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Abstract: This paper proposes a method for extracting information from the parameters of a single
point incremental forming (SPIF) process. The measurement of the forming force using this technology
helps to avoid failures, identify optimal processes, and to implement routine control. Since forming
forces are also dependent on the friction between the tool and the sheet metal, an innovative solution
has been proposed to actively control the friction forces by modulating the vibrations that replace
the environmentally unfriendly lubrication of contact surfaces. This study focuses on the influence
of mechanical properties, process parameters and sheet thickness on the maximum forming force.
Artificial Neural Network (ANN) and different machine learning (ML) algorithms have been applied
to develop an efficient force prediction model. The predicted forces agreed reasonably well with
the experimental results. Assuming that the variability of each input function is characterized by a
normal distribution, sampling data were generated. The applicability of the models in an industrial
environment is due to their relatively high performance and the ability to balance model bias and
variance. The results indicate that ANN and Gaussian process regression (GPR) have been identified
as the most efficient methods for developing forming force prediction models.

Keywords: incremental sheet forming; failure prevention; friction force; robotized manufacturing;
prediction model

1. Introduction

The forces exerted by the friction between the tool and the workpiece during the
machining of materials play an important role in the quality of the product. The effect
of petroleum and vegetable oil-based lubricants on the friction coefficient, wear, forming
forces, and surface roughness of metal sheets produced by the single point incremental
forming (SPIF) process has been investigated in [1]. Lubricating oil was found to produce
the surface roughness in the direction perpendicular to which the tool passes, with a value
close to Ra = 1.45 µm, which exceeds the surface roughness of the undeformed sheet
while degrading the quality of the final product. As the lubricants are unfriendly to the
environment, new methods for reducing and predicting forming forces have to be found.
With the proliferation of data in recent technologies, machine learning (ML) has become
one of the most important methodological approaches for extracting meaningful insights
from huge amounts of data. The authors in [2] present an ML algorithm-based method
for predicting the occurrence of defects in the SPIF process of metal sheets due to material
properties and sources of dispersion of process parameters. The defects and failures are
directly related to the tensile flow behaviour of the material sheet, which is predicted using
phenomenological models and Artificial Neural Networks (ANN) [3]. Using a genetic
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algorithm and linear regression analysis, the constants of the Johnson-Cook, Khan-Huang-
Liang, and modified Voce equations were calculated and used to model uniaxial tension
tests. The modified Voce constitutional equation was found to predict the flow behaviour
of AA5182-O better than other models. ANN models can be trained and developed for the
final evaluation of processes and tools prior to production [4].

The SPIF process aims to form products with the most accurate shape possible [5–9]. A
deep learning technique to propagate geometric accuracy in SPIF was proposed in [5]. The
prediction of geometric accuracy is one of the most important indicators of product quality.
In order to predict geometric accuracy in SPIF, shallow learning and deep learning methods
are investigated and compared. In [6], a Modified Adaptive Neuro-Fuzzy Inference System
(MANFIS) focuses on geometric deviation prediction, and an Enhanced Squirrel Search
Algorithm (ESSA) is used for the optimal selection of SPIF parameters in AA2024-O alu-
minum alloy sheets. Several shaping experiments have been carried out using SPIF under
different forming conditions to measure the surface roughness, the arithmetic mean rough-
ness (Ra), and ten-point mean roughness (Rz) of the AlMn1Mg1 sheet [7]. In addition, an
ANN was used to predict (Ra) and (Rz), given the data collected from the SPIF components.
Extensive experimental work was carried out and presented in [8] to investigate compliance
with industry requirements. The influence of forming parameters (forming wall angle, step
depth, and feed rate) was investigated to achieve SPIF capabilities at higher speeds for
forming aluminum alloy AA5754-H22 and DC04 steels. Soft computing-based simulation
and multi-functional optimization of the process parameters using an aluminum alloy sheet
SPIF to obtain the desired deformed shape, optimally formed to meet several objectives
is presented [9]. A response surface methodology and Adaptive Neuro-Fuzzy Inference
System (ANFIS) models were developed to predict the responses based on experimental
data collected from a central composite experimental design, taking into account feed
rate, tool diameter, and step height as inputs and outputs, i.e., deformed sheet thickness,
forming wall angle, and surface roughness.

One of the indicators of the quality of the formed product is the surface quality [10–15].
The authors in [10] present the results of an analysis of the interaction between the SPIF
process parameters and the stiffened ribs made of Alclad aluminum alloy plates. The
correlation between the operating variables, the maximum forming angle, and the surface
roughness is determined by ensemble learning using a gradient boosting regression tree
and presented in [11]. To obtain the ML dataset, a series of experiments were conducted
with a continuous variable-angle pyramid shape based on D-Optimal design. In [12], the
authors describe an experimental study on the influence of process parameters on the
surface roughness of SPIF using a dummy sheet. The authors in [13] propose the use
of Support Vector Machine (SVM) algorithms to generate models that can predict the
geometric accuracy of SPIF molds made from DX51 aluminized steel sheets. The data
obtained using a coordinate measuring machine were used to train the generated models.
In the study [14], a multiple-layer perceptron-type ANN model is used to predict the SPIF
quality part and reduce the gap between the shape obtained using a CNC machine and the
CAD. In [15], different ANN models and structures were presented to predict the accuracy
and formability of SPIF components made from thin aluminum alloy blanks. The main
finding of the study revealed that the structure of a single output solution showed better
results than a network with two outputs. Within the scope of the experiments, the results
were evaluated using different validation metrics: the highest R2 values were 0.9909 and
0.9860, and the lowest MSE values were 0.1503 and 0.0351 for accuracy and formability,
respectively.

One of the most important parameters of the technological processes is the prediction
of the acting force, as it is related to potential defects and surface quality [16–21]. In [16], a
transfer network is developed using simulation data as the source domain and experimental
data as the target domain, in combination with related learning transfer methods and
theories. The aim of the study [17] is to predict and optimize the surface roughness
and cutting forces in the milling of aluminum alloy 7075-T6 using regression analysis,
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Support Vector Regression (SVR), ANN, and a multi-objective genetic algorithm. The
aim of the research presented in [18] is to investigate the capabilities of SVR, polynomial
regression, and ANN to optimize turning parameters. Measuring the forming force using
SPIF technology helps to identify optimal processes, avoid failures, and implement online
control. The experimental study presented in [19] focuses on the SPIF process and the
influence of four different process parameters, i.e., step size, tool diameter, sheet thickness,
and feed rate, on the maximum forming force. An ANN and a regression method were used
for an efficient force prediction model based on the ANFIS. To develop an efficient data-
driven force prediction using back-propagation neural networks, a virtual data generation
method based on a mega-trend diffusion function and a particle swarm optimization
algorithm was proposed in [20]. The aim was to improve the accuracy of SPIF force
prediction based on small experimental data. In [21], an ANN was applied to predict the
minimum force required for SPIF sheets of thin aluminum AA3003-0 and calamine brass
Cu67Zn33 alloys.

A review of the research papers reveals that until now, there has been no attempt
to reduce friction between the tool and the sheet metal by eliminating environmentally
hazardous petroleum products, which also affect the chemical composition of the sheet
material being formed. Another important issue is that after the forming process, the
lubricated surfaces need to be cleaned, which also increases the development time and
costs of the product.

This paper proposes an innovative SPIF, by exciting the sheet metal with ultrasonic
vibrations, thereby eliminating environmentally hazardous contact surface lubrication.
This has led to a reduction in forming forces and the prediction of these forces by different
ML algorithms has allowed the selection of the most efficient ML methods capable of
performing intelligent data analysis. The main contribution of this study is to explain the
principles of different machine learning techniques and their applicability to SPIF. Overall,
this paper aims to be a point of reference for academic researchers, industry professionals,
as well as decision-makers in the field of production, especially from a technical point
of view.

2. Materials and Methods

Metallic materials used in the forming process, such as SPIF, visibly deform in contact
with the tool area. The key challenge of the SPIF process is to effectively assess the forming
forces. The forces generated during SPIF may be controlled by varying the coefficient
of friction between the tool and the workpiece. Lubrication is an important factor in the
SPIF process, reducing friction in the tool-sheet metal contact area, but the use of grease is
associated with environmental problems. Therefore, it is necessary to find other ways to
reduce the forming forces associated with the process dynamics. This requires, in particular,
the development of a SPIF process for which the mechanical parameters can be adjusted
experimentally using the 3D scanning device shown in Figure 1.
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Figure 1. 3D scanning experimental set-up for the investigation of vibration modes of the metal sheet
rigidly attached to the frame: 1—an experimental body—aluminum alloy sheet; 2—steel base frame;
3—piezoelectric actuator; 4—liner amplifier P200 (FLC Electronics AB, Sweden); 5—3D scanning
vibrometer PSV-500-3D-HV (Polytec GmbH, Germany).
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2.1. Experimental Investigation of Aluminum Sheet Dynamics

During the SPIF process, the tool moves by deforming the aluminum alloy sheet, so
the amplitudes and frequencies of the sheet’s eigenmodes are influenced by the position of
the tool and the forming depth. Experimental studies have been carried out to evaluate the
influence of the forming tool contact locations (points 1 and 2 in Figure 2) on the dynamics
of the ultrasonically activated metal sheet.
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Figure 2. An aluminum alloy sheet vibrations at an excitation frequency of 30 kHz and forming tool
contact with a sheet location: 1—bottom; 2—on the side.

An aluminum alloy AW1050 (mechanical properties and chemical composition of
aluminum alloy presented in Table 1) sheet with dimensions of 350 × 350 × 0.5 mm is
rigidly attached to the frame and one side is facing three laser scanning heads (Figure 1).
On the other side of the metal sheet, a forming tool with a steel sphere of 8.5 mm radius is in
contact with a sheet at the locations presented in Figure 2. Some vibrations of an aluminum
alloy sheet are excited in the frequency range from 0.5 to 60 kHz with the piezoceramic
transducers attached to a frame. Thereby the 3D frequency response and deformations of
an aluminum alloy sheet are obtained.

Table 1. Mechanical properties and chemical composition of aluminum alloy AW1050, used in experiments.

Parameter Value Unit

Proof stress 85 min MPa
Tensile strength 105–145 MPa
Hardness Brinell 34 HB

Elongation A 12 min %
Density 2.71 kg/m3

Melting point 650 ◦C
Modulus of Elasticity 71 GPa
Electrical Resistivity 0.282 × 10−6 Ω·m

Thermal Conductivity 222 W/m·K
Thermal Expansion 24 × 10−6 /K

Chemical composition
Element % Weight

Aluminum 99.5
Silicon 0–0.25

Iron 0–0.4
Magnesium 0–0.05
Manganese 0–0.05

Titanium 0–0.03
Vanadium 0–0.05

Copper 0–0.05

The presented vibrograms (Figure 3) show that regardless of the location of the tool in
contact with the metal sheet and the forming depth, the amplitudes of the Z eigenmodes
perpendicular to the sheet surface are significant, while the influence of the tool location on
the amplitudes of the X and Y natural oscillation modes in the 2D plane is insignificant.
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Figure 3. 3D frequency response and deformations of an aluminum alloy sheet in the frequency range
from 0.5 to 60 kHz measured with a Polytec PSV-500 3D laser Dopler vibrometer scanner: x (red)
and y (green) are lateral vibrations, z (blue) in the normal direction, respectively: influence of tool
position and forming depth on the eigenmodes of the sheet at tool position 1, forming depth: (a) tool
position 1, forming depth 15 mm; (b) tool position 2, forming depth 30 mm.

The experimental results have shown that the SPIF process is most effective in the
frequency range from 28 to 36 kHz, where the lateral vibrations in the XY-direction of the
sheet dominate over the normal Z-direction vibrations of the sheet. The effect of ultrasonic
vibration on the sliding friction of aluminum alloy specimens in sliding tool steel has
been studied in [22]. A significant reduction in sliding friction (up to >80%) was observed
and good agreement was found between the measured values and the predictions of two
simple models for the effects of longitudinal and transverse vibrations. Ultrasound not
only reduces friction between the tool and the workpiece but in our developed technology,
ultrasound also makes it easier for the tool to slide on the sheet surface. Ultrasonic assisted
friction reduction is well known in the field of metal-to-metal contacts. Due to the vibration,
the stick phase in the contact phase vanishes and only sliding occurs. As long as the
macroscopic relative velocity of the contact partners is much lower than the vibration
velocity, the force required to move the parts tends to (nearly) zero. This finding further
reaffirms that ultrasonic excitation of the sheet in the 2D plane can have a significant impact
on the efficiency of the SPIF process.
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2.2. Experimental Investigation of Robotized Incremental Aluminum Sheet Forming

In order to control the forming force effectively, the aluminum alloy sheet was excited
by ultrasonic vibrations. An experimental set-up developed for this purpose is shown
in Figure 4. The test sheet (1) is clamped to a frame (2) and excited by two piezoelectric
transducers (3), attached rigidly to the two opposite sides of the frame. A power amplifier
(4) is used to generate the vibrations in the range from 28 to 36 kHz in which lateral
vibrations of the sheet are dominant, of the piezoelectric transducer. As the robotic arm (5)
moves, the tool with the sphere (6) attached to it incrementally forms the sheet. The tool is
specifically mounted at an angle of 30◦ degrees, so that the mechanical momentum sensor
STJ100 (7) is connected to controller BGI (8) (Mark-10 Corp., Copiague, NY, USA) and could
measure both—pressing and friction momentum. The sensor controller BGI is connected
to an oscilloscope PicoScope 3424 (9) (Pico Technology Ltd., St. Neots, UK, GB), which
transmits the results obtained from the mechanical moment sensor on the computer (10).
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Figure 4. Experimental set-up for sample excitation: 1—aluminum alloy sheet; 2—metal frame;
3—piezoelectric transducers; 4—power amplifier; 5—robotic arm; 6—forming tool with sphere;
7—mechanical momentum sensor STJ100; 8—controller BGI (Mark-10 Corp., Copiague, NY, USA);
9—oscilloscope PicoScope 3424 (Pico Technology Ltd., St. Neots, UK, GB); 10—PC: (a) scheme;
(b) experimental setup view.

The parameters of the tool forming path trajectory are given in Table 2.

Table 2. Parameters of tool forming path (trajectory).

Parameter Value Unit

Type of trajectory Helix—Circle -
Helix type Right-handed -
Lead angle 45 ◦

Step size to the centre, used in the experiment 0.5 mm
Step size downwards, used in the experiment 0.5 mm

Major diameter of the helix 140 mm
Minor diameter of the helix 9 mm
Maximum possible depth 2 mm

Depth, used in the experiments 25 mm
Radius of the tool sphere 8.5 mm

Possible step size to the centre interval 0.1–1.0 mm
Possible step size downwards interval 0.1–1.0 mm
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An illustration of the SPIF product parameters used for the incremental forming of the
aluminum sheet is presented in Figure 5.
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The mechanical friction between the steel tool and aluminum alloy sheet was measured
using torque sensor STJ100, with a sensitivity factor of 6 Nm/V, connected with BGI series
digital force gauge (Mark-10 Corp., Copiague, NY, USA) and PC (Figure 4). During
this experiment the following set of data was used: speed rate of tool—1200 mm/min,
the radius of tool sphere—8.5 mm, normal to sheet surface force—100 N. The averaged
measurement results of five tests of the friction coefficient and the friction force of the tool
on dry, lubricated, and ultrasonically assisted workpiece surfaces are given in Table 3.

Table 3. Friction coefficient and friction force averaged measurement results.

Method Friction Force Friction Coefficient

Without lubrication and vibration 3.2 N 0.5
With lubrication 1.6 N 0.1
With vibration 1.9 N 0.12

It is clear from Table 3 that under the influence of ultrasonic vibrations the coefficient
of friction between the steel tool and the aluminum alloy is close to the coefficient of friction
of the lubricated surfaces. This makes it possible to solve environmental problems, and the
surface of the manufactured part does not need to be cleaned. In order to assess the effect of
vibrations on the SPIF of an aluminum alloy sheet, measurements of the surface roughness
of the sheet were conducted with and without ultrasonic vibrations. An advanced surface
roughness tester TR200 (BeijingTIME High Technology Ltd., Beijing, China) was used to
measure the surface roughness of the metal sheet. The measured surface roughness of
the sheet formed without ultrasonic vibrations was in the range Ra = 0.30–0.33 µm and
with the ultrasonic vibrations in the range Ra = 0.18–0.25 µm, respectively. This revealed
phenomenon has been patented by the authors [23].

3. Experimental Data Exploration

The data should be analysed to determine whether the data collected are free of data
quality problems that could adversely affect the intended prediction models. Common
issues such as missing values and outliers should be calculated because it is impossible to
train error-based models with data that contains missing values. Furthermore, data that
contain outliers can provide incorrect predictions. As depicted in Table 4, there are two
types of features: continuous numeric and categorical binary. Two features, namely “Tool
end diameter” and “Wall angle” have constant values, therefore they must be eliminated.
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Table 4. Parameters for data exploration.

No. Input Parameter Value (min, max) Unit

1 Forming depth 0 . . . 26 mm
2 Tool end diameter 20 . . . 20 mm
3 Step depth (∆z) 0.25 . . . 0.5 mm
4 Step width (∆x) 0.25 . . . 0.5 mm
5 Wall angle 45 . . . 45 ◦

6 Sheet thickness (Θ, ◦) 0.5 . . . 0.8 mm
7 Tool type rotating sphere on the end/ not rotating -
8 Vertical Force Component (VFC) dry friction 4.91 . . . 343.35 N
9 VFC oil lubricated 1.96 . . . 341.39 N

Output parameter
1 VFC vibro excitation 4.91 . . . 338.45 N

First of all, data exploration should be performed in order to determine whether or not
the collected data suffer from any data quality issues that could negatively affect prediction
models that are intended to build. No outliers or missing data have been identified in the
data set. After the first iteration of data quality issues analysis, the data set contains five
inputs—raw features, that come directly from data sources, and one output-vibro excitation
of the sheet (Table 5).

Table 5. Training parameters.

Input Parameters

Forming depth Step depth (∆z) Step width (∆x) Sheet thickness (Θ, ◦) Tool type
Output Parameters
VFC vibro excitation

The SPIF experiment was performed under dry, lubricated, and vibration-excited
friction on the contact surfaces of the tool and the sheet metal, and the vertical force
dependences on the process conditions are given in Table 6.

Table 6. Vertical force dependence from different friction when sheet thickness is 0.5 mm.

s = 0.5 mm, Steps 0.5 and 0.5 mm, Velocity Varied to 100%

Forming Depth, mm
Vertical Force, N

Dry Friction Oil Lubricated Vibro Excitation

0 98.10 80.93 73.58
2 98.10 115.76 79.46
4 112.82 100.55 99.08
6 116.74 117.72 112.82
8 138.32 127.04 137.34
10 144.21 141.07 154.51
12 159.41 146.17 156.96
14 166.28 148.33 161.87
16 166.08 149.60 161.87
18 167.75 151.86 165.79
20 169.22 152.35 166.28
22 169.71 152.84 167.26
24 171.18 153.23 167.75
25 173.15 153.33 168.24

Next, it is reasonable to calculate the correlation coefficients r, which indicate the
strength of the linear relationship between the two features. The values of Spearman
correlation coefficients [24] vary between −1 and 1, whereas if r = 0, then the variables
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have no relationship; the closer the coefficient is to +1 or −1, the stronger the relationship.
The sign indicates whether the relationship is positive or negative, e.g., if r = 1, then the
two features have an ideal positive relationship. A coefficient close to 0 shows a weak
correlation. It has been noted that step depth and step width have the same values and a
correlation coefficient of r = 1. It is thus reasonable to remove one of these two features. No
outliers or missing data were identified in our dataset:

r =

1
n ∑n

i = 1

((
R(xi)− R(x)

)
·R(yi)− (R(y))

)
√(

1
n ∑n

i = 1

(
R(xi)− R(xi)

)2
)
·
(

1
n ∑n

i = 1

(
R(yi)− R(yi)

)2
) (1)

where R(x) and R(y) are the ranks of the x and y variables; R(x) and R(y) are the
mean ranks.

The correlation coefficient between “Tool type” and the output “VFC vibro excitation”
is very low because this input attribute is binary, having only two possible values (rotating
sphere on the end; not rotating) therefore it is eliminated. After the first iteration of data
quality issues management and analysis, our dataset contains six raw features obtained
directly from data sources. These correlation coefficients r are provided in the Spearman
correlation matrix (heatmap) and presented in Figure 6.
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It has been observed that “VFC dry friction” has the strongest correlation with the
output value, r = 0.998. Meanwhile, step depth and sheet thickness, with values of r = 0.360
and r = 0.433, respectively, have shown a moderate correlation with “VFC vibro excita-
tion”. However, it is reasonable to include all six parameters for the further prediction
investigation employing Artificial Neural Networks (ANN).

4. Machine Learning Based Prediction

In the field of mechatronics and bioengineering, the size of experimental data sets is of-
ten insufficient, thus the prediction task requires machine learning (ML) algorithms capable
of generalizing the data properly. Simple models (such as linear regression, decision tree,
etc.), feature selection, k-fold for cross-validation [25], ensemble learning, regularization, or
possibly, generation of synthetic data [26,27] can be used for this purpose. A number of ex-
perimental studies have shown that ANN used for correlation analysis and prediction can
yield good results even with a small sample of data [28,29], but other ML algorithms, such
as Support Vector Machine (SVM) or Random Forest (RF), are often used as well. In this
study, five different supervised machine learning methods were used for the comparative
analysis of the prediction results: Gaussian Process Regression (GPR); SVM; Decision Trees
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(DT); K-Nearest Neighbors algorithm (KNN), and ANN. The obtained results confirmed
that ANN is the most accurate method (according to Root Mean Square Error (RMSE)) in the
framework of this task (Figure 7a), although it is the least efficient in terms of training time.
The k-fold cross-validation procedure shows that the RMSE values of all ML algorithms
do not differ significantly. Evaluating the accuracy results, it can be seen that ANN and
GPR provide similar performance, but the training time for both algorithms differs greatly.
ANN has an average training time of 12.68 s which is significantly higher compared to
GPR (Figure 7b). This is because ANN has more parameters than GPR. ML algorithms may
give different prediction accuracy and training duration each time, even when trained on
the same data set. It is possible to reduce the variance of the ML algorithm by optimizing
its hyperparameters.
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Hyperparameters, in contrast to ML model parameters, are set manually before the
model starts training. Hyperparameters cannot be learned within the estimator directly,
however, model parameters are properties of the training data that are estimated automati-
cally. For example, the minimum leaf size in a decision tree, or kernel scale and function
of SVM are hyperparameters while the weights in an ANN are model parameters learned
during training. The choice of hyperparameters in the above models can strongly affect its
performance, therefore the optimization process allows to automatically find the optimal
combination of hyperparameters for the ML algorithm [30]. As the result, an optimal model
is provided, which reduces a predefined error value and in turn, increases the accuracy of
independent data.

Hyperparameter Optimization

Hyperparameter optimization has been performed on GPR, SVM, DT, KNN, and
ANN models using Bayesian optimization [31]. Two other popular hyperparameter tuning
algorithms are grid search and random search. Grid search is the simplest algorithm for
hyperparameter tuning, which divides the domain of the hyperparameters into a discrete
grid. Theoretically, this algorithm should find the best point in the domain, but practically
is not used very often, because it is an exhaustive and time-consuming search. Random
search, unlike grid search, does not search solution for every possible combination of
hyperparameter values but tests only a randomly selected subset of these values. Instead
of random searching in the hyperparameter domain, Bayesian optimization enables an
intelligent manner of hyperparameters selection, because it uses the results from the
previous iteration to decide what is the next set of hyperparameters, which will improve
the model performance. Prioritizing hyperparameters is very efficient and allows for
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finding the best values of hyperparameters’ sets much faster compared to both grid search
and random search.

The Bayesian optimization method for the tuning of hyperparameters employs the
acquisition function with the purpose to determine the next set of hyperparameter values.
There are many different acquisition functions such as upper confidence bound, entropy
search, probability of improvement, and expected improvement, but the last two functions
are most commonly used. In general, the expected improvement function evaluates the
expected amount of improvement in the objective function:

El(x) = E[max
(
0, f ′ − f (x)

]
(2)

where f ′ is the minimum value of f observed so far; x is the location of that sample.
The performance of such an optimization process depends not only on the chosen

acquisition function but also on the surrogate model that helps to approximate the main
target functions. In our case, the Gaussian process (GP) has been used, which is the most
often preferred choice. In general, the Bayesian optimization follows the sequence of four
cycle steps: (1) use Bayes rule to obtain the posterior; (2) choose a surrogate model; (3) use
an acquisition function to decide the next sample point; (4) add new data to the set of
observations and go to step 2.

Four hyperparameters, i.e., sigma value, basic function, kernel function, and kernel
scale, have been included in the optimization process of the GPR model. The kernel
function plays a significant role because the choice of kernel functions determines almost
all the generalization properties of the GPR model. The sigma value σ is selected within
the range calculated by Equation (3).

σ = [min; max] =

[
0.0001; max(10×

√
n

∑
i = 1

(yi − y)
n− 1

)

]
(3)

where y is a sample mean (output sample mean), yi—the value from the output sample,
n—sample size.

The GPR model kernel scale optimization possibility depends on the kernel function.
For no-isotropic kernel function, the number of the kernel scale l is usually equal to the
number of inputs. For isotropic kernel functions, the kernel scale l is selected Table 7) from
a range of values calculated according to the following equation:

l = [min; max] = [0.001(max(X)−min(X)); (max(X)−min(X))] (4)

where max(X)—a maximum value from the input variable matrix, min(X)—a minimum
value from the input variable matrix.

Table 7. Hyperparameters of the GPR model.

Sigma Basic Function Kernel Function Kernel Scale

Value Range (0.0001; 948.39)
Constant;

Zero;
Linear

Isotropic and No-isotropic Exponential;
Isotropic and No-isotropic Matern 3/2

and 5/2; Isotropic and No-isotropic
Rational Quadratic; Isotropic and
No-isotropic Squared Exponential

(0.33943–339.43)

Different accuracy measures have been calculated from the experiments: Mean
Squared Error (MSE), RMSE, and Mean Absolute Error (MAE) [32].

MSE is a measure representing the average of the squared difference between the real
and predicted values of the data set. RMSE is simply the square root of the MSE, the only
difference being that MSE measures the variance of the residuals, while RMSE measures
the standard deviation of the residuals.



Sensors 2022, 22, 18 12 of 22

RMSE =
√

MSE, where MSE =
1
n ∑n

t = 1|yt − ŷt|2 (5)

where n—the number of time points, yt—is the actual value at a given time period t, and
ŷt—is the predicted value, t—observation in a dataset.

The value of RMSE and MSE penalizes large errors. In contrast, MAE is less biased for
higher values and usually does not penalize large errors. MAE is calculated according to
the following equation:

MAE =
1
n

n

∑
t = 1
|yt − ŷt| (6)

where n—the number of time points, yt—is the actual value at a given time period t, and
ŷt—is the predicted value.

Figure 8 shows the minimum MSE of the GPR algorithm, where the red dot indicates
the iteration with the minimum MSE, and the light blue dot represents the computed MSE
value during the optimization process by varying the GPR hyperparameters. Dark blue
dots indicate the observed minimum error minMSE detected up to the current (including
current as well) observation:

minMSE = min
(

MSEi
)

, i = 1, n, (7)

where n is the number of iterations.
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Figure 9 shows the cross-validation results depicting the predicted value of VFC vibro
excitation against the real (true) values. The errors are represented by vertical red dashed lines,
but due to very small error values, the majority of the true and predicted value points overlap.

The best results achieving RMSE = 5.6891, MSE = 31.238, and MAE = 3.872 have
been achieved using a linear basic function, no-isotropic rational quadratic kernel function
(Equation (8)) with sigma 0.0002.

k(xa, xb) = σ2

(
1 +
||xa − xb||2

2α`2

)−α

(8)

where σ2—the overall variance, `—the length scale parameter, α—the scale-mixture (α > 0).
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Four hyperparameters have been included in the SVM model optimization process:
kernel function, kernel scale, box constraint, and epsilon (Table 8). The ranges of values
for the latter three hyperparameters were selected on the basis of preliminary experiments.
Seven different kernel functions have been analyzed: three Gaussian (fine, medium, coarse),
Linear, Quadratic, and Cubic. It has been observed that the Gaussian functions gave the
poorest results compared to other functions.

Table 8. Hyperparameters of the SVM model.

Epsilon Box Constraint Kernel Function Kernel Scale

Value Range (0.01; 1000) (0.001; 500) Gaussian, Linear, Quadratic, and Cubic (0.001; 100)

The best results for the validation set—RMSE = 9.124, MSE = 83.253, and MAE = 6.403—
were obtained using a linear kernel function, ε = 0.105, with box constrains = 111.25
(Figure 10).
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It can be noted that the minimum MSE varies over a wide range depending on the
combination of the SVM hyperparameters, and the error can reach almost 3000. Prediction
errors are displayed in a response plot in Figure 11.
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For the ANN model experimental setup, we have used a simple feedforward network—
multilayer perceptron (MLP), presented in Figure 12.
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Figure 12. The architecture of used multilayer perceptron.

As in the two previous ANN models, four hyperparameters were used in the opti-
mization process: the number of hidden layers, the size of the hidden layer, the activation
function of the hidden layers, and regularization strength (Table 9). The three most common
activation functions were analyzed: Sigmoid, Hyperbolic tangent (Tanh), and Rectified
Linear Unit (ReLU). The range of regularization strength was chosen based on primary
cross-validation results. Value ranges of hidden number layers and hidden layer size were
selected according to the size of the data set.

Table 9. Hyperparameters of the ANN model.

Number of Hidden Layers Hidden Layer Size Activation Function Regularization Strength

Value Range (1; 3) (10; 100) Sigmoid, Tanh, ReLU (0; 0.001)

The ANN approach provides very good prediction accuracy and the best results with
RMSE = 4.5337, MSE = 20.573, and MAE = 3.528 were obtained using a single hidden layer
neural network with ReLU activation function, 12 neurons, and a regularization strength of
zero. The variation of the minimum MSE values during the ANN hypermeter optimization
process is shown in Figure 13. The testing data results of the ANN model are presented in
Figure 14 providing actual and predicted values of VFC vibration excitation.
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Figure 14. Testing data results of the ANN model.

Thus, the minimum leaf size is the only hyperparameter that was included in the
optimization. It denotes the minimum number of data points that are required to be present
in the leaf node. The search range for this hyperparameter is from 1 to 15 which is chosen
according to the size of the data set. The best result of the DT approach: RMSE = 29.567,
MSE = 874.19, and MAE = 21.507 (Figure 15) were obtained using a decision tree with a
minimum leaf size equal to four. The decision tree approach provides the lowest accuracy
compared to GPR, SVM, and ANN. The minimum MSE value varies from 2195.31 to 874.19.
As depicted in Figure 16, in half of the observations, the distance between the predicted
VFC vibration excitation value and the actual values is more significant than GPR, ANN,
or SVM.
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Table 10 represents the hyperparameters of another, i.e., the KNN approach. Two
KNN hyperparameters were included in the optimization process. The first one is K (the
number of neighbors to consider) and the second is the employed distance function (most
commonly used Euclidean, Manhattan, Minkowski).

Table 10. Hyperparameters of the KNN model.

K Distance Metric

Value Range (1; 10) Euclidean, Manhattan, Minkowski (p = 1, p = 1.5, p = 2, p = Infinity)

For n-dimensional space, the Euclidean distance between the two points x with co-
ordinates (x1, x2, . . . , xn) and y with coordinates (y1, y2, . . . , yn) is determined using the
following equation:

dEucl(x, y) =

√
(x1 − y1)

2 + (x2 − y2)
2 + . . . + (xn − yn)

2 =

√
n

∑
i = 1

(xi − yi)
2 (9)

where (y1, y2, . . . , yn) are attribute values of y data instance and (x1, x2, . . . , xn) are attribute
values of x data instance.

The Manhattan distance is also known as city block distance, or taxicab geometry,
as well as several other names, because it allows calculating the distance between two
data points on a uniform grid, for example, a city block; there may be more than one path
between the two points that have the same Manhattan distance. The Manhattan distance
between two points x and y is calculated using the formula:

dManh(x, y) =
n

∑
i = 1
|xi − yi| (10)

Minkowski distance is a generalized distance metric. The above formula (Equation (10))
can be manipulated by substituting ‘p’ to calculate the distance between two data points in
different ways. Thus, Minkowski distance is also known as Lp norm distance:

dMink(x, y) =

(
n

∑
i = 1
|xi − yi|p

)1/p

(11)

where p is the order of the Minkowski metric. With different values of p, the distance
between two data points can be calculated in different ways: p = 1—Manhattan distance;
p = 2—Euclidean distance, p = ∞—Chebyshev’s distance. A value such as p = 1.5
provides a balance between the two measures.
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The best KNN results, including RMSE = 6.0757, MSE = 36.915, and MAE = 3.528 were
obtained using the Manhattan distance for two neighbors, K = 2 (Figure 17).
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The most important step in KNN is to determine the optimal value of K. The optimal
value of K reduces the effect of noise on the classification. A technique called the “elbow
method” helps to do this, selecting the optimal K value. Different values of K are applied to
the same data set and the change in K is initially observed. In the data set characterizing
the SPIF process, the error rate (RMSE) curve obtained by applying the KNN with respect
to the K value is shown in Figure 18.
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The graph presented in Figure 18 denotes that initially the error rate decreases to 2,
and then it starts to increase. Thus, the value of K should be 2, i.e., it is the optimal K value
for this model. This curve is called an elbow curve because it has a shape of an elbow and
is commonly used to adjust the K value.

R2 (coefficient of determination) is a regression score, which is a statistical measure
indicating how close the data are to the fitted regression line. In regression, it is a measure
showing how well the regression predictions approximate the real data. An R2 of 1 indicates
that the regression predictions perfectly fit the data:

R2 =
SSR
SST

=
∑m

i = 1(yi − ŷi)
2

∑m
i = 1(yi − y)2 (12)

where SSR is the sum of squares of residuals, SST is the total sum of squares, yi is the actual
value, ŷi is the predicted value, and y is the mean value.



Sensors 2022, 22, 18 18 of 22

R2 is always between 0 and 100% (or 0 and 1.0). The higher the R2, the better the
model. The goal is not to maximize R2 because model stability and adaptability are equally
important. When checking the adjusted R2 value, it is preferred to have the values of the
R2 and adjusted R2 close to each other. From the graphical representation of R2 values of
the five prediction models (Figure 19), it can be seen that the DT algorithm gave the worst
result (R2 = 0.878) compared to others.
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Figure 19. R-squared representation for all five ML algorithms used for the prediction task.

A series of five experimental runs have been carried. Summarizing the experimental
results, ANN and GPR were identified as the most efficient methods for developing VFC
vibro excitation prediction models, giving the lowest prediction error (RMSE) of 4.5337 and
5.6891, respectively (Figure 20). It should be noted that the DT algorithm is inappropriate
for this task and for the available data set, as the prediction errors in both cases (with and
without optimization) are high, reaching around 30%. As for the standard deviation (ST),
despite the DT model with a 0 value of ST for all five iterations, the GDR has the lowest
standard deviation, ST = 0.201. The ANN model has resulted with ST = 0.616, KNN with
ST = 0.78, and the SVM with the highest value, ST = 2.531.



Sensors 2022, 22, 18 19 of 22

Sensors 2021, 21, x FOR PEER REVIEW 19 of 23 
 

 

   

  

Figure 19. R-squared representation for all five ML algorithms used for the prediction task. 

A series of five experimental runs have been carried. Summarizing the experimental 

results, ANN and GPR were identified as the most efficient methods for developing VFC 

vibro excitation prediction models, giving the lowest prediction error (RMSE) of 4.5337 

and 5.6891, respectively (Figure 20). It should be noted that the DT algorithm is inappro-

priate for this task and for the available data set, as the prediction errors in both cases 

(with and without optimization) are high, reaching around 30%. As for the standard de-

viation (ST), despite the DT model with a 0 value of ST for all five iterations, the GDR has 

the lowest standard deviation, ST = 0.201. The ANN model has resulted with ST = 0.616, 

KNN with ST = 0.78, and the SVM with the highest value, ST = 2.531. 

 

Figure 20. Comparison of different ML algorithm prediction error results. 

  

Figure 20. Comparison of different ML algorithm prediction error results.

5. Discussion

The innovative method and technique of the SPIF process proposed in this paper have
made it possible to dispense with the environmentally unfriendly process of lubrication of
the metal sheet surface and replace it by ultrasonic excitation in the plane of the sheet in
two perpendicular directions. In order to determine the most effective frequency range for
ultrasonic excitation of metal sheets, a 3D scanning experiment was carried out (Figure 1).
The results of the experiment (Figure 2) show that the SPIF process is the most efficient
in the frequency range of 28–36 kHz of ultrasonic vibrations, where the vibrations in
the XY sheet plane directions dominate vis-a-vis normal vibrations in the Z direction.
An advanced surface roughness tester (TR200 Time group) was used to measure the
roughness of the formed sheet surface. The surface roughness of the sheet formed without
ultrasonic vibration was measured to be Ra = 0.30–0.33 µm and Ra = 0.18–0.25 µm with
ultrasonic vibration. The surface roughness results obtained were compared with the
SPIF results of lubricated surfaces reported in [1], which showed that lubricants have
poor oxidative stability, which leads to changes in the physical properties of the lubricant,
such as viscosity, acidity, etc. Therefore, the change in these physical properties and
the detachment of the alumina from the AA1100 aluminum alloy formed samples may
lead to an increase in the force and friction coefficient values, and the surface roughness,
which was set to be close to Ra = 1.45 µm. The paper [22] confirms that the coefficient
of friction between ultrasonically excited metal contact surfaces is reduced by up to 80%.
Experimental results carried out employing data exploration techniques show that two
features, namely ‘Tool sphere diameter’ and ‘Wall angle’, have constant values and need
to be eliminated. It was also found that the correlation coefficient between ‘Tool type’
and the output ‘VFC vibro excitation’ is not very significant (r = −0.2694) and is the
lowest compared to the other features, and can be removed as well. Various ML-based
algorithms including GPR, SVM, DT, KNN, and ANN have been used for the prediction
task, performing Bayesian hyperparameter optimization. Summarizing the experimental
results, it is found that ANN and GPR are the most efficient methods for developing VFC
vibro excitation prediction models, with the lowest prediction error (RMSE) of 4.5337 and
5.6891, respectively. However, comparing all three metrics—RMSE value, the standard
error deviation, and execution time, the GPR shows superiority over the ANN.

Different input functions and different test conditions make it difficult to compare
experimental results with those obtained in different studies. However, evaluating the
impact of different features, it can be concluded that the ‘Forming depth’ is one of the
most important features in the force prediction process. Such findings are also observed
in studies by other authors [15,21]. Nevertheless, in most cases, additional features with
those correlation coefficients with the output features that are higher than r = ±0.3 allow
for achieving better prediction accuracy. For comparison purposes, additional experiments
were performed using all five input features and only three features, ignoring ‘Step depth’
and ‘Sheet thickness’ (Figure 21).
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Figure 21. Comparison of prediction results using a different number of input features: five input
features (forming depth, step depth, sheet thickness, VFC dry friction, VFC vibro excitation) and
three inputs (forming depth, VFC dry friction, VFC vibro excitation).

Comparing the RMSE value, it can be observed that the average prediction error for
DT remains the same, with RMSE = 29.562. The KNN and SVM models based on input
three provide higher RMSE values, with an increase of 1.939% and 13.67%, respectively,
compared to the five-input. The most significant impact of denoted features elimination
has been observed using ANN and GPR models because the RMSE of the three-input-based
model increases more than 25% in both cases. This indicates that it is reasonable to estimate
additional parameters in order to improve the accuracy of the prediction model.

6. Conclusions

An innovative way is proposed to reduce the frictional force between the forming
tool and the sheet surface by exciting the sheet metal with ultrasonic vibrations in two
rectangular directions of the sheet plane. The coefficient of friction between the ultrasoni-
cally excited metal sheet surface and the tool was found to be equal to the coefficient of
friction between the lubricated surfaces, which speeds up the time to market and makes
the process more environmentally friendly. Based on the experimentally determined values
of the vertical forming forces, machine learning algorithms were developed to predict
these forces. It has been demonstrated that ML algorithms can be successfully trained
for the prediction of VFC vibro excitation on a relatively small data set and provide good
generalization performance on test samples. Five different ML algorithms (ANN, SVM,
GPR, KNN, and DT) were used in the experimental research, including the process of
hyperparameters’ optimization. The obtained results verified the practical observations of
other authors working on similar problems, confirming that ANN is the most appropriate
algorithm, as it gives the lowest error with and without hyperparameters’ optimization:
RMSE = 4.53 and RMSE = 5.87, respectively. In both experiments, GPR lags slightly behind
ANN. However, the KNN algorithm after optimization showed a smaller prediction error
(RMSE = 6.07) than SVM (RMSE = 9.12). Summarizing the accuracy results, ANN and GPR
have been identified as the most efficient methods for developing VFC vibro excitation
prediction models, although their training time differs significantly. In his case, the training
time is less important than the prediction accuracy results, while ANN has a 20% accuracy
advantage, which is a more important factor.
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Nomenclature

SPIF Single-point incremental forming
VFC Vertical Force Component
ML Machine learning (AI field algorithms)
ANN Artificial Neural Networks
MLP Multilayer perceptron
SVM Support Vector Machine
GPR Gaussian Process Regression
KNN K-nearest neighbors algorithm
RMSE Root Mean Square Error
MSE Mean Square Error
MAE Mean Absolute Error
ST Standard deviation
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