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Abstract: This paper presents the construction of a new objective method for estimation of visual
perceiving quality. The proposal provides an assessment of image quality without the need for a
reference image or a specific distortion assumption. Two main processes have been used to build our
models: The first one uses deep learning with a convolutional neural network process, without any
preprocessing. The second objective visual quality is computed by pooling several image features
extracted from different concepts: the natural scene statistic in the spatial domain, the gradient
magnitude, the Laplacian of Gaussian, as well as the spectral and spatial entropies. The features
extracted from the image file are used as the input of machine learning techniques to build the models
that are used to estimate the visual quality level of any image. For the machine learning training
phase, two main processes are proposed: The first proposed process consists of a direct learning
using all the selected features in only one training phase, named direct learning blind visual quality
assessment DLBQA. The second process is an indirect learning and consists of two training phases,
named indirect learning blind visual quality assessment ILBQA. This second process includes an
additional phase of construction of intermediary metrics used for the construction of the prediction
model. The produced models are evaluated on many benchmarks image databases as TID2013,
LIVE, and LIVE in the wild image quality challenge. The experimental results demonstrate that the
proposed models produce the best visual perception quality prediction, compared to the state-of-the-
art models. The proposed models have been implemented on an FPGA platform to demonstrate the
feasibility of integrating the proposed solution on an image sensor.

Keywords: blind image quality assessment; regression technique; non-distortion-specific; visual
perception; convolutional neural network; deep learning; ILBQA; FPGA implementation

1. Introduction

Digital images are increasingly used in several vision application domains of everyday
life, such as medical imaging [1,2], object recognition in images [3], autonomous vehicles [4],
Internet of Things (IoT) [5], computer-aided diagnosis [6], and 3D mapping [7]. In all these
applications, the produced images are subject to a wide variety of distortions during
acquisition, compression, transmission, storage, and displaying. These distortions lead to a
degradation of visual quality [8]. The increasing demand for images in a wide variety of
applications involves perpetual improvement of the quality of the used images. As each
domain has different thresholds in terms of visual perception needed and fault tolerance,
so, equally, does the importance of visual perception quality assessment.

As human beings are the final users and interpreters of image processing, subjective
methods based on the human ranking score are the best processes to evaluate image
quality. The ranking consists of asking several people to watch images and rate their quality.
In practice, subjective methods are generally too expensive, time-consuming, and not
usable in real-time applications [8,9]. Thus, many research works have focused on objective
image quality assessment IQA methods aiming to develop quantitative measures that
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automatically predict image quality [2,8,10]. The objective IQA process is illustrated in
Figure 1. This process has been introduced in the paper [11].

In digital image processing, objective IQA can be used for several roles, such as
dynamic monitoring and adjusting the image quality, benchmark and optimize image
processing algorithms, and parameter setting of image processing [8,12]. Many research
investigations explore the use of machine learning (ML) algorithms in order to build
objective IQA models in agreement with human visual perception. Recent methods include,
artificial neural network (ANN), support vector machine (SVM), nonlinear regression
(NLR), decision tree (DT), clustering, and fuzzy logic (FL) [13]. After the propulsion of
deep learning techniques in 2012 [14], researchers were also interested in the possibility
of using these techniques in the image quality assessment. Thus, in 2014, the first studies
emerged on the use of convolutional neural networks in IQA [15]. Many other works have
followed, and we find in the literature increasingly efficient IQA models [16–18].
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Quality
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Metric
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Figure 1. Objective image quality assessment process.

The IQA evaluation methods can be classified into three categories according to
whether or not they require a reference image: full-reference (FR), reduced-reference (RR),
and no-reference (NR) IQA approaches. Full reference image quality assessment (FR-IQA)
needs a complete reference image in order to be computed. Among the most popular
FR-IQA, we can cite the peak signal to noise ratio (PSNR), structure similarity index
metric (SSIM) [8,19], and visual information fidelity (VIF) [20]. In reduced reference image
quality assessment(RR-IQA), the reference image is only partially available, in the form of
a set of extracted features, which help to evaluate the distorted image quality; this is the
case of reduced reference entropic differencing (RRED) [21]. In many real-life applications,
the reference image is unfortunately not available. Therefore, for this application, the need
of no-reference image quality assessment (NR-IQA) methods or blind IQA (BIQA), which
automatically predict the perceived quality of distorted images, without any knowledge
of reference image. Some NR-IQA methods assume the type of distortions are previously
known [22,23], these objective assessment techniques are called distortion specific (DS)
NR-IQA. They can be used to assess the quality of images distorted by some particular
distortion types. As example, the algorithm in [23] is for JPEG compressed images, while
in [22] it is for JPEG2000 compressed images, and in [24] it is for detection of blur dis-
tortion. However, in most practical applications, information about the type of distortion
is not available. Therefore, it is more relevant to design non-distortion specific (NDS)
NR-IQA methods that examine image without prior knowledge of specific distortions [25].
Many existing metrics are the base units used in NDS methods, such as DIIVINE [26],
IL-NIQE [27], BRISQUE [28], GMLOGQA [29], SSEQ [30], FRIQUEE [31], DIQA [32],
and DIQa-NR [33].

The proposal of this paper is a non-distortion-specific NR-IQA approach, where the
extracted features are based on a combination of the natural scene statistic in the spatial
domain [28], the gradient magnitude [29], the Laplacian of Gaussian [29], as well as the
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spatial and spectral entropies [30]. These features are trained using machine learning
methods to construct the models used to predict the perceived image quality. The process
we propose for designing the evaluation of perceived no-reference image quality models is
described in Figure 2. The process consists of

• extracting the features from images taken in the IQA databases,
• removing the superfluous features according to the correlation between the extracted

features,
• grouping the linearly independent features to construct some intermediate met-

rics, and
• using the produced metrics to construct the estimator model for perceived image

quality assessment.

Finally, we compare the designed models with the state-of-the-art models using the
features extraction, but also the process using deep learning with convolutional neural
network; as shown in Section 4.1.

To evaluate the performances of the produced models, we measure the correlation
between objective and subjective quality scores using three correlation coefficients:

1. Pearson’s linear correlation coefficient (PLCC), which is used to measure the degree
of the relationship between linear related variables.

2. Spearman’s rank order correlation coefficient (SRCC), which is used to measure the
prediction monotony and the degree of association between two variables.

3. Brownian distance (dCor), which is a measure of statistical dependence between two
random variables or two random vectors of arbitrary, not necessarily equal dimension.
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Figure 2. Design of prediction models for objective no-reference IQA process.

The paper is organized as follows. Section 2 presents the feature extraction methods.
Section 3 explains the feature selection technique based on feature independence analysis.
The construction of intermediate metrics is also presented in this section. Section 4 explains
the experimental results and their comparison. Section 5 presents the FPGA implementa-
tion architectures and results. Finally, Section 6 draws a conclusion and perspectives for
future investigations.

2. Feature Extraction

Feature extraction in this paper is based on four principal axes: natural scene statistic
in the spatial domain, gradient magnitude, Laplacian of Gaussian, and finally spatial and
spectral entropies.

2.1. Natural Scene Statistic in the Spatial Domain

The extraction of the features based on NSS in spatial domain starts by normaliza-
tion of the image represented by I(i, j), to remove local mean displacements from zero
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log-contrast, and to normalize the local variance of the log contrast as observe in [34].
Equation (1) presents normalization of the initial image.

Î(i, j) =
I(i, j)− µ(i, j)

λ(i, j) + 1
(1)

where i and j are the spatial indices, M and N are the image dimensions, i ∈ 1, 2, . . . , M
and j ∈ 1, 2, . . . , N. µ(i, j) that denotes the local mean is represented by (2) and λ(i, j) that
estimates the local contract is expressed by (3).

µ(i, j) = ∑
k

∑
l

ωk,l I(i + k, j + l) (2)

λ(i, j) =
√

∑
k

∑
l

ωk,l [I(i + k, j + l)− µ(i, j)]2 (3)

where k = −K, . . . , K, and l = −L, . . . , L. ωk,l is a 2D circularly-symmetric Gaussian
weighting function sampled out to 3 standard deviations (K = L = 3) and rescaled to unit
volume [28].

The model produced in (1) is used as the mean-subtracted contrast normalized
(MSCN) coefficients. In [28], they take the hypothesis that the MSCN coefficients have
characteristic statistical properties that are changed by the presence of distortion. Quanti-
fying these changes helps predict the type of distortion affecting an image as well as its
perceptual quality. They also found that a Generalized Gaussian Distribution (GGD) could
be used to effectively capture a broader spectrum of a distorted image, where the GGD
with zero mean is given by (4).

f
(

x; α, σ2
)
=

α

2βΓ(1/α)
exp

(
−(x/β)α) (4)

where β is represented by (5) and Γ(.) is expressed by (6).

β = σ

√
Γ(1/α)

Γ(3/α)
(5)

Γ(a) =
∫ ∞

0
ta−1e−tdt a > 0. (6)

The parameter α controls the shape of the distribution while σ2 controls the variance.
In [28], they also give the statistical relationships between neighboring pixels along

four orientations: H = Î(i, j) Î(i, j + 1); V = Î(i, j) Î(i + 1, j); D1 = Î(i, j) Î(i + 1, j + 1) and
D2 = Î(i, j) Î(i + 1, j − 1). This is used with asymmetric density function to produce a
practical alternative to adopt a general asymmetric generalized Gaussian distribution
(AGGD) model [35]. Equation (7) gives the AGGD with zero mode.

f
(

x; γ, σ2
l , σ2

r

)
=


γ

(βl+βr)Γ(1/γ)
exp

(
−
(
−x
βl

)γ)
∀x ≤ 0

γ
(βl+βr)Γ(1/γ)

exp
(
−
(

x
βr

)γ)
∀x ≥ 0

(7)

where βa (with a = l or r) is given by (8).

βa = σa

√
Γ(1/γ)

Γ(3/γ)
(8)
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The parameter γ controls the shape of the distribution, while σ2
l and σ2

r are scale
parameters that control the spread on each side of the mode. The fourth asymmetric
parameter is η given by (9)

η = (βr − βl)
Γ(2/γ)

Γ(1/γ)
(9)

Finally, the founded parameters are composed of the symmetric parameters (α and
σ2) and the asymmetric parameters (η, γ, σ2

r , and σ2
l ), where the asymmetric parameters

are computed for the four orientations, as shown in Table 1. All the founded parameters
are also computed for two scales, yielding 36 features (2 scales × [2 symmetric parame-
ters + 4 asymmetric parameters × 4 orientations]). More details about the estimation of
these parameters are given in [28,36].

Table 1. Extracted features based on NSS in spatial domain.

Feats Feature Description Computation Procedure

f1–f2 Shape and variance Fit GGD to MSCN coefficients
f3–f6 Shape, mean, left variance, right variance Fit AGGD to horizontal (H) pairwise
f7–f10 Shape, mean, left variance, right variance Fit AGGD to vertical (V) pairwise
f11–f14 Shape, mean, left variance, right variance Fit AGGD to first diagonal (D1) pairwise
f15–f18 Shape, mean, left variance, right variance Fit AGGD to second diagonal (D2) pairwise

2.2. Gradient Magnitude and Laplacian of Gaussian

The second feature extraction method is based on the joint statistics of the Gradient
Magnitude (GM) and the Laplacian of Gaussian (LoG) contrast. These two elements GM
and LoG are usually used to get the semantic structure of an image. In [29], they also
introduce another usage of these elements as features to predict local image quality.

By taking an image I(i,j), its GM is represented by (10).

GI =

√
[I ⊗ hx]

2 +
[
I ⊗ hy

]2 (10)

where ⊗ is the linear convolution operator, and hd is the Gaussian partial derivative filter
applied along the direction d ∈ x, y, represented by (11).

hd(x, yσ) = − 1
2πσ2

d
σ2 exp

(
− x2 + y2

2σ2

)
(11)

Moreover, the LoG of this image is represented by (12).

LI = I ⊗ hLoG (12)

where

hLoG(x, yσ) = − 1
2πσ2

x2 + y2 − 2σ2

σ4 exp
(
− x2 + y2

2σ2

)
(13)

To produce the used features, the first step is to normalize the GM and LoG features
map as in (14).

ḠI = GI/(NI + ε)
L̄I = LI/(NI + ε)

(14)

where ε is a small positive constant, used to avoid instabilities when NI is small, and
NI is given by (15).

NI(i, j) =
√

∑
l

∑
k

ω(l, k)F2
I (l, k) (15)

where (l, k) ∈ Ωi,j; and FI is given by (16).

FI(i, j) =
√

G2
I (i, j) + L2

I (i, j) (16)
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Then (17) and (18) give the final statistic features.{
PG(G = gm) = ∑n Km,n

PL(L = ln) = ∑m Km,n
(17)

{
QG(G = gm) =

1
N ∑n P(G = gmL = ln)

QL(L = ln) = 1
M ∑m P(L = lnG = gm)

(18)

where n = 1, . . . , N and m = 1, . . . , M, and Km,n is the empirical probability function of G
and L [37,38]; it can be given by (19).

Km,n = P(G = gm, L = ln) (19)

In [29], the authors also found that the best results are obtained by setting M = N = 10;
thus, 40 statistical features have been produced as shown in Table 2, 10 dimensions for each
statistical features vector PG, PL, QG and QL.

Table 2. Extracted features based on GM and LoG.

Feats Feature Description

f1–f10 marginal probability functions of GM
f11–f20 marginal probability functions of LoG
f21–f30 measure of the overall dependency of GM
f31–f40 measure of the overall dependency of LoG

2.3. Spatial and Spectral Entropies

Spatial entropy is a function of the probability distribution of the local pixel values,
while spectral entropy is a function of the probability distribution of the local discrete
cosine transform (DCT) coefficient values. The process of extracting the spatial and spectral
entropies (SSE) features from images in [30] consists of three steps:

• The first step is to decompose the image into 3 scales, using bi-cubic interpolation:
low, middle, and high.

• The second step is to partition each scale of the image into 8× 8 blocks and compute
the spatial and spectral entropies within each block. The spatial entropy is given
by (20).

Es = −∑
x

p(x)log2 p(x) (20)

and spectral entropy is given by (21).

E f = −∑
i

∑
j

P(i, j)log2P(i, j). (21)

where p(x) is the probability of x, and P(i, j) is the spectral probability gives by (22).

P(i, j) =
C(i, j)2

∑i ∑j C(i, j)2 . (22)

where i = 1, . . . , 8; j = 1, . . . , 8.
• In the third step, evaluate the means and skew of blocks entropy within each scales.

At the end of the three steps, 12 features are extracted from the images as seen in
Table 3. These features represent the mean and skew for spectral and spatial entropies,
on 3 scales (2× 2× 3 = 12 features).
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Table 3. Extracted features based on SSE.

Feats Feature Description

f1–f2 Mean and skew of spatial entropy values for the first scale
f3–f4 Mean and skew of spectral entropy values for the first scale
f5–f6 Mean and skew of spatial entropy values for the second scale
f7–f8 Mean and skew of spectral entropy values for the second scale

f9–f10 Mean and skew of spatial entropy values for the third scale
f11–f12 Mean and skew of spectral entropy values for the third scale

2.4. Convolutional Neural Network for NR-IQA

In this paper, we explore the possibility of use the deep learning with convolutional
neural network to build the model used to evaluate the quality of the image. In this process,
the extraction of features are done by the convolution matrix, constructed using the training
process with deep learning.

In CNNs, three main characteristics of convolutional layers can distinguish them from
fully connected linear layers in the vision field. In the convolutional layer,

• each neuron receives an image as inputs and produces an image as its output (instead
of a scalar);

• each synapse learns a small array of weights, which is the size of the convolutional
window; and

• each pixel in the output image is created by the sum of the convolutions between all
synapse weights and the corresponding images.

The convolutional layer takes as input and image of dimension Rl xCl with Sl channels,
and the output value of the pixel pl,n,r,c (the pixel of the row r and the column c, of the
neuron n in the layer l) is computed by (23).

pl,n,r,c = fact(
Sl

∑
s=0

Il

∑
i=0

Jl

∑
j=0

wl,n,s,i,j pl−1,n,r+i,c+j) (23)

where Il × Jl are the convolution kernel dimensions of the layer l, wl,n,s,j,k is the weight of
the row i and the column j in the convolution matrix of the synapse s, connected to the
input of the neuron n, in the layer l. In reality, a convolution is simply an element-wise
multiplication of two matrices followed by a sum. Therefore, the 2D convolution take
two matrices (which both have the same dimensions), multiply them, element-by-element,
and sum the elements together. To close the convolution process in a convolutional layer,
the results are then passed through an activation function.

In convolution process, a limitation of the output of the feature map is that they record
the precise position of features in the input in the convolutional layers. This means that
small movements in the position of the feature in the input image will result in a different
feature map. This can happen with cropping, rotating, shifting, and other minor changes to
the input image [15]. In CNNs, the common approach to solving this problem is the down-
sampling using the pooling layers [39]. The down-sampling is a reduction in the resolution
of an input signal while preserving important structural elements, without the fine details
that are not very useful for the task. The pooling layers are used to reduce the dimensions
of the feature maps. Thus, it reduces the number of parameters to learn and the amount
of computation performed in the network. The pooling layer summarizes the features
present in a region of the feature map generated by a convolution layer. Therefore, further
operations are performed on summarized features instead of precisely positioned features
generated by the convolution layer. This makes the model more robust to variations in the
position of the features in the input image.

In CNNs, the most used pooling function is Max Pooling, which calculates the max-
imum value for each patch on the feature map. But other pooling function exist, like
Average Pooling, which calculates the average value for each patch on the feature map.
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Our final CNN model, called CNN-BQA has 10 layers: four convolutional layers
with 128, 256, 128, and 64 channels, respectively; four max pooling layers; and two fully
connected layers with 1024 and 512 neurons, respectively. Finally, a output layer with one
neuron is computed to give the final score of the image.

3. Construction of Prediction Models

In the feature extraction phase, 88 features were extracted in the images. These features
are used to construct the prediction models used to evaluate the quality of images. In our
case, two processes have been proposed to evaluate the image quality:

• The Direct Learning Blind visual Quality Assessment method (DLBQA), in which
machine learning methods are directly applied overall set of selected features for
training, and producing the final models.

• Indirect Learning Blind visual Quality Assessment method (ILBQA), in which ML
methods are applied to the four produced intermediary metrics to construct the
final model. The ILBQA process requires two training phases: the first is used
to merge the independent features of each class in order to generate the adequate
intermediary metrics, while the task of the second training is to derive the final IQA
model. The inputs of the produced model are the four produced intermediary metrics,
and the output is the estimated quality score of the input image.

3.1. Remove Superfluous Features

Having extracted the 88 features on the images, the next step consists of removing the
superfluous features, which not add any useful information for the construction of final
IQA models. The main type of superfluous features consists of strongly correlated features.

The strongly correlated features give approximately the same information, and this
redundancy may cause overfitting problem in the estimation process of the model pa-
rameters, and can also produce uselessly complex final models. The proposed way in
this paper in order to avoid these problems is to remove the strongly correlated features.
The suppression of features is based on the following idea: “if there are two strongly
correlated features in the set of extracted features, with a mutual correlation greater than a
predefined threshold, we remove the one that has the least correlation with the subjective
score without significant loss of information”. This reduction process is clearly described
in Figure 3, which takes as input the set of extracted features, and produces the set of
superfluous features.

The features contained in the output vector of this algorithm are removed from the list
of those to be used in the rest of the work. In our use case, we took 0.9 (thres = 90%) as
the threshold of mutual correlation between two features. This implies that for any mutual
correlation between 2 features higher than 0.9, one of the two features concerned must
be removed. With this threshold, the output vector contains 42 features to remove from
the initial extracted features list. At the end of this step, 42 features have been found as
superfluous features; yielding 46 features are saved for study.

3.2. Direct Process (DLBQA)

In the direct process, the whole set of 46 selected features is used by only one train-
ing phase to produce the final quality assessment model. The produced models have
been called Direct Learning Blind visual Quality Assessment index based on Machine
Learning (DLBQA-ML). Different machine learning methods have been used to con-
struct assessment models. These include methods based on artificial neural networks
(DLBQA-ANN), polynomial Nonlinear Regression (DLBQA-NLR), Support Vector Ma-
chine (DLBQA-SVM), Decision Tree (DLBQA-DT), and Fuzzy Logic (DLBQA-FL). This
different machine learning methods have been presented in [11,40]

Table 4 resumes the results using different correlation scores on the test data by
the DLBQA-ML models produced using different machine learning methods, on the
TID2013 [41,42], LIVE [8,43,44], and LIVE challenge [45,46] image databases.
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Figure 3. Flow diagram for selection of strongly correlated features to remove.
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Table 4. Correlation score of MOS vs. estimated image quality of different image databases using
different ML methods for DLBQA.

DB ANN SVM DT FL

PLCC 0.871 0.899 0.878 0.786
TID SRCC 0.859 0.883 0.862 0.751

dCor 0.850 0.882 0.854 0.762

PLCC 0.947 0.960 0.962 0.927
LIVE SRCC 0.946 0.958 0.960 0.936

dCor 0.939 0.950 0.954 0.927

PLCC 0.627 0.801 0.741 0.673
NLC SRCC 0.566 0.774 0.739 0.613

dCor 0.596 0.779 0.732 0.630

These results show that the DLBQA based on support vector machine (SVM) and
decision tree (DT) methods provide the best models for predicting image quality from the
different image quality databases.

3.3. Indirect Process (ILBQA)

As the number of selected features is too big (46), the indirect process devises the
training phase into three steps:

• The first step, as mentioned in the previous section, is to distribute the features into
independent classes, depending on the axes of the extracted features.

• The next step uses machine learning methods to merge the features of each class in
order to generate an appropriate intermediary metrics. Then, the pool process has
been carried out using different ML methods to create intermediary metrics IM_NSS,
IM_GM, IM_LOG, and IM_SSE.

• The third step consists of using the produced intermediary metrics to construct final
model and to derive the quality score estimators.

3.3.1. Construction of Intermediate Models

Having removed superfluous features, the next step consists of grouping the selected
features into a set of classes. The produced classes are based on four principal axes:

• Natural Scene Statistic in the spatial domain (NSS) with 14 extracted features;
• Gradient Magnitude (GM) with 13 extracted features;
• Laplacian of Gaussian (LOG) with 11 extracted features;
• Spatial and Spectral Entropies (SSE) with 8 extracted features.

Each produced class is used to construct one intermediary metric. In each produced
class, the features have been merged to generate the appropriate intermediary metrics.
The pool process has been carried out, using different machine learning methods.

Table 5 compares the result of applying four ML methods (fuzzy logic, support vector
machine, decision tree, and artificial neural network) in order to build the intermediary
metrics, using the feature classes. The comparison is represented by Spearman’s correlation
score between the produced intermediary metrics and the subjective scores give in different
image databases.

The selection of the adequate ML method is determined by studying Brownian correla-
tions between the produced intermediary metrics and the subjective scores in multivariate
space as shown in Table 6.

The main remark extracts on this Table 6 is that the decision tree (DT) ML method
produces the best results on all the studied image databases. Thus, the decision tree method
has been used as the machine learning method to learn the intermediary metrics.
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Table 5. Spearman’s correlation between intermediary metrics and MOS for different image databases.

DB IM_ ANN SVM DT FL

NSS 0.647 0.703 0.842 0.615
GM 0.697 0.597 0.849 0.629

TID LOG 0.547 0.463 0.780 0.498
SSE 0.623 0.865 0.856 0.431

NSS 0.931 0.939 0.930 0.915
GM 0.946 0.924 0.954 0.940

LIVE LOG 0.942 0.928 0.954 0.937
SSE 0.868 0.954 0.937 0.632

NSS 0.603 0.618 0.717 0.569
GM 0.441 0.488 0.685 0.499

NLC LOG 0.527 0.529 0.741 0.552
SSE 0.444 0.763 0.683 0.440

Table 6. Brownian’s distance between the group of intermediary metrics and MOS.

dCor TID2013 LIVE Live Challenge

ANN 0.745 0.951 0.632
SVM 0.835 0.957 0.772
DT 0.907 0.969 0.823
FL 0.691 0.937 0.634

3.3.2. Construction of Final Indirect Prediction Model

Once the intermediary metrics are built, the next step in the indirect process is the con-
struction of final prediction model using these intermediary metrics. The final evaluation
index constructed consists of several models: four models of construction of the intermedi-
ary metrics, and a model of evaluation of the final score using the intermediary metrics. As
the intermediary metrics have been constructed in the previous section, all that remains is
the construction of the final prediction model, taking as inputs these intermediary metrics
previously evaluated. These models are built using different machine learning methods.

Table 7 resumes the prediction performance of ILBQA-based image quality models
trained on TID213, LIVE, and Live challenge image databases. The design of IQA models
consists here of two training steps. The first step uses the decision tree approach in order to
merge the quality features into four intermediary metrics. Moreover, the next training step
is used different ML approaches (DT, FL, SVM, and ANN) for predicting quality score
from the corresponding set of intermediary metrics.

These results show that the ILBQA based on decision tree (DT) methods provide the
best models for predicting image quality from the different image quality databases.

Table 7. Correlation score of MOS vs. estimated image quality of different image databases using
different ML methods for ILBQA.

DB ANN SVM DT FL

PLCC 0.925 0.936 0.954 0.924
TID SRCC 0.912 0.924 0.946 0.913

dCor 0.908 0.919 0.942 0.908

PLCC 0.971 0.978 0.982 0.970
LIVE SRCC 0.970 0.977 0.979 0.968

dCor 0.961 0.971 0.976 0.961

PLCC 0.818 0.815 0.894 0.826
NLC SRCC 0.777 0.848 0.877 0.793

dCor 0.792 0.851 0.879 0.802
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4. Experimental Results

Having extracted and removed the superfluous features, the next step is to construct
machine learning models, which automatically predict the perceived quality of an input
image without a need to reference image. The construction process of the objective NR-IQA
block essentially consists of training (with α% of data) and validation phases. During the
training phase, machine learning algorithms are applied to create an appropriate mapping
model that relates the features extracted from an image to subjective score provided in the
image database. While the validation phase is used to estimate how well the trained ML
models predict the perceived image quality, and to compare the accuracy and robustness of
the different ML methods.

The Monte Carlo Cross-Validation (MCCV) method [47] is also applied to compare
and confirm the accuracy of the obtained results, as follows:

• First, split the dataset with a fixed fraction (α%) into training and validation set, where
α% of the samples are randomly assigned to the training process in order to design a
model, and the remaining samples are used for assessing the predictive accuracy of
the model.

• Then, the first step is repeated k times.
• Finally, the correlation scores are averaged over k.

In this paper, α% = 70% and k = 1000.

4.1. Results Comparison

Having built our evaluation models, the next step is the validation of these models,
and the comparison of the results produced with those produced by the state-of-the-art
models. The validation process is done using Monte Carlo Cross-Validation (MCCV) [47].

In Figures 4–6, different state-of-the-art no-reference IQA methods have been studied
and compared with the two models design in this paper (DLBQA and ILBQA). These blind
IQA methods consist of BRISQUE [28] that uses NSS in the spatial domain, GMLOGQA [29]
that uses the gradient magnitude (GM) and the Laplacian of Gaussian (LOG) to make a
predictor for image quality, and SSEQ [30] based on the spatial and spectral entropies. These
figures depict the box-plot of Brownian’s distance in the MCCV phase, of different no-
reference IQA methods, trained on TID2013, LIVE, and LIVE Challenge image databases,
respectively. They also show that the BIQA model that obtains the best prediction accuracy
(with the highest mean and the smallest standard deviation) is designed by the proposed
method ILBQA with two training steps.

BRISQUE GMLOGQA SSEQ DLBQA ILBQA
NR-IQA Methods
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Figure 4. Performance comparison for different NR-IQA methods trained on TID2013.
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Figure 5. Performance comparison for different NR-IQA methods trained on LIVE.
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Figure 6. Performance comparison for different NR-IQA methods trained on LIVE Challenge.

We compare the proposed models (DLBQA, ILBQA, and CNN-BQA) with six feature
extraction based BIQA methods, and five CNN-based methods, on three popular bench-
mark IQA databases. The results are listed in Table 8. In the table, the best two SROCC
and PLCC are highlighted in bold. The performances are the correlations between the
subjective score (MOS/DMOS) take in image databases, and the evaluated objective scores
given by the different studied NR-IQA methods in cross-validation phase with k = 1000.
The main remark is that for every image databases (TID2013, LIVE, and LIVE Challenge),
the proposed DLBQA and ILBQA methods perform the best results.

Table 8. Performance comparison on three benchmark IQA databases.

Methods
LIVE TID2013 LIVE-CH

SRCC PLCC SRCC PLCC SRCC PLCC

DIQaM [33] 0.960 0.972 0.835 0.855 0.606 0.601
BIECON [48] 0.958 0.960 0.717 0.762 0.595 0.613

DIQA [32] 0.975 0.977 0.825 0.850 0.703 0.704
DB-CNN [49] 0.968 0.971 0.816 0.865 0.851 0.869
AIGQA [16] 0.960 0.957 0.871 0.893 0.751 0.761

CNN-BQA(proposed) 0.961 0.966 0.881 0.876 0.772 0.786

DIIVINE [26] 0.925 0.923 0.654 0.549 0.546 0.568
BRISQUE [28] 0.939 0.942 0.573 0.651 0.607 0.585
ILNIQE [27] 0.902 0.865 0.519 0.640 0.430 0.510
FRIQUE [31] 0.948 0.962 0.669 0.704 0.720 0.720

SSEQ [30] 0.941 0.943 0.883 0.886 0.772 0.807
GMLOGQA [29] 0.956 0.970 0.883 0.877 0.782 0.805

DLBQA(proposed) 0.951 0.957 0.892 0.893 0.779 0.862
ILBQA (proposed) 0.977 0.983 0.934 0.942 0.876 0.883
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4.2. Computational Complexity

In many image quality assessment applications, the computational complexity is an
important factor when evaluating the produced BIQA models. In this paper, the feature
extraction is based on four principal axes. Table 9 presents the percentage of time spent by
each feature extraction axes.

The run-time of the produced model is compared to the run-times of five other
good NR-IQA indexes: BLIINDS-II [50], DIIVINE [26], BRISQUE [28,36], GMLOGQA [29],
and SSEQ [30]. Table 10 presents the estimated run-time for an execution on CPU, in sec-
ond(s), of the different methods, for a BMP image with resolution 512× 768, on MATLAB,
using a computer with 16 GB RAM and Intel Xeon dual-core CPU, 1.70 GHz for each core.
We observe that the run-time of the proposed method (ILBQA) is significantly inferior to
DIIVINE and BLIIND-I I run-time, approximately equal to SSEQ run-time, and superior
to BRISQUE and GMLOGQA run-time.

Table 9. Percentage of time consumed by each feature extraction axes.

Axes Percentage of Time (%)

NSS 7.98
GM 3.10
LOG 3.10
SSE 85.77

Table 10. Comparison of time complexity for different BIQA approaches.

NR-IQA Time (second)

BLIIND-II 76.12
DIIVINE 25.40
BRISQUE 0.168

GMLOGQA 0.131
SSEQ 1.807

ILBQA 2.126

5. Implementation Architectures and Results

After the construction of the no-reference image quality evaluation models, through
the MATLAB tool, the next step in our process is the implementation of the produced
models on an FPGA platform. The produced IP-Core can be integrated into the output
of an image sensor to evaluate the quality of the produced images. The implemented
index is the indirect process (ILBQA). This implementation is done with the Xilinx Vi-
vado and Vivado HLS and is implemented on the Xilinx Virtex 7 (VC707) and Zynq 7000
(XC7Z020) platforms.

The work in [11] introduces this phase of implementation of our proposed process on
the objective no-reference image quality assessment. The general implementation process
consists of the following.

• HLS implementation of the block IP, allowing the encapsulation of the designed
models, through the Vivado HLS tools, in C/C++ codes.

• Integration of the produced IP-cores in the overall design at RTL, through the Vivado
tool, in VHDL/Verilog codes.

• Integration on Xilinx’s Virtex 7 (VC707) and Zynq 7000 (XC7Z020) FPGA boards,
and evaluation of the obtained results on several test images.

5.1. HLS Implementation of the IP-Cores

The implementation of the ILBQA models in HLS enabled the construction of five
IP-cores. This IP-Cores are divided into three groups, leading to the evaluation of the
objective score of an image taken at the input of the process. The IP-Cores in each group
can run in parallel, but the inputs in each group depend on the outputs of the previous
group. The three proposed groups consist of feature extraction, construction of intermediate
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metrics based on decision tree models, and evaluation of the objective score from the model
based on fuzzy logic, taking as input the intermediate metrics. The layered architecture of
the produced IP-cores is presented in Figure 7.

• Feature extraction: the entries of this group are, the image whose quality is sought
to be evaluated, as an AXI-stream, and the dimensions of this input image (row and
column sizes as an integer). It contains three IP-cores: NSS_Core which extracts
14 features on the image; GM-LOG_Core consisting of extraction of 13 and 11 features
on GM and LoG axes, respectively; and SSE_Core which extracts 08 features.

• Production of the intermediary metrics: This group contains only one IP-core, the deci-
sion tree (DT) IP-core. The DT_Core uses the features extracted from the input image
and generates the intermediary metrics in floating-point format.

• Production of the estimated score of the image using the intermediary metrics: this
group also has only one IP-core, fuzzy logic IP-core (FL_Core). This IP-core takes
as input the four intermediary metrics produced by the DT_Core and produces the
estimated image quality score of the input image, in floating-point format.

Table 11 presents the estimation of performances and utilization at the synthesis level
mapped to Xilinx Virtex 7 (VC707) FPGA platform, for the different produced IP-cores,
and the global process. These results are produced by an image with a resolution of
512× 768, and for a clock cycle equal to 25 ns (a frequency equal to 40 Mhz).

Figure 7. Implementation architecture of the ILBQA on an FPGA platform.

Table 11. Device performance utilization estimates in HLS synthesis phase.

NSS GM-LoG SSE DT FL ILBQA

clk est. (ns) 21.79 21.84 21.84 11.31 16.82 21.85
Min clk. 79,302 1648 570 2 42 80,370
Max clk. 9,400,263 2,909,751 25,231,749 17 43 84,720,454
BRAM 1235 1 052 554 0 0 2328

DSP 394 436 141 0 96 1136
FF 59,097 69,705 20,872 10,936 5245 167,801

LUT 181,656 247,775 50,903 128,122 11,779 497,622

5.2. SDK Implementation and Results

The global design containing our models has been implemented on an FPGA board,
then a program is implemented in the micro-controller (MicroBlaze) to evaluate the quality
of the image thus received through the model implemented on FPGA. This program
also return the objective score evaluated by the FPGA implemented models. The images
are retrieved in “AXI-Stream” format and transmitted on the FPGA board through an
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extension using the HDMI protocol. The program is written in C/C++ codes, and passed
to micro-controller via the JTAG interface of the FPGA board, thanks to Xilinx SDK tool.

120 images distorted by 24 types of distortion, from the TID2013 image database [41,42]
were evaluated by the produced models on the FPGA platform. The FPGA implementa-
tion results were compared to the experimental results under MATLAB and also to the
subjective scores taken the image database.

Figure 8 presents the comparison between MATLAB results in the X-axis and FPGA
implementation results in the Y-axis, for the ILBQA index. While Figure 9 presents the
comparison between the subjective scores in the X-axis, and MATLAB results (in blue)
and FPGA implementation results (in red) in the Y-axis. These figures also present the
correlation scores between the scores in the X-axis and the produced objective scores in the
Y-axis on each graph.
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Figure 8. Comparison between MATLAB and FPGA implemented scores.
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FPGA : MSE = 0.3014 ; PLCC = 0.8425 ; SRCC = 0.8021 ; KRCC = 0.6279 ; dCor = 0.7967

FPGA estimated image quality
MATLAB estimated image quality

Figure 9. Comparison between MOS, MATLAB, and FPGA implemented scores.

The difference between the image quality scores estimated under MATLAB and those
estimated on FPGA is caused by several factors, including the following.

• Spreading 32-bit floating-point truncation errors in the FPGA system;
• The difference between the results of the basic functions of the MATLAB and Vivado

HLS tools. For example, the conversion functions in gray-scale, or the resizing func-
tions using the bi-cubic interpolation, give slightly different results on MATLAB and
Vivado HLS. These small errors are propagated throughout the evaluations, to finally
cause the differences between the estimated scores shown in the previous figures.
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5.3. Visual Assessment

Our NR-IQA process has been used in a control loop process [51] to assess the quality
of an image and decide if that image needs correction. Gaussian noise is inserted in a
reference image, resulting in distorted image illustrated in Figure 10a, with a very low
ILBQA score like show in the figure. Figure 10b–d shows the corrected version of the
distorted image presented in the graph (a), by the control loop process based on the image
quality assessment. Each graph also presents the PSNR between the reference image
and the corrected image, as well as the blind image quality (ILBQA) score of each image.
The graphs (b) and (c) of the Figure 10 show the intermediary corrected images, while the
graph (d) presents the best-corrected image by the process.

(a) Distorted image; PSNR= 23.07dB; ILBQA = 0.0828 (b) Corrected by Cho; PSNR= 30.23dB; ILBQA = 0.2351

(d) Corrected by CtrlLoop with 8 iterations; PSNR= 43.61dB;
ILBQA = 0.8227

(c) Corrected by CtrlLoop with 2 iterations; PSNR= 32.30dB;
ILBQA = 0.5038

Figure 10. Example of using ILBQA index in a control loop process.

6. Conclusions

This paper has presented the construction of models for objective assessment of
perceived visual quality. The proposed models use a non-distortion specific no-reference
image quality assessment methods. The objective IQA is computed by combining the most
significant image features extracted from natural scene statistics (NSS) in the spatial domain,
gradient magnitude (GM), Laplacian of Gaussian (LoG), and spectral and spatial entropies
(SSE). In our proposal, the training phase has been performed using DLBQA and ILBQA
process. The DLBQA index evaluates the image quality using all the selected features in one
training phase. While the ILBQA index uses two training phases. The first phase consists
of training the intermediary metrics using the feature classes based on four extraction
axes, and the second training phase evaluates the image quality using the intermediary
metrics. Different machine learning methods were used to assess image quality and
their performance was compared. The proposed methods consisting of artificial neural
network (ANN), nonlinear polynomial regression (NLR), decision tree (DT), support
vector machine (SVM), and fuzzy logic (FL) are discussed and compared. Both the stability
and the robustness of designed models are evaluated using a variant of Monte Carlo cross-
validation (MCCV) with 1000 randomly chosen validation image subsets. The accuracy



Sensors 2022, 22, 175 18 of 20

of the produced models has been compared to the results produced by other state-of-the-
art NR-IQA methods. Implementation results on MATLAB and on the FPGA platform
demonstrated the best performances for ILBQA proposed in this paper, which uses two
training phases in the modeling process. One of the future work based on this article is
to present how to use our image quality assessment indexes in the control loop process
for self-healing of the image sensor. In addition, the implementation on an ASIC and the
implementation of the generated IP-core in image sensors.
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