from all other data;

• Due to the type of the input data:

– Vector—similarity of objects is calculated on the basis of their space location (e.g.,
the Euclidean distance between vectors),

– Graph—similarity of objects depends on their graph location.

Moreover, in the case of time series (or the stream data) analysis, it is also worth
mentioning the context outlier. The same vector may be interpreted differently due to
its location on the time scale. For example, considering the average daily temperature in
Poland, the value 18 (in ◦C) may be not surprising in May, however, it should be definitely
interpreted as an anomaly in December.

Through the decades, dozens of outlier detection methods have been developed.
Some of them represent the statistical approach starting from the well–known 3σ criterion,
Grubb’s test [7], or GESD (Generalized Extreme Studentized Deviate Test) [10]. Other ones
take into consideration the local data dispersion like LOF (Local Outlier Factor) [11] and
RKOF (Robust Kernel–Based Local Outlier Factor) [12]. In addition, clustering techniques
are applied for such an issue, like DBSCAN (Density–Based Spatial Clustering of Appli-
cations with Noise) [13]—the main idea is to interpret the noise (samples not assigned to
any cluster) as outliers. Another anomaly detection technique that uses data partitioning
(however, built with completely different assumptions than in case of DBSCAN) is Isolation
forest [14]. This method represents the identified partitioning as a binary tree, where the
longer the path to the object, the more typical the object is. Observations lying close to the
tree root are considered to be anomalies. Classification algorithms are another group of
methods that are used for anomaly detection. Support Vector Machine (SVM) [15] was
successfully modified for anomaly detection—the one-class SVM algorithm [16] identifies
the optimal margin between the typical data and the “noise”. Besides, regression methods
(CART in [17]) may become useful for context outlier detection. In recent years, deep neural
networks with autoencoder architecture, such as LSTM networks [18] were applied to
identify outliers [19]; methods exploit the fact that outlier examples are characterised by a
high reconstruction error as result of autoencoder application.

2.2. Predictive Maintenance (PdM)

Predictive Maintenance plays a very important role in a modern multiple type device
operation. In the literature, one may find many fields of its application like railway
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transport [20], power industry [21], or even marine industry [22]. The main idea of PdM is
to provide an analytical tool for analysing a current diagnostic state of the machine/system
and predict the estimated time to its failure.

Among many applications of PdM in the industry, it is worth focusing on anomaly
detection approaches. In the paper [23], several methods of anomaly detection [24–26]
were used for welding process data analysis. The other work [27] presents the artificial
neural networks application for anomaly detection in photovoltaic systems. The neural
networks were also used for anomaly detection in compressed air generation systems
energy consumption [28]. Moreover, in the paper [29] one may find the joined use of XAI
and LSTM models for detection of anomalies in data describing the hot-rolling process.

2.3. Vibration Level-Based PdM

The level of selected elements vibration is a very popular input signal for a device
diagnostic state estimation. Many of them may be found in the industry. The majority of
them applies the Fourier transform [30–33] or wavelet transform [34–36] of the original
signal as a preprocessing step. However, the above mentioned techniques require continu-
ous data acquisition and analysis. Such an approach could not be considered in the case
presented in this paper – it was assumed that the sensor collects data and broadcasts it only
in well-defined moments to assure the very low-level of power consumption.

In the context of vibration-based predictive maintenance, data fusion has recently
become a more frequently addressed issue. Various studies show how different data fusion
approaches [37–40] can be used and how they affect the fault diagnosis of gearboxes and
rotating machinery in general. Research on the application of data fusion methods for the
approach presented in this work is one of the possible directions for future work.

To summarise the overview of the field of the proposed approach, most of the work
on predictive maintenance focuses on the use of machine learning methods, which require
an accessible representation of failures in the data. Furthermore, there is a lack of work
presenting how the number of false positive alarms can be reduced, improving the per-
ception of the system by the machine operator and how to use the operator experience
in the method. It follows that there is a need for the proposed method. The method that
is comprehensive, dedicated to the cold start problem, taking into account the machine
operator and proving its quality on real industrial data.

3. Proposed Method

The proposed method outlined below was inspired by the needs identified in the
industrial solutions analysed. The method aims to identify machine states that may be
alarming and may indicate impending failure. At the same time, to be useful, the method
tries to limit the number of alarms presented to the operator.

The presentation of the method consists of an overview of its successive steps, a
description of the assumptions made for the method, and an extended description of the
selected components of the method.

The proposed method consists of two phases. The first phase is to initialise the method
and at this stage, a training set of measurements is collected. Next, the data creating the
training set is processed—in particular, aggregation and feature extraction are performed.
Training data transformed in this way are used to generate a model that performs the
task of outlier identification, as outliers of measurements may indicate a changing state
of the device. Finally, an explanatory model based on the XAI method is created for the
constructed solution.

The second main phase of the method is performed in a loop. Constant incoming
measurements are collected at equal intervals defining the frame for data processing
and aggregation. The data prepared in this way is delivered to the model generated
in the initialisation phase, which performs the prediction. Prediction is followed by an
explanation of the model decision. If an outlier is identified by the model, the correction
model is run. The purpose of the correction model is to limit the number of alarms reported
to the operator. If the correction model confirms the deviation from the norm, the result
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is presented to the operator as a potential alarm. The operator then confirms the alarm
or considers it false on the basis of, among other things, the explanation provided. After
each observation state is established, the correction model is refined. As a consequence,
the operator receives fewer false positives in the future. If a specific proportion of recent
observations is incorrectly labeled as false positives during the run of the process, the base
model is re-trained. The described steps of the method are shown in Figure 1 in the form
of a block diagram. For the sake of simplicity, the initialisation of the correction model,
which is carried out only when a sufficient number of false alarms is reported, which may
constitute the training set, was omitted on the diagram.

Process new data  and
extract features for the -th

aggregation window

Use the model  to generate
a prediction  for the data 

Use the model  to generate
explanations  for the

prediction  and data 

yes

no
Prediction 

indicates  
anomaly

Run the correction model  
 on prediction  and

explanation 

yes

no
Correction model 
confirms anomaly for

prediction 

The operator, on the basis of 
i.a. explanation , either

acknowledges the alarm or
considers it false

Retrain the correction
model 

no

yes
Last 

 predictions  are
wrong

Retrain the model 

no

yes

Operator feedback
indicates impending

failure

Data
preprocessing

Anomaly
prediction

and its
explanation
generation

Correction of
the anomaly

prediction

Operator's
assessment

Correction
model
refinement

Anomaly detection
model adaptation

Figure 1. Diagram of the main phase of the proposed method.

The proposed method is based on several assumptions which are listed below.

• The launch of the method is preceded by the period of collecting data that can be used
to initiate the method (to create the first model). This period does not have to include
positive examples (failures or repairs).

• It is assumed that the period preceding the failure is characterised by changes in
the operation of the device. The purpose of the proposed system is to identify such
changes in this period. The length of the period is a parameter of the method.

• In the period preceding the device failure, the model is expected to mark all observa-
tions as outliers. Apart from this period, the share of outliers is assumed to be very
small and is a parameter of the method.

• The period immediately following the device renovation was assumed to be the time
needed for the device components to run in. During this time, the model is not
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launched or re-trained. The length of this period is a parameter of the method. After
this time the work characteristics are expected to normalise.

• It is assumed that the operator is able to determine the approximate condition of the
device on the basis of other signals or on-site analysis. Therefore they are able to
confirm or reject an alarm reported by the system.

The three components of the method that should be discussed in more detail are data
preprocessing process, operation of the models creating the proposed method, and the
approach to evaluation of its performance that was used in the experiments.

3.1. Data Preprocessing

The analysed data has the form of a multidimensional time series and it concerns
information about the recorded vibration values—maximum and effective value and tem-
perature. The data preparation process is performed in the steps presented below.

The first step is to determine the scope of the aggregation. Data is aggregated based
on a sliding window. The size of the window is a parameter of the method. Its beginning
and end have to be fixed in relation to the shift cycle in order to aggregate data from the
same periods during the day. Therefore, the window size is a divisor of 24 and is expressed
in hours.

The next step of data preprocessing is to remove duplicates. Duplicate values result
from the fact that on the monitored object, one sensor may be within the range of more
than one data collecting station. Thus, data from one sensor can be stored in the database
by, for example, two stations.

Preprocessing is continued with normalisation of the sampling rate. Sensors within
the facility record data at the same time intervals, but not necessarily at the same time.
Hence, it is necessary to harmonise the time stamps for all sensors. In addition, the intervals
between measurements within the sensors may vary due to missing data or the specificity
of the sensor operation.

Within the next step of data preprocessing, missing values are managed. If the
interruption in data transmission causing the missing values is short enough, it is assumed
that the value of the last measurement may be repeated. Otherwise, examples representing
missing data are saved in the collected data. The value of the threshold is a parameter of
the method.

The next step in preprocessing the data is to remove periods of inactivity of the device
from the data set. The basis for the identification of idle periods are measurements for
which the registered effective value of vibrations does not exceed the assumed threshold.
This value has to be determined empirically and may be different for each object and
sensor. Additionally, there are deleted selected values exceeding the defined threshold, but
representing the return of the operating characteristics to the operating mode or a gradual
fading out.

Finally, for each of the extracted aggregation windows, a number of parameters are
calculated in order to describe the characteristics of the variables.

3.2. Models Included in the Method

The proposed solution provides for the operation of two models. The base model
is created on the basis of the collected measurement data. The purpose of this model is
to identify outliers in the data in order to alert the operator to an abnormal condition of
the device. This model can be generated from recently collected examples, where the size
of the learning data window is a model parameter. Data preceding all past failures or
maintenance incidents can also be used to generate the model. The quality of the base
model is controlled and it is adjusted to the new data if the number of identified outliers
and thus the number of reported alarms exceeds an assumed threshold value. This ensures
that the model does not flood the operator with alarms.

The second model used within the proposed method is the correction model. The
task of this model is to verify the outlier identification information. This model classifies
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whether a given outlier identification alert should be presented to the user. The learning
data for this model contains the same attributes as the learning data for the base model.
However, the model learns the alarm relevance decisions made by the operator. The model
is adapted to the new data after each example is accepted or rejected by the operator.
The correction model is run provided that a sufficient number of observations have been
collected, in particular those that have been incorrectly flagged as outliers by the base
model. If the training set is unbalanced, the observations are given appropriate weights.
The operator decides whether to accept an identified observation as an outlier or to reject it
based on their own experience and on the explanations provided by the XAI method.

3.3. Evaluation Approach

Evaluation of algorithms that perform the task of outlier identification can be per-
formed using such measures such as: Precision and recall [41] or rank-power [42]. However,
precision and recall are insufficient to fully capture the algorithm’s effectiveness, especially
when comparing algorithms that result in a different number of anomalies. In particular,
precision can take a low value because the number of potential anomalies identified is large.
The rank-power measure is resistant to the above problem, however, not every algorithm
allows for ordering the results according to the certainty of the decision made, which limits
the use of this approach. Therefore, in this study three new measures: N, P, and Score were
introduced to evaluate the quality of the proposed system.

Given the D data set, assume that the outlier detection algorithm identifies m > 0
potential anomalies, of which mt(≤m) are true outliers. If D includes dt(≥mt) true outliers,
P is defined as:

P =
mt

dt
. (1)

P is equal to 1.0 if all true outliers are found by the algorithm. N is defined as:

N =
m−mt

D− dt
=

m f

d f
, (2)

where m f (≤ m) is the number of normal values marked incorrectly as outliers and d f is
the number of all normal (non-outliers) values. N is equal to 0.0 if the algorithm does not
mark any normal value as an outlier. Score combines the two measures presented above
into a single value and it is defined as:

Score =
√
(1− N) · P. (3)

It equals 1.0 when all the outliers were identified as outliers and all the normal values
were identified as normal.

4. Monitored Objects

The method proposed in this paper was motivated by case studies known from in-
dustry. The analyses presented in both case studies concern measurements performed by
wireless vibration and temperature sensor WS-VT1 manufactured by Somar S.A. (https:
//somar.com.pl/en/temperature-and-vibrations-wireless-sensor-ws-vt1/, accessed on 30
November 2021). The measurement is performed by a transducer built using microelec-
tromechanical systems (MEMS) technology. Acceleration is measured in three axes, over
ranges of ±2 g/±4 g/±8 g/±16 g and up to 2.5 kHz. Additionally, the sensor allows for
ambient temperature measurement, which is performed by a digital temperature trans-
ducer. The transducer makes measurements with a resolution of 12 bits and an accuracy of
1 ◦C in the range from −55 do +85 ◦C. Both transducers can be switched to sleep mode
to save power. Measurements are managed by a 16-bit microcontroller equipped with a
radio transceiver operating at 860 MHz. The entire component is powered by a 1/2 AA
lithium-ion battery with 1.2 Ah capacity. In basic operation mode, the sensor is periodically
awakened from sleep mode so that acceleration, temperature, and battery level can be

https://somar.com.pl/en/temperature-and-vibrations-wireless-sensor-ws-vt1/
https://somar.com.pl/en/temperature-and-vibrations-wireless-sensor-ws-vt1/
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measured. The transmission range depends on radio wave propagation conditions and is
up to 500 m.

The sensors are components of a monitoring system designed to acquire, monitor, and
analyse the level of vibration on the equipment. The architecture of the monitoring system
is schematically illustrated in Figure 2.

Figure 2. Monitoring system architecture.

4.1. Coal Crusher

The subject of the first case study is the power unit of a coal-fired power plant. Its
diagram is presented in Figure 3. The fuel, which is coal, is transported to the boiler (item 6
in Figure 3) by two routes composed of various types of feeders. In order to obtain the
appropriate granulation, the fuel is crushed while passing through one of the crushers
(elements 2A and 2B in Figure 3). In the crusher’s grinding chamber, coal is crushed by
rows of steel hammers attached to a rotating shaft. The shaft is driven by an electric motor
using a transmission belt. There is a pair of sensors collecting vibration and temperature
measurements. The sensors are placed on the shaft—one on the adjustment side, the other
on the drive side. The photo presenting the monitored crusher from both sides is presented
in Figure 4.

The nature of the machine operation and high dust levels involved make it particularly
susceptible to drive failures, and any failure requires an undesirable reduction in energy
production capacity.
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2A

1A

2B

3A

4A

6

5B

3B

5A

1B

4B

Figure 3. Diagram of the monitored object, which includes: Crushers (2A and 2B), feeders (1, 3, 4,
and 5 (both A and B in each case)), and a boiler (6).

Figure 4. Photography of both sides of the monitored crusher—the approximate location of the
sensors is indicated by arrows.

4.2. Gantry

The subject of the second case study is a transport line in a steelworks converter.
The key element of the line is the gantry, whose cycle is as follows. The gantry, with a
lifting capacity of 500 tonnes, takes full ladles of raw steel from the transport trolleys and
transports them towards the inlet of the converter. The raw steel is poured in by tilting the
ladles and then the gantry puts the empty ladles back on the trolleys.

The drive system responsible for raising and lowering the ladle is presented in Figure 5
and schematically illustrated in Figure 6. The gantry has two drives—left (L) and right
(R). The drives are connected by rollers with gears that reduce the roller speed in the main
lifting mechanism. The vibration sensors are mounted on the rollers, pinion bearings, and
on the supporting beam as pointed in Figure 6 (locations 1 and 6, 2 and 5, and 3 and 4,
respectively).
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Figure 5. Photography of the gantry drive system—the approximate location of the sensors is
indicated by arrows.

Figure 6. Diagram of the gantry drive system with location of vibration sensors (1 to 6).

The gantry operates in difficult environmental conditions. Metal oxide dust is om-
nipresent in the production hall and it increases the vibration level of the entire gantry. The
vibrations of the gears are transmitted to other parts of the structure. In extreme situations,
operation of the gantry becomes impossible or possibly the operators are forced to reduce
engine gears, which results in reduced production efficiency. In such situations, the gearbox
requires a major overhaul.

5. Experiments

The presented solution was designed for the analysis of data from vibration and
temperature sensors located in critical points of monitored objects, in particular on moving
parts of machines. Each analysis concerns all sensors in the facility—the condition of the
entire device is diagnosed, not its individual elements.

The evaluation of the proposed method was carried out on selected data sets. The
basic assumptions of the method and its correct operation for data generated according
to the assumed characteristics were verified on synthetic data. The case studies tested the
performance of the method on real data collected on the coal crushers and the gantries
presented in Section 4. The experiments conducted allowed not only to verify the value
of the method in itself; the research verified what effect the individual parameters of the
proposed solution have on the quality of the method on selected data.

The conducted research was carried out in the Python language environment [43]
(version 3.7). The main libraries that were used are: Pandas [44], which provides structures
for representing data sets, scikit-learn [45] which provides implementations of most of
the algorithms used, tsfresh [46], which implements feature extraction and selection, and
shap [47], which provides XAI methods.

5.1. Data Sets

The synthetic data set was generated as two time series containing 30,000 observations
each. In the first time series (denoted as x1), the operating characteristics were periodically
changed to simulate an impending failure. Two periods were generated in which the values
of the simulated measurements gradually increase and then rapidly return to the regular
value. In this way, the deteriorating condition of the device, which returns to normal after
maintenance work, was simulated. The characteristic of the second time series (denoted
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as x2) is stable. Both time series are illustrated in Figure A1 and their characteristics are
presented in Table A1, in Appendix A.

The coal crusher data set was created from measurement values recorded for two
crushers operating at the same boiler of the power plant between 13 July 2019 and 30 March
2021. There are 2 sensors located on each machine. On the NW-20 crusher these are sensors
C124 (drive side) and C125 (control side), and on the NW-10 crusher these are sensors C122
(drive side) and C123 (control side). The data collected includes three attributes: Maximum
vibration value, root mean square (RMS) value of vibration, and temperature. The interval
between observations is 10 s. The time series forming the data set are shown in Figure A2
and A3, in Appendix A. The descriptive statistics of each attribute for each sensor are
presented in Table A2, in Appendix A.

The gantry data set was created from measurement values recorded for two gantries
named S201 and S202, over a period of 4 months. There are 6 sensors located on each
machine. The sensors are denoted S01 to S06 for the S201 gantry and S07 to S12 for the S202
gantry. The data collected includes three attributes: maximum vibration value, root mean
square (RMS) value of vibration and temperature. The interval between observations is
30 s. The time series forming the data set are shown in Figures A4 and A5, in Appendix A.
The descriptive statistics of each attribute of the data collected by sensors located on the
monitored gantries are presented in Table A3, in Appendix A.

5.2. Experiment Settings

In case of the analysis requiring data preprocessing, the data preparation steps pre-
sented in the previous section were followed and the proper parameter values were selected.
The example illustration of the preprocessing results is presented in Figure 7. The plots
presented in this figure correspond to the consecutive preprocessing operations applied to
the selected fragment of the temperature measurement time series collected on the NW-10
coal crusher. The applied operations include removal of renovation periods when measure-
ments do not represent daily operation, removal of explicitly invalid values, resampling,
interpolation, and finally, extraction of derived features.
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Figure 7. Example plots of coal crusher temperature measurements illustrating consecutive prepro-
cessing steps including: The removal of renovation periods, removal of invalid values, resampling,
interpolation, and extraction of derived features.
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Within the experiments, the quality of results depending on the size of the sliding win-
dow and feature types were verified. The size of the sliding window in which aggregation
was performed was chosen from among the values in the set {4, 6, 8}. In the experiments,
classes of derived variables were defined to verify which set of features supports the best
system performance. The classes adopted include:

• Minimal set of features including such basic descriptive statistics as: Median, mean,
standard deviation, maximum, and minimum,

• TimeBased set of features (derived on data having a form of time series) including
such features as: Correlation coefficient, intercept of the regression line, slope of the
regression line, standard error of the estimated slope (gradient), assuming normality
of the residuum, the two-sided p value for a test whose null hypothesis is that the
slope is zero, using the Wald test with t distribution of the test statistic.

The analysis of feature types included each of the adopted feature sets separately
(Minimal and TimeBased) and their combination.

In the described use cases, the considered devices were far enough away from other
stations. Therefore, the number of duplicates in the collected data set was negligible and
did not require special treatment. In a situation when in intervals no measurements from a
given sensor were recorded, and the break in data transmission was shorter than 50 s in case
of crushers and 120 s in case of gantries, the missing data was supplemented with the last
recorded value. Gaps longer than 50 s and 120 s respectively were treated as missing data.
The basis for the identification of the end of the machine active periods were measurements
for which the registered effective value of vibrations did not exceed a certain threshold.
This threshold was set to 100 mg for coal crushers and 150 mg for gentries. The values were
determined empirically. Additionally, selected values exceeding the defined threshold, but
representing the return of the operating characteristics to the operating mode or a gradual
fading out were deleted from the analysed data sets.

In view of the assumptions made for the proposed method, the following parameters
were adopted for the performance of the base model. The initialisation of the base model is
performed after collecting data representing 30 days of device operation. It was assumed
that the length of the period preceding the event should be set at 2 weeks. This time should
be sufficient to take preventive maintenance action. The share of outliers in the monitored
data was assumed to be 1%. The base model is adapted to the new data (the new model is
generated) when this threshold is exceeded. The length of the period immediately after
the overhaul of the device, during which the new components run in and the data are not
analysed, was set at 1 week.

In the experiments performed, several outlier identification methods were verified
as a base model. The list of the methods includes most of the representatives of the
approaches presented in Section 2: The HDBSCAN algorithm [48] extending the original
DBSCAN method, LOF, Isolation forest, and one-class SVM. The parameter values of the
base model are tuned whenever the threshold of acceptable number of identified outliers is
exceeded (see Figure 1). The grid search method was applied to base model tuning and the
parameters modified for each of method are presented in Table 1.
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Table 1. Parameters tuned for each method evaluated as the base model in the proposed approach.

Method Parameter Parameter Explanation

HDBSCAN min_samples Number of samples in a neighbourhood for a
point to be considered a core point

LOF n_neighbors Number of neighbours to use by default for
k-neighbours queries

algorithm Algorithm used to compute the nearest neigh-
bours

leaf_size Parameter of the selected algorithms used to
compute the nearest neighbours

Isolation
Forest

contamination Amount of contamination of the data set, i.e.
the proportion of outliers in the data set

bootstrap Defines whether sampling with or without
replacement should be used

One-Clas
SVM

nu Upper bound on the fraction of training errors
and a lower bound of the fraction of support
vectors

kernel Kernel type to be used in the algorithm

The experiments carried out included the verification of the approach with and without
using the correction model. The purpose of the correction model is to learn from operator
indications which alarms were false and to prevent them from being reported in the future.
In the experiments presented, when the operation of the correction model was considered,
it was assumed that all events occurring outside of the two-week pre-failure periods were
labelled as false. The classifier performing the task of the correction model was generated
using the Random Forest method. The number of trees in the ensemble was set to 40 and
the maximal tree depth was set to 8.

5.3. Results

In the experiments, the quality of each base model was verified for each value of the
selected parameters of the proposed method. Each base model was therefore run 9 times
(3 values of aggregation window × 3 types of attribute set) for each set of data. Taking
into account that the adopted parameters give a different representation of the data, it
can be assumed that each model was run on 45 sets of data to verify the quality of the
method. A summary of the results obtained in the form of mean values of the adopted
quality measures (N, P, and Score) for each verified base model is presented in Table 2.
The results presented in this table have been obtained using the proposed method without
applying the correction model. In this way, the actual quality of the base model can be
verified without the influence of the correction model, which aims to improve the quality
of the system.
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Table 2. Average results of the proposed method with respect to the base model—average of runs for
different parameter values, without correction model.

HDBSCAN LOF Isolation Forest One-Class SVM

NW-10 N 0.189 (±0.022) 0.077 (±0.031) 0.098 (±0.048) 0.243 (±0.088)
P 0.651 (±0.051) 0.115 (±0.049) 0.366 (±0.174) 0.163 (±0.039)
Score 0.726 (±0.026) 0.318 (±0.072) 0.550 (±0.155) 0.349 (±0.044)

NW-20 N 0.317 (±0.061) 0.102 (±0.019) 0.225 (±0.096) 0.402 (±0.012)
P 0.172 (±0.189) 0.015 (±0.013) 0.049 (±0.040) 0.042 (±0.018)
Score 0.281 (±0.213) 0.093 (±0.072) 0.185 (±0.074) 0.156 (±0.034)

S201 N 0.046 (±0.016) 0.051 (±0.015) 0.212 (±0.028) 0.451 (±0.028)
P 0.079 (±0.087) 0.220 (±0.135) 0.355 (±0.194) 0.658 (±0.054)
Score 0.236 (±0.147) 0.436 (±0.145) 0.507 (±0.145) 0.600 (±0.015)

S202 N 0.310 (±0.092) 0.112 (±0.018) 0.380 (±0.065) 0.506 (±0.025)
P 0.764 (±0.146) 0.691 (±0.138) 0.815 (±0.094) 0.670 (±0.275)
Score 0.719 (±0.045) 0.780 (±0.080) 0.710 (±0.068) 0.562 (±0.108)

synth1 N 0.087 (±0.026) 0.018 (±0.017) 0.020 (±0.036) 0.106 (±0.098)
P 0.934 (±0.024) 0.978 (±0.012) 0.102 (±0.104) 0.573 (±0.466)
Score 0.923 (±0.011) 0.980 (±0.011) 0.256 (±0.195) 0.605 (±0.410)

The results presented in Table 2 allow to determine the ranking of the base models.
The ranking is based on the Score measure values. The average ranking of the base models
is shown in Table 3.

Table 3. Average ranking of the base models used in the proposed method—average of runs for
different parameter values, without correction model.

HDBSCAN LOF Isolation Forest One-Clas SVM

NW-10 1.00 (±0.00) 3.56 (±0.53) 2.22 (±0.44) 3.22 (±0.83)
NW-20 1.72 (±1.20) 3.28 (±1.09) 2.44 (±1.01) 2.56 (±0.73)
S201 3.89 (±0.33) 2.67 (±0.71) 2.00 (±0.87) 1.44 (±0.73)
S202 2.22 (±0.83) 1.33 (±0.71) 2.67 (±0.71) 3.78 (±0.67)
synth 2.44 (±0.53) 1.00 (±0.00) 3.67 (±0.50) 2.89 (±0.93)

The results summarised to the form of ranking in Table 3 shows that the HDBSCAN
method as a base model works well for most of the problems. The results of this method
are on average the best on the NW-10 and NW-20 crusher data sets, for the S202 gantry
data set and synthetic data set, this model took second place. Furthermore, more detailed
analysis is therefore presented for this base model.

Table 4 presents the evaluation of the proposed method with the HDBSCAN base
model when the correction model was applied and the evaluation of the execution of the
HDBSCAN method only. In the latter case, neither adaptation nor correction was applied
in addition to the outlier detection method.
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Table 4. Average quality measures of the proposed method executed with HDBSCAN base model,
adaptation of the base model and correction model, and average quality measures of the stand-alone
HDBSCAN method (average of runs for different parameter values).

Proposed Method with HDBSCAN Stand-Alone HDBSCAN
(With Correction and Adaptation) (Without Correction and Adaptation)

NW-10 N 0.095 (±0.089) 0.654 (±0.082)
P 0.602 (±0.160) 0.707 (±0.081)
Score 0.737 (±0.379) 0.487 (±0.052)

NW-20 N 0.104 (±0.096) 0.939 (±0.077)
P 0.161 (±0.042) 1.000 (±0.000)
Score 0.311 (±0.191) 0.208 (±0.142)

S201 N 0.026 (±0.109) 0.903 (±0.140)
P 0.078 (±0.459) 0.972 (±0.053)
Score 0.237 (±0.638) 0.207 (±0.226)

S202 N 0.115 (±0.105) 0.925 (±0.039)
P 0.737 (±0.558) 0.994 (±0.011)
Score 0.804 (±0.677) 0.263 (±0.078)

synth N 0.036 (±0.059) 0.457 (±0.147)
P 0.917 (±0.567) 0.992 (±0.004)
Score 0.940 (±0.586) 0.727 (±0.102)

Comparing the results of the proposed method presented in Table 2 and 4 (without
and with the correction model, respectively), it can be noticed that the correction model
increases the average Score measure, decreasing the value of N and much less significantly
decreasing the value of P. It shows that the correction model works as intended and reduces
the number of alarms when the machine is working properly. Analysing the results of the
stand-alone HDBSCAN method, it can be seen that the lack of adaptation of the base model
gives very high N values especially for real data, resulting in low Score values.

Quantifying the described differences of the compared methods, the use of the base
model adaptation reduced false alarms by 75.95% on average in relation to the performance
of the stand-alone HDBSCAN method. The use of both adaptation of the base model and
correction model reduced false alarms by 90.25% on average in relation to the performance
of the stand-alone HDBSCAN method. The increase of the median Score values in these
cases was equal to 35.18% and 49.73%, respectively.

To fully illustrate the performance and quality of the proposed method, the plots
of the values of each measure over consecutive aggregation windows are presented in
Figure 8–12. The bright red areas of the graphs mark the periods of two weeks prior to
failure. Under each graph are marked the occurrences of anomaly identification being
reported to the operator as an alarm and the occurrences of retraining the base model to
maintain the assumed low number of anomalies identified.

The presented graphs were created for the best result obtained by the HDBSCAN
method on each of the data sets. The values of the parameters that were adopted in
obtaining the selected results and the Score value obtained are shown in Table 5.

Table 5. Parameter values adopted in obtaining the best Score value by the HDBSCAN method on
each of the data sets—illustrated in Figure 8–12.

Aggregation Window Types of Attribute Set Score

NW-10 8 Minimal TimeBased 0.773
NW-20 4 TimeBased 0.684
S201 4 Minimal 0.490
S202 4 TimeBased 0.934
synth 6 TimeBased 0.959
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Figure 8. Plot of the values of each measure (P, N, and Score) over consecutive aggregation windows
for HDBSCAN execution on the NW-10 data set.
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Figure 9. Plot of the values of each measure (P, N, and Score) over consecutive aggregation windows
for HDBSCAN execution on the NW-20 data set.
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Figure 10. Plot of the values of each measure (P, N, and Score) over consecutive aggregation windows
for HDBSCAN execution on the S201 data set.
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Figure 11. Plot of the values of each measure (P, N, and Score) over consecutive aggregation windows
for HDBSCAN execution on the S202 data set.
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Figure 12. Plot of the values of each measure (P, N, and Score) over consecutive aggregation windows
for HDBSCAN execution on the synthetic data set.

Two of the figures presented, namely Figure 10 and 12, are particularly interesting.
Figure 12 illustrates the proposed method execution on synthetic data set. This data set
was created to prove the correctness of the proposed method and it identifies the periods
preceding the failure very well. A large number of outliers are identified during this period,
reflecting the changes in data. Outside this period, the number of anomalies identified is
low and there is single retraining of the base model. The analysis of data from the S201
gantry (Figure 10) is much more challenging. Three pre-failure periods are highlighted in
this Figure. The first of them falls within the assumed initial period from which the data
are used to initialise the models. Therefore, method predictions were not determined on
this data. The second period before the failure was not identified by the method. This
resulted in a significant decrease of the Score value during this period. Before the third
failure, however, the method behaved properly by reporting the identification of numerous
anomalies.

5.4. Decision Explainability

The proposed method assumes the presentation to the operator of explanations for
the reported alarms related to the identification of outliers. An implementation of the
SHAP method [47] was used to generate the explanations. This method determines which
features had the greatest influence on the decision and which decision they supported.
SHAP determines the impact of the features in relation to the base value (the average
model output over the training dataset). The model decision can be an anomaly or normal
value, which are represented by SHAP as −1 and 1, respectively. Therefore, the impact
of the features is illustrated by the values aiming at −1 (or 1) decision, starting from the
base value.

Two examples of generated explanations for the NW-10 coal crusher are presented
below. These explanations are supplemented with plots of feature values from the period
covering the case under analysis (aggregation window). Figure 13 provides the explanation
of the true positive anomaly identification case. This explanation is complemented by
Figure 14 presenting the plots of the four most significant features indicated by SHAP. The
explanation applies to the location marked by the red vertical line. Figure 15 provides
the explanation of the false positive anomaly identification case. Again, this explanation
is complemented by Figure 16, presenting the plots of the four most significant features
indicated by SHAP. Explanation applies to the location marked by the red vertical line. The
explanations generated in this way draw the operator’s attention to selected aspects of the
measurements and can be a helpful addition to his experience in assessing the condition of
the machine.
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Figure 13. Waterfall plot of SHAP explanations for individual prediction (true positive case)—the
explanation applies to the location marked by the red straight line in Figure 14.
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Figure 14. Selected excerpt from the plot of the most significant features indicated by the explanatory
model in Figure 13.

Figure 15. Waterfall plot of SHAP explanations for individual prediction (false positive case)—the
explanation applies to the location marked by the red straight line in Figure 16.
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Figure 16. Selected excerpt from the plot of the most significant features indicated by the explanatory
model in Figure 15.

6. Conclusions

This paper presents a method that performs the task of predictive maintenance when
the examples representing the machine failure are scarce and makes the application of
supervised machine learning methods impossible. The created method operates on multi-
dimensional time series generated from measurement data including vibration and tem-
perature. The proposed solution is based on the detection of outliers. It assumes the
interaction with the machine operator and the machine learning based correction of the
system decisions in order to reduce the reported false alarms. The operator’s evaluation of
the device’s state is supported by the presentation of explanations generated by XAI for
decisions determined by the proposed method.

In addition to the new method, the paper proposes new measures to assess its quality.
With regard to these measures, the method was verified on a synthetic data set and within
two case studies evaluating its application on data from real industrial installations.

The high efficiency of the method on synthetic data indicates the correct assumptions
of the proposed approach. The research carried out demonstrates the usefulness of the
method and provides guidance on its configuration, such as the use of the HDBSCAN
method to generate the base model. The proposed approach significantly outperformed
the stand-alone outlier detection method. As a limitation of the proposed method, one can
see the necessity of its initialisation, which is related to the collection of an initial data set.
However, the requirements of this initialisation are minimal compared to the requirements
of methods based on classification models.

The benefit for users of the proposed method will be to receive legitimate and rea-
soned alarms about the deteriorating condition of the machine, and thus be able to plan
maintenance work. The machine operator will receive support in the form of informa-
tion about alarming values of measurements. This information will not be burdensome
due to the application of the false alarm reduction methods. Instead, it will be enriched
by the explanations generated by the XAI, and thanks to this context, it will be more
comprehensible.

Further work on the proposed method will focus on the research related to the base
model generating alarm predictions. In this study, four models were verified indicating
HDBSCAN as the most favourable solution. Further research may consider the imple-
mentation and verification of the other outlier detectors listed in Section 2. Moreover, the
evaluation performed have shown that different methods may work best on different data.
It may therefore be interesting to develop a mechanism to automatically select a method for
the data being analysed. Furthermore, for some applications after a cold start period, it may
be beneficial to use classification methods to identify a deteriorating machine condition. It
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therefore requires verification as to whether it is profitable to develop a solution that auto-
matically switches the base model from an outlier identification method to a classification
method once a sufficient number of examples representing an impending failure have been
collected.
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Appendix A

The plot of synthetic data set is presented in Figure A1, the descriptive statistics for
this data set are presented in Table A1. The plot of coal crusher data set is presented in
Figure A2 containing time series for NW-10 crusher and in Figure A3 containing time series
for the NW-20 crusher. The descriptive statistics for this data set are presented in Table A2.
The plot of gantry data set is presented in Figure A4 containing time series for the S201
gantry and in Figure A5 containing time series for the S202 gantry. The descriptive statistics
for this data set are presented in Table A3.
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Figure A1. Plots of values for the synthetic data set consisting of x1 (red lines indicate failure locations)
and x2 series.
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Table A1. Descriptive statistics of the synthetic data set, the statistics include: Mean value (mean),
standard deviation (std dev.), minimal value (min), 25th percentile (25%), 50th percentile (50%), 75th
percentile (75%), and maximal value (max).

Mean Std Dev. Min 25% 50% 75% Max

x1 520.78 47.14 450.00 484.42 515.82 544.11 698.48
x2 499.93 28.88 450.00 475.06 499.73 524.82 550.00
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Figure A2. Time series for the NW-10 crusher collected by two sensors (the red colour indicates the
locations of failures).
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Figure A3. Time series for the NW-20 crusher collected by two sensors (the red colour indicates the
locations of failures).
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Table A2. Descriptive statistics of each attribute in the coal crusher data, the statistics include:
mean value (mean), standard deviation (std dev.), minimal value (min), 25th percentile (25%), 50th
percentile (50%), 75th percentile (75%), and maximal value (max).

Crusher Sensor Attribute Mean Std Dev. Min 25% 50% 75% Max

NW-10 C122 VibrRMS 638.85 322.14 100.00 386.00 535.00 803.00 5500.00
VibrMax 1697.42 857.00 200.00 1018.00 1473.00 2183.00 7803.00

Temp 34.49 4.91 3.75 31.13 34.25 37.31 56.13
C123 VibrRMS 784.98 573.10 103.00 320.00 622.00 1034.00 4786.00

VibrMax 2085.28 1410.79 143.00 845.00 1715.00 2916.00 7841.00
Temp 33.84 5.69 15.38 29.75 33.25 37.69 67.75

NW-20 C124 VibrRMS 1118.55 541.05 100.00 742.00 1019.00 1362.00 6152.00
VibrMax 3017.39 1278.28 200.00 2011.00 2995.00 3781.00 7926.00

Temp 35.34 6.49 10.25 30.31 35.50 39.63 70.38
C125 VibrRMS 880.50 284.61 100.00 650.00 826.00 1102.00 5280.00

VibrMax 2349.91 761.61 181.00 1747.00 2283.00 2877.00 7855.00
Temp 35.33 7.20 8.88 29.13 35.56 41.19 72.38
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Figure A4. Time series for the S201 gantry collected by six sensors (the red colour indicates the
locations of failures).
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Figure A5. Time series for the S202 gantry collected by six sensors (the red colour indicates the
locations of failures).

Table A3. Descriptive statistics of each attribute in the gantry data, the statistics include: mean value
(mean), standard deviation (std dev.), minimal value (min), 25th percentile (25%), 50th percentile
(50%), 75th percentile (75%), and maximal value (max).

Crusher Sensor Attribute Mean Std Dev. Min 25% 50% 75% Max

S201 S01 VibrRMS 287.31 380.93 4.00 28.00 39.00 454.00 3189.00
VibrMax 636.94 724.62 32.00 90.00 133.00 1088.00 4080.00

Temp 35.47 7.54 6.25 30.25 35.88 40.75 55.38
S02 VibrRMS 428.90 523.57 16.00 27.00 89.00 736.00 3751.00

VibrMax 849.30 932.22 26.00 80.00 181.00 1541.00 4080.00
Temp 34.34 9.95 5.38 28.75 35.44 41.25 70.88

S03 VibrRMS 296.29 402.66 16.00 27.00 71.00 451.00 3855.00
VibrMax 618.88 746.33 26.00 80.00 160.00 981.00 4080.00

Temp 27.19 10.03 2.19 19.19 27.88 34.50 59.06
S04 VibrRMS 247.65 285.58 13.00 26.00 71.00 425.00 3221.00

VibrMax 504.45 540.82 10.00 74.00 165.00 885.00 4080.00
Temp 27.87 10.12 2.69 20.13 28.63 35.00 58.50

S05 VibrRMS 346.17 419.20 13.00 24.00 33.00 637.00 2453.00
VibrMax 800.73 920.28 16.00 58.00 90.00 1594.00 4080.00

Temp 34.60 7.99 10.88 28.75 35.13 40.88 55.69
S06 VibrRMS 449.74 528.36 15.00 26.00 87.00 888.00 3455.00

VibrMax 899.10 984.89 10.00 80.00 181.00 1813.00 4080.00
Temp 32.50 10.28 6.56 24.63 33.00 39.75 64.63
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Table A3. Cont.

Crusher Sensor Attribute Mean Std Dev. Min 25% 50% 75% Max

S202 S07 VibrRMS 324.94 412.09 12.00 26.00 95.00 502.00 3395.00
VibrMax 747.23 884.07 16.00 80.00 197.00 1168.00 4080.00

Temp 31.66 7.04 3.50 26.75 31.44 36.75 52.13
S08 VibrRMS 310.33 366.67 15.00 26.00 169.00 477.00 3633.00

VibrMax 650.31 730.05 21.00 74.00 336.00 1050.00 4080.00
Temp 31.80 11.01 5.31 22.88 31.69 40.63 59.81

S09 VibrRMS 126.77 132.17 18.00 30.00 70.00 177.00 2700.00
VibrMax 288.12 294.13 21.00 96.00 160.00 378.00 4048.00

Temp 29.58 12.31 2.50 18.69 28.50 40.00 61.06
S10 VibrRMS 116.08 116.63 15.00 27.00 80.00 168.00 1965.00

VibrMax 269.45 307.28 16.00 80.00 170.00 352.00 4053.00
Temp 31.85 12.51 0.63 21.25 32.00 42.00 64.69

S11 VibrRMS 375.41 499.33 14.00 25.00 153.00 634.00 4342.00
VibrMax 860.60 935.34 16.00 80.00 341.00 1530.00 4080.00

Temp 35.30 7.58 5.00 29.75 35.06 41.31 54.13
S12 VibrRMS 312.61 382.69 18.00 29.00 137.00 499.00 3635.00

VibrMax 673.26 736.86 37.00 96.00 298.00 1072.00 4080.00
Temp 32.06 11.47 6.56 22.56 31.25 41.38 63.88
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