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Abstract: Modern adaptive radars can switch work modes to perform various missions and si-
multaneously use pulse parameter agility in each mode to improve survivability, which leads to a
multiplicative increase in the decision-making complexity and declining performance of the existing
jamming methods. In this paper, a two-level jamming decision-making framework is developed,
based on which a dual Q-learning (DQL) model is proposed to optimize the jamming strategy and a
dynamic method for jamming effectiveness evaluation is designed to update the model. Specifically,
the jamming procedure is modeled as a finite Markov decision process. On this basis, the high-
dimensional jamming action space is disassembled into two low-dimensional subspaces containing
jamming mode and pulse parameters respectively, then two specialized Q-learning models with
interaction are built to obtain the optimal solution. Moreover, the jamming effectiveness is evaluated
through indicator vector distance measuring to acquire the feedback for the DQL model, where
indicators are dynamically weighted to adapt to the environment. The experiments demonstrate the
advantage of the proposed method in learning radar joint strategy of mode switching and parameter
agility, shown as improving the average jamming-to-signal radio (JSR) by 4.05% while reducing the
convergence time by 34.94% compared with the normal Q-learning method.

Keywords: adaptive radar; jamming strategy optimizing; reinforcement learning; Q-learning; jamming
effectiveness evaluation

1. Introduction

In radar jamming, accurate decision-making is an important prerequisite for effective
jamming. For single-mode radar with only a few fixed parameter combinations, the jam-
ming decision-making based on template matching can be efficient [1]. Nowadays, with the
improvement of electronic technology, modern radars tend to be adaptive. Adaptive radars
can perform various tasks through automatic work mode switching, where work modes
vary with different radars. Take a ground-based radar with search, tracking, and recog-
nition modes as an example: The radar initially scans the entire airspace at the search
mode, and switches to the tracking mode when a mission-related target is detected, then
transitions to the recognition mode after the target is confirmed. If the echo signal quality
drops or the target is lost due to the jamming, the radar will take anti-jamming measures
autonomously or return to the search mode. For phased array radars with modes named
“range while scan” (RWS), “track and search” (TAS), “Single Target Track” (STT), etc.,
the adaptive switching strategy is more complicated. Additionally, in each work mode,
the pulse parameters can be changed in real time to improve radar’s performance or
survivability based on environment detecting [2,3]. In such context, the effectiveness of
conventional jamming decision-making methods is decreasing because of a large shortage
of prior knowledge about the radars [4]. Therefore, it is urgently necessary to develop radar
jamming technology.

Inspired by the cognitive radio, the application of intelligent algorithms in radar
confrontation became possible [1,5–7]. To solve the problem of the low rate of template
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matching under the incomplete jamming rule library condition, a jamming decision-making
method based on clustering and resampling–support vector machine is proposed in [1].
In [5], a discrete dynamic Bayesian network is established to guide decision-making in
self-defense electronic jamming. In [6], an improved chaos genetic algorithm is applied to
the allocation of interference strategy. In [7], a particle swarm optimization algorithm is
applied to solving optimal jamming power allocation strategy aiming at cognitive MIMO
radar. However, these traditional machine learning methods often require large amounts of
tagged radar data acquired in advance, which are difficult to be obtained in actual scenarios.

Up to now, there have been many works on the application of reinforcement learning
(RL) in communication jamming and anti-jamming [8–12], providing new ideas for radar
confrontation. RL is a type of machine learning technology, where an agent learns from
interacting with the environment and takes maximizing the feedback from the environment
as its learning goal [13]. In [14], the framework of intelligent jamming based on RL is
described, where the cognitive jammer and the radar are respectively regarded as the agent
and the environment. In [4], the conversion between different radar working states is
modeled, where an RL model is trained to choose the jamming mode against each radar
state. A frequency-agile radar is considered in [15], and a jamming frequency selection
algorithm based on Q-learning is proposed to solve the optimal frequency for each jamming
pulse. In [16–19], other methods based on RL are used to optimize the strategy of combating
jamming for radar. Compared with the traditional machine learning methods mentioned
above, the agent in RL can learn with no tagged data needed, which makes it more adaptable
to the unknown environment. The jamming system equipped with RL can obtain training
samples during the jamming process, and update the jamming strategy dynamically based
on the change of the radar signal.

However, in the existing work of jamming decision-making based on RL, two common
measures of the adaptive radar including mode switching and parameter agility have
not been jointly considered. For example, [14] focuses on macro-level modeling of radar
jamming, abstracting radar modes into the environment state in RL. What is not noticed is
that the jamming effectiveness will be weakened due to the agile actions such as frequency
agility [16] and dynamic pulse repetition interval [20] taken by radar in each mode. In [15],
the authors aim at the frequency hopping of the radar without considering multiple work
modes. According to the authors of [3], if only static behavior of radar is considered, such
as a single work mode, it is easy to result in a subjective or local optimal jamming strategy.
Moreover, when facing the adaptive radar with multi-modes and the ability of parameter
agility, a large jamming action space is usually needed to ensure that the correct actions
are included, which greatly increases the complexity of jamming parameters generating.
As high complexity will lead to a long convergence time, the jammer can hardly find the
optimal jamming strategy in a limited time, which can be fatal to the protected target.

To overcome the problems above, a two-level jamming decision-making framework
is developed in this paper. On this basis, a dual Q-learning (DQL) model is proposed to
obtain the optimal jamming strategy. Specifically, the jamming decision-making process is
disassembled into two levels, where the jamming mode is decided in the first level with the
outer Q-learning, and the pulse parameters for the decided jamming mode are selected in
the second level with the inner Q-learning. This structure greatly reduces the dimension
of the action space of the jammer. With smaller action space and fewer parameters to
be learned, it can effectively avoid falling into the local optimum while shortening the
convergence time.

Another issue needed to be considered is how to express the feedback from the envi-
ronment of RL in the jamming decision-making scene. Different from the previous methods
where the feedback is statically assigned through the experience matrix, in this paper, we
evaluate the effectiveness of jamming as the feedback of the DQL model. On jamming
effectiveness evaluation, currently most of the research is based on data collected from
the radar side which is impractical due to the non-cooperative nature of the battlefield.
However, there are only a few studies on the evaluation from the jamming side. In [21],
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the accumulated amplitude extracted from signals is chosen as the characteristic statistic
to evaluate the jamming effectiveness. In [22], the authors advise using the change of the
radar threat level as the basis for the evaluation. In [23], an evaluation method based on
feature space weighting in non-cooperative scenes is proposed, where the weight values of
evaluation indicators are solved with offline simulated radar data. Considering the vari-
ability of the indicator’s contribution to the evaluation result, in this paper, the indicators’
weight values are calculated with their entropy and are updated constantly based on the
real-time radar data. With the dynamic weights, the jamming effectiveness is evaluated
through measuring the distance between the indicator vectors before and after jamming.
The evaluation result is served as the feedback of the environment, based on which the
DQL model updates dynamically.

The main contributions of this paper are summarized as follows:

• An RL model named DQL is constructed to guide the jamming decision-making
against adaptive radars, where the jamming mode and jamming parameters are
hierarchically selected and jointly optimized. Because of the reduced dimensionality
of action space, the globally optimal solution can easily be found with a shorter
convergence time.

• A new jamming effectiveness evaluation method based on indicator vector space is
proposed to serve the feedback to the DQL model, which effectively overcomes the
dependence on subjective experience when the model updates. Additionally, in view
of the variable electromagnetic environment, the indicators’ weights are calculated
dynamically with the real-time radar data, to make the evaluation result more credible.

The rest of this paper is organized as follows. The system model is introduced and the
problem of jamming strategy optimization is formulated in Section 2. The proposed DQL
model and jamming effectiveness evaluation method are explained in Section 3. The details
of the simulations and the analysis of results are shown in Section 4, followed by the
conclusion presented in Section 5.

2. System Model and Problem Formulation
2.1. System Model

Consider a self-defense electronic jamming scenario, where each target is equipped
with a cognitive jammer, shown in Figure 1. Taking a radar and a jammer into account,
the jammer devotes to optimizing jamming effectiveness by learning the strategy of
the radar, in order to protect the target from detection. The adaptive radar has I work
modes such as search, tracking, and guidance, denoted as {Mr1 , Mr2 , ..., MrI}. The work
modes are switched adaptively between two adjacent beam dwell periods according to
the signal-to-jamming radio (SJR). For different modes, the radar changes signal param-
eters pulse by pulse according to different rules. Similarly, the jammer has J jamming
modes such as frequency-spot jamming, blocking jamming, and swept jamming, denoted
as {Mj1 , Mj2 , . . . , MjJ}. For different jamming modes, the jammer can select parameters for
each jamming pulse.

To simplify the analysis, we regard the target as a point target with radar cross-section
(RCS) σ. Assume the radar would be jammed in each beam dwell period, which is called a
jamming round in this paper. The number of radar pulses in a jamming round depends on
the beam dwell time and the pulse repetition interval (PRI). For the nth radar pulse in a
jamming round, the carrier frequency (CF) is f (n)r , the bandwidth (BW) is B(n)

r , the PRI is
pri(n)r which represents the time between the rising edge of (n− 1)th and nth radar pulse,
the pulse width (PW) is pw(n)

r and the transmission power is P(n)
r . At each pulse, the jammer

attempts to align the jamming signal with the radar signal in both time and frequency
domains. For the nth jammer pulse, the CF is f (n)j , the BW is B(n)

j , the pulse delay time is

dt(n)j which represents the time from receiving the n-1th radar pulse to transmitting next

jamming pulse, the PW is pw(n)
j and the transmitting power is P(n)

j . In addition, the distance
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from the radar to the target is D, and the wavelength of the radar is λ. The antenna gain of
the radar and the jammer is Gr and Gj. The transmission loss of the radar and jamming
signal is Lr and Lj. The loss coefficient of polarization matching between the jamming
signal and the radar signal is µ. Based on the above definitions, the power of nth echo at
the radar receiver can be expressed as

P(n)
rs =

P(n)
r G2

r σλ2

(4π)3D4Lr
(1)

The power of nth jamming pulse at the radar receiver is

P(n)
rj =

P(n)
j GjGrλ2µ

(4π)2D2Lj
(2)

Radar

Taget equipped with 

a jammer

Radar Signal

Jamming Signal

Radar detection range before jamming

Radar detection range after jamming

The reduction of radar 

detection range

Figure 1. The self-defense electronic jamming scenario: through effective jamming, the jammer can
shorten the detection range of the radar to protect the target.

Introducing effective jamming coefficient to amend the calculation formula of SJR,
the average SJR for nth radar pulse SJR(n) is calculated as:

SJR(n) =
P(n)

rs

P(n)
rj

· 1

X(n)
f

· 1

X(n)
t

=
P(n)

r GrσLj

P(n)
j Gjµ4πD2LrX(n)

f X(n)
t

, (3)

where X(n)
f and X(n)

t are the effective jamming coefficients in frequency domain and time
domain respectively, expressed as:

X(n)
f =

∆ f (n)

B(n)
j

· sgn(∆ f (n)), (4)

X(n)
t =

∆t(n)

pw(n)
j

· sgn(∆t(n)), (5)

where ∆ f (n) and ∆t(n) are the overlapping rates in frequency domain and time domain
respectively, defined as:

∆ f (n) = min( f (n)j + B(n)
j /2, f (n)r + B(n)

r /2)−max( f (n)j − B(n)
j /2, f (n)r − B(n)

r /2), (6)

∆t(n) = min(dt(n)j + pw(n)
j , pri(n)r + pw(n)

r )−max(dt(n)j , pri(n)r ), (7)
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where sgn(x) = 1 if x > 0, otherwise sgn(x) = −1. To reflect the performance of the
algorithm more intuitively, we calculate jamming-to-signal radio (JSR) in the simulations to
measure the jamming effect, where JSR(n) = 1/SJR(n).

2.2. Problem Formulation

The jamming problem can be modeled as a finite Markov decision process (MDP) [24],
expressed as a quaternion {S ,A,P ,R}. S is a finite set of radar states, where state s ∈ S
is determined by the radar mode and radar pulse parameters. A is a finite set of jammer
actions, where action a ∈ A is defined by the jamming mode and jamming pulse parame-
ters. P(s(n+1)|s(n), a(n)) is the transition probability describing how the current state s(n)

transfers to next state s(n+1) when the jammer takes action a(n). R is the immediate reward
after each action is taken.

Reinforcement learning has been proved to be an effective way to solve MDP problems,
the key of which is to find the optimal policy π : S → A to determine which action should
be taken at each state. To estimate the effect of a policy, the state-value function for policy
π is introduced as:

vπ(s) = Eπ

[
∞

∑
i=0

γiR(n+i+1)|s(n) = s

]
, (8)

where Eπ [·] stands for expected value with the policy π given. γ ∈ (0, 1] is the discount
rate of the reward R, which means that long-term reward is considered and its influence
decreases with time. Then, the optimal policy π∗ we aim to find is:

π∗ = arg max
π

vπ(s), ∀s ∈ S (9)

3. Proposed Jamming Scheme Based on DQL Model

To interfere the adaptive radar with mode switching and parameter agility, we propose
an RL model named dual Q-learning to optimize jamming strategy, as shown in Figure 2.
The jammer’s action space is disassembled into two subspaces containing jamming mode
and pulse parameters respectively to reduce the dimensionality, based on which the jam-
ming procedure can be divided into two levels. The jamming mode is determined in the
first decision-making level, and specific parameters in frequency and time domain are
selected in the second level according to the jamming mode. Two interactive Q-learning
models are constructed to find the global optimal solution, and a dynamic method for
jamming effectiveness evaluation is designed to obtain the feedback of the DQL model.
The interaction between the two levels can be described as: the jamming mode determined
in the first level has a guiding effect on the selection in the second level, and the pulse
parameters selected in the second level directly determine the SJR at the radar receiver
and affect the mode switching of the radar, thereby affecting the next input state of the
first level.

3.1. Jamming Decision-Making through DQL Model

In the jamming procedure based on the DQL model mentioned above, the outer Q-
learning and the inner Q-learning model are trained simultaneously to solve the optimal
jamming strategy.

3.1.1. Outer Q-Learning

The outer Q-learning is modeled to acquire the jamming mode in the first decision-
making level, where the radar work mode and the jamming mode are regarded as the
environment state and the action of the agent, respectively. When obtaining radar work
mode M(k)

r at time k, the jammer chooses jamming mode M(k)
j as:

M(k)
j = arg max

Mj

Qo

(
M(k)

r , Mj

)
(10)
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Qo

(
M(k)

r , M(k)
j

)
in the outer Q table is updated when the new radar mode M(k+1)

r is
obtained at time (k + 1) according to the following rule:

Qo

(
M(k)

r , M(k)
j

)
← Qo

(
M(k)

r , M(k)
j

)
(11)

+ α

[
R(k+1)

o + γ max
Mj

Qo

(
M(k+1)

r , Mj

)
−Qo

(
M(k)

r , M(k)
j

)]
,

where α ∈ (0, 1] is the learning rate of the outer Q-learning, which signifies the updating
stride of Q value. R(k+1)

o is the reward calculated at time (k + 1) for the outer Q-learning,
which depends on the evaluation result of jamming effectiveness according to radar mode
switching. The evaluation method will be introduced in the next section.

Radar pulse 

parameter 

estimation

Outer Q-learning

Jamming signal generation

Radar work 

mode detection

Dual Q-learning Model

Jamming effect 

evaluation

Effective jamming 

coefficient calculation Inner Q-learning

 Jamming pulse parameter vector
( 1)na +

( 1) ( 1),n n

j jdt pw+ +( 1) ( 1),n n

j jf B+ +

Jamming mode

Mode Q table

( )ns

Time domain 
Q table

reward

Radar work mode ( )k

rM

Frequency domain 
Q table

reward

External Electromagnetic Environment

Received nth 

radar  pulse

Transmit (n+1)th   

jamming pulse

( )n

iR

( )k

oR

Received 1~m

radar  pulse

( )k

jM

 Radar pulse 

parameter vector

Radar signal 

deinterleaving

Figure 2. Jamming decision-making based on DQL model: During a jamming round, the radar

work mode is discerned with the earliest received m radar pulses. Once a new radar mode M(k)
r is

recognized, it is sent to the outer Q-learning module. Then the jamming mode M(k)
j is chosen and map

to time domain Q table and frequency domain Q table in the inner Q-learning module. According

to M(k)
r and M(k−1)

r , the jamming effectiveness of last jamming round is evaluated, with which the
outer Q table can be updated according to Equation (11). When receiving the nth (n > m) radar pulse,
the radar pulse parameter vector s(n) is obtained through parameter estimation. Then the jamming
parameters are selected to constitute the parameter vector a(n+1), and the jamming signal will be
generated. According to s(n), the two effective jamming coefficients are evaluated, with which the
inner Q table can be updated according to Equation (13).

3.1.2. Inner Q-Learning

The inner Q-learning is modeled to solve the optimal jamming parameters in the
second decision-making level. The jamming mode selected in the first decision-making
level maps to inner Q tables in frequency and time domains. When obtaining the nth radar
pulse parameter vector s(n) = [ f (n)r , B(n)

r , pri(n)r , pw(n)
r , P(n)

r ], the jammer takes [ f (n)r , B(n)
r ]
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and [pri(n)r , pw(n)
r ] as the input states of frequency and time domain Q tables respectively,

and the jamming parameters will be chosen according to:

p(n+1)
j = arg max

pj

Qi

(
p(n)r , pj

)
, (12)

where p(n)r = [ f (n)r , B(n)
r ], p(n)j = [ f (n)j , B(n)

j ] in the frequency domain Q table, p(n)r =

[pri(n)r , pw(n)
r ], p(n)j = [dt(n)j , pw(n)

j ] in the time domain Q table. The power of jamming sig-

nal P(n+1)
j is calculated as P(n+1)

j = η · P(n)
r , where η varies with different jamming modes.

Then the jamming parameter vector a(n+1) = [ f (n+1)
j , B(n+1)

j , dt(n+1)
j , pw(n+1)

j , P(n+1)
j ] can

be constituted. After the receiving of nth radar pulse, the transmission of next jamming
pulse will start after a delay of dt(n+1)

j , aiming at the (n + 1)th radar pulse. In summary,
the jammer predicts the radar parameters one step in advance, in order to interfere the next
radar pulse in time. When the (n + 1)th radar pulse parameter vector s(n+1) is obtained,
Qi

(
p(n)r , p(n+1)

j

)
in the inner Q table is updated according to the following rule:

Qi

(
p(n)r , p(n+1)

j

)
← Qi

(
p(n)r , p(n+1)

j

)
(13)

+ α

[
R(n+1)

i + γ max
pj

Qi

(
p(n+1)

r , pj

)
−Qi

(
p(n)r , p(n+1)

j

)]
,

where R(n+1)
i is the reward of the inner Q-learning calculated with s(n+1) and a(n+1).

R(n+1)
i = X(n+1)

f for the frequency domain Q table, R(n+1)
i = X(n+1)

t for the time domain
Q table.

Both in the outer and inner Q-learning, ε-greedy policy is used to choose the jamming
mode or parameters, which is an effective way to balance the exploration and exploitation.
In this paper, we define ε = e−δ·k which decreases as the count of iterations increases, where k
represents the number of the iteration and the coefficient δ determines the decay rate. δ is set
differently for two decision-making levels: δ = δo for the outer Q-learning and δ = δi for the
inner Q-learning. Taking the outer Q-learning as an example, the jammer randomly chooses a
jamming mode with probability ε, and chooses the optimal jamming mode M(k)

j according to
Equation (10) with probability 1− ε. According to the explanation above, a jamming algorithm
based on the DQL model is proposed, and more details are shown in Algorithm 1.

The time series of learning and jamming decision-making with the DQL model is
shown in Figure 3. During a jamming round, the outer Q-learning is performed only
once at the beginning to obtain the jamming mode. Under the constraints of the jam-
ming mode, the inner Q-learning is performed in each subsequent PRI to determine the
jamming parameters.

3.2. Jamming Effectiveness Evaluation through Dynamic Measuring of Vector Distance

Jamming effectiveness evaluation is an important part of the jamming decision-making
method based on the DQL model proposed in the previous section. The evaluation result
provides the reward for the outer Q-learning. In the radar confrontation, the most intuitive
impact of effective jamming on the radar is the reduction of detection probability, which is
hard to be known from the jamming side. Therefore, the jamming effectiveness can only be
estimated according to the parameters of the radar signal received by the jammer.
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Algorithm 1: Jamming algorithm based on DQL model
(K and Nk denote the amount of jamming rounds in simulation and the total

number of pulses in the kth jamming round respectively. m represents the
number of pulses required for radar mode discerning.)

for k = 1, 2, ..., K do
Based on the radar mode discerned, choose a jamming mode M(k)

j from outer

Q table according to Equation (10) with ε− greedy policy;
Map into two inner Q tables;
if k > 1 then

Calculate l evaluation indicators of last radar mode to obtain evaluation
indicator vector x(k);

Calculate R(k)
o through Algorithm 2 with x(k) as input ;

Update Qo

(
M(k−1)

r , M(k−1)
j

)
through Equation (11);

end
for n=m+2,m+3,...,Nk do

Based on the radar pulse parameter vector, choose f (n+1)
j , B(n+1)

j , dt(n+1)
j ,

pw(n+1)
j according to Equation (12) with ε− greedy policy and calculate

P(n+1)
j to constitute jamming parameter vector a(n+1) ;

Calculate effective jamming coefficients X(n)
f and X(n)

t according to

Equation (4) and (5);

Update Qi

(
p(n−1)

r , p(n)j

)
according to (13).

end
end

Time
k k+T

文
本Radar work mode

Jammer

Radar

Receive 
radar signal

… …

文
本Jamming mode

Radar mode 
switching

文
本

… ……

文
本

Radar mode 
switching

( )k

rM
Radar work 
mode ( 1)k

rM −

Radar work 
mode ( 1)k

rM +

( )k

jM

Radar work mode 
detecting

Jamming effectiveness evaluation 
and outer Q table updating

Jamming mode 
deciding

Radar pulse parameters 
estimation

Effective jamming coefficients 
calculation and inner Q table updating

Jamming parameters 
deciding

……pri1 prim prim+2 prin … priN……pri1 prim prim+2 prin … priN ……

Figure 3. Process of learning and jamming decision making with DQL model.

To evaluate the jamming effectiveness, we firstly construct an evaluation indicator
set I = {I1, I2, ..., Il}, where each indicator is a measurable parameter of the radar signal.
When the radar is jammed, there are two possible ways for it to change its parameters. One
is to switch its work mode. For example, the low SNR causes the radar to lose track of the
target, so it shifts from the tracking mode to the search mode. The other possible way is that
the radar takes anti-jamming measures in order to improve its performance. For instance,
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after receiving suppressive jamming, the radar increases the bandwidth to improve its
range resolution. Usually, the indicators that can characterize the work mode switching
of the radar include beam dwell time, PRI, etc, and the indicators that can characterize
the anti-jamming measures taken by the radar include BW, PW, transmitting power, range
and speed of frequency agility, etc. The indicators of these two aspects are considered to
construct the evaluation indicator set I .

Based on I , a method of vector distance measuring is proposed to calculate jamming
effectiveness, where the weight values of evaluation indicators are updated dynamically
during the confrontation process. More details are explained as follows.

3.2.1. The Jamming Effectiveness Evaluation Method Based on Vector Distance Measuring

We construct a l-dimensional vector space V l based on I , where each dimension
represents an evaluation indicator. To explain clearly, Figure 4 shows a 3-dimensional
vector space of three indicators. As shown, for the same radar state, the evaluation indicator
vectors are often clustered together. When the radar switches its working mode or takes
anti-jamming measures, the evaluation indicator vector will shift in space. The greater
the offset along the increasing direction of the coordinate axes is, the more effective the
jamming is. Therefore, the jamming efficiency can be evaluated by measuring the shift of
the evaluation indicator vector before and after the jamming.

1I

3I

Taking an anti-

jamming measure

Switching work 

mode

u

v

2I

(
,

,
)

d
u

v



Figure 4. Vector space V3 composed of three evaluation indicators. u, v are two evaluation indicator
vectors, and d(u, v, ω) is the Euclidean distance between u and v with weight vector ω.

According to the above analysis, a jamming effect evaluation method based on vector
distance measuring is proposed. As known, Euclidean distance can be used to calculate
the absolute distance between vectors. We assign a weight for each evaluation indicator
on the basis of Euclidean distance, where each weight reflects the contribution of the
corresponding indicator to the evaluation result. The calculation formula of Euclidean
distance with the indicator weight is expressed as:

d(u, v, ω) = sgn
(
∑i=1,...,l ωi(vi − ui)

)(
∑i=1,...,l ωi(vi − ui)

2
) 1

2 , (14)
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where u, v are two indicator vectors in V l . ω = (ω1, ω2, ..., ωl) is the weight vector for l
indicators, ωi ∈ (0, 1). ui is the value of ith indicator in vector u. sgn

(
∑i=1,...,l ωi(vi − ui)

)
identifies the symbol of the distance d(u, v, ω), which indicates the direction in which the
evaluation indicator vector shifts.

The feedback R(k)
o of the DQL model at time k based on jamming effectiveness evalua-

tion is calculated as:

R(k)
o =

{
d(x(k−1), x(k), ω(k)) · 10, i f d(x(k−1), x(k), ω(k)) ≥ 0

−10, i f d(x(k−1), x(k), ω(k)) < 0
, (15)

where x(k) is the normalized evaluation indicator vector obtained at time k. ω(k) is the
weight vector calculated at time k, and the calculation method for it is described below.

3.2.2. The Method of Dynamically Weighting for Evaluation Indicators

As the contribution of different indicators to the evaluation result will vary with the
change of the radar status, ω is objectively modified through the method of dynamic
entropy weight calculation. We horizontally compare the value of each indicator measured
in different jamming rounds, and calculate their entropy values to obtain the weights.
For each indicator, as a result of the difference between each measurement, its weight is not
static, but changes with the received radar signal parameters. Thus, an online evaluation
model is established.

For calculating the dynamic entropy weights of evaluation indicators, we define a
matrix A ∈ Rl×m, where m evaluation indicator vectors can be stored. Once a new radar
state is detected, the l evaluation indicators of it are calculated and assigned to a column in
A. If all the columns in A have been assigned values, the earliest assigned column will be
overwritten by the new evaluation indicator vector. aij in A denotes the value of the ith
indicator in the jth vector. In order to nondimensionalize the calculation and eliminate the
impact of different order of magnitudes, the original matrix needs to be normalized to a
matrix B = (bij)l×m. The normalization formula is expressed as:

bij =


aij−min(aij ,...,ain)

max(aij ,...,ain)−min(aij ,...,ain)
, i f Ii ∝ d

max(aij ,...,ain)−aij
max(aij ,...,ain)−min(aij ,...,ain)

, otherwise.
, i = 1, 2, ..., l, j = 1, 2, ..., m, (16)

where Ii ∝ d indicates that the vector distance d is positively correlated to the ith indicator
in I , which means the lager the value of (vi − ui) is, the better the jamming effectiveness

is. Then the proportion of the jth vector for indicator Ii is calculated as pij = bij/
m
∑

j=1
bij,

and the entropy of indicator Ii can be calculated as:

ei = −
1

ln(l)

m

∑
j=1

pij ln(pij), i = 1, 2, ..., l (17)

Finally, the weight for each indicator is expressed as:

ωi =
1− ei

m
∑

i=1
(1− ei)

, i = 1, 2, ..., l (18)

As shown in Figure 2, when a new radar mode is detected at time k, the jamming
effectiveness of the last jamming round is evaluated, with which Rk

o is calculated and served
as the feedback of the DQL model. The jamming effectiveness evaluation algorithm based
on vector distance measuring with dynamic weight is shown in Algorithm 2.
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Algorithm 2: Jamming effectiveness evaluation algorithm

Input: Evaluation indicator vector x(k)

Output: Jamming effect evaluation result R(k)
o

if There is no column with all zeros in the A then
Reassign the earliest assigned column in A with x(k);

else
Assign x(k) to a column with all zeros in A;

end
Normalize A to B according to Equation (16);
for i = 1, 2, ..., l do

Calculate the proportion pij of the jth vector for Ii as pij = bij/
m
∑

j=1
bij;

Calculate the entropy ei of Ii through Equation (17);
Calculate the weight ωi through Equation (18);

end
Calculate the Euclidean distance d(x(k−1), x(k), ω(k)) between normalized x(k) and
the last indicator vector x(k−1) with the weight vector ω(k) according to
Equation (14);

Calculate the feedback R(k)
o of the DQL model through Equation (15).

4. Numerical Results

To verify the proposed algorithms, a radar parameter template is firstly created, shown
in Table 1. Referring to [25,26], four kinds of radar work modes are considered in this paper,
including search, acquisition, tracking, and guidance. For the target, the work mode
of guidance has the highest threat level, followed by tracking, acquisition, and search.
The beam dwell times when the radar is at these four work modes are 80 ms, 100 ms,
120 ms, and 140 ms respectively. For each work mode, two sub-modes are specified with
different parameter agility patterns.

The mode switching rule of the radar can be described as: when SJR >−4 db, the radar
will raises its threat level; when −7 db < SJR < −4 db, the radar will take anti-jamming
measures while maintaining the current work mode, including Mr1 → Mr2 , Mr3 → Mr4 ,
Mr5 → Mr6 and Mr7 → Mr8 ; when SJR < −7 db, the radar will reduce its threat level.

For the jammer, the jamming mode can be switched between Mj1 and Mj2 , which
denote frequency-spot jamming and blocking jamming respectively. The optional jamming
parameters for each jamming mode are illustrated in Table 2.

Other parameters in our simulation are given as: Gr = 30 dB, Gj = 5 dB, Lr = 10 dB,
Lj = 5 dB, R = 10 km, σ = 1 m2. Considering that radar antennas are generally linearly
polarized, while jammer antennas are circularly polarized or obliquely polarized, µ is given
as 0.5. The parameters in the proposed algorithms are set as: α = 0.01, γ = 0.8, δo = 0.08,
and δi = 0.3. The evaluation indicator set I is constructed of indicators I1 ∼ I7, which
are shown in Table 3. For each radar mode, the average PRI of all pulses in a period is
calculated as indicator PRI, the difference between the maximum and minimum frequency
is taken as the range of frequency agility, and the reciprocal of the number of continuous
pulses with the same frequency is regarded as the speed of frequency agility.

Based on the above description, 200 jamming rounds are simulated. Figure 5 intuitively
shows the time-frequency information under four different radar work modes at the initial
and convergent stage of learning. Figure 5a1, b1, c1,d1 show the radar and jamming signals
at the initial stage, and four other figures show the convergent stage under the same radar
work mode. Compared with the random selection of jamming parameters at the initial
stage, the jamming pulses can accurately cover radar pulses in time and frequency domains
to achieve effective jamming at the convergent stage. Besides, it can be found that if the
radar is at modes where the CF changes regularly, the jammer chooses frequency-spot
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jamming mode Mj1 , otherwise, it chooses to block jamming mode Mj2 , which accords with
the common perception.

Table 1. Radar parameter template. When the radar is at a certain mode, it selects the pulse parameters
according to the rules in the template. Reside and switch, slippery, staggered, and jittered are four
of the common radar parameter agility patterns. As shown, reside and switch A:k B:m C:n means
that the parameter value stays at A for k pulses, stays at B for m pulses, and stays at C for n pulses;
slippery A:B:C means that the parameter value changes from A to C in steps of B; staggered such as
[A B C] means that the parameter value is cycled in the order of the list; jittered such as (A,B) means
the parameter value is randomly selected from the range of A to B.

Work Mode Sub-Mode fr/MHz Br/MHz prir/us pwr/us Pr/kW

search
Mr1

reside and switch:
8500:5 9500:5 9000:5 100

staggered:
[1100 1320 1470] 80 120

Mr2

reside and switch:
8600:3 9600:3 9100:3 100

staggered:
[1100 1320 1470] 120 120

acquisition
Mr3

slippery:
8800:600:10000 150

staggered:
[1070 1430 857] 120 170

Mr4

slippery:
9800:600:12200 150

staggered:
[1070 1430 857] 120 170

tracking
Mr5

jittered:
(8500,11500) 800

reside and switch:
830:2 890:4 960:3 120 170

Mr6

jittered:
(7500,12500) 1000

reside and switch:
830:2 890:4 960:3 120 170

guidance
Mr7

jittered:
(9500,12500) 800

slippery:
740:40:900 120 200

Mr8

jittered:
(8500,13500) 1000

slippery:
740:40:900 120 200

Table 2. Jamming parameter template. When a jamming mode is determined, the corresponding
pulse parameters are selected according to the rules in the template. {A:B:C} denotes a set of optional
values, consisting of an arithmetic sequence from A to C with B as the difference.

Mode fj/MHz Bj(×Br) dtj/us pwj(×pwr) Pj(×Pr)

Mj1 {8000:500:12000} 3 {800:100:1500} 2 0.003

Mj2 {8500:1000:11500} 6 {800:100:1500} 2 0.006

We compared the performance of our algorithm with the improved chaos genetic
algorithm [6], the standard Q-learning [15] and the random parameter selection method.
The average JSR of each jamming round is calculated to reflect the jamming effect intuitively.
The learning rate and discount rate are set with the same value both in the standard Q-
learning and our algorithm. The following results are obtained through 500 independent
simulations and their average values are taken to make the figures.
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Table 3. Jamming effectiveness evaluation indicator set. The correlation to evaluation result is
positive means that the greater the increase of this indicator, the better the jamming effectiveness.
While the negative attribute means that the greater the decrease of this indicator, the better the
jamming effectiveness.

Evaluation
Indicator Explanation Correlation to

Evaluation Result

I1 PRI positive

I2 power positive

I3 beam dwell time negative

I4 BW positive

I5 PW positive

I6 range of frequency agility positive

I7 speed of frequency agility positive

Figures 6 and 7 respectively show the average JSR and the radar threat level obtained
through three methods during 200 jamming rounds. As shown, the improved chaos genetic
algorithm [6], the standard Q-learning [15] and the proposed jamming algorithm based on
the DQL model can all minimize the threat level of radar, and both the latter two methods
can converge and stabilize the JSR within 200 jamming rounds. However, compared with
the standard Q-learning, the proposed algorithm can reach the optimal average JSR 7.98 dB,
which is 4.05% increased. Further, the convergence time of the proposed jamming algorithm
declines by 34.94%, and the number of jamming rounds when the radar is at guidance
modes including M7

r and M8
r reduces by 64.94%. As the high radar threat level is dangerous

for the target, the proposed jamming algorithm based on the DQL model can improve the
survivability of the target.

In order to further explore the convergence performance of the proposed jamming
algorithm, we use the jamming round in which JSR is stable to indicate the convergence
time. For jamming round i, we calculate the variance of JSR from jamming round (i− 19) to
jamming round i(i ≥ 20). If the variance is less than 0.01, it is considered that JSR reaches a
stable state in jamming round i. Figure 8 compares the convergence time of the jamming
algorithm based on the standard Q-learning [15] and the proposed DQL model. It is shown
that the convergence time of the proposed jamming algorithm is generally lower than that
of the standard Q-learning, and as the size of jamming action space increases, the gap
between the two grows. Thus, our jamming algorithm based on the DQL model has better
scalability, and is more adaptable when larger jamming action space is needed in face of
adaptive even unknown radars.
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Figure 5. Time-frequency information at the initial and convergent stage: for signals in each image,
the brighter strips are radar pulses, the darker strips are jamming pulses. (a1,b1,c1,d1) show time-
frequency information of radar and jamming pulses at initial stage when the radar is at mode Mr1 ,
Mr4 , Mr5 , and Mr7 , respectively. (a2,b2,c2,d2) show the corresponding time-frequency information at
convergent stage for the same four radar modes.
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decrease

Figure 6. JSR comparison among different methods.

Figure 7. Radar mode switching comparison among different methods: radar modes 1 to 8 represent
Mr1 to Mr8 respectively.
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Figure 8. Convergence time comparison among different methods. The size of jamming action space
is defined as the product of the total number of optional parameters in time and frequency domains.

5. Conclusions

In this paper, a two-level framework is developed for jamming decision-making
against the adaptive radar, and a dual Q-learning model is proposed to optimize the jam-
ming strategy. The jamming mode and pulse parameters are determined hierarchically,
greatly reducing the dimensionality of the search space and improving the learning effi-
ciency of the model. In addition, we proposed a new method to calculate the jamming
effectiveness by measuring the distance of indicator vectors, where the indicators are dy-
namically weighted to adapt to the changing environment. The jamming effectiveness
evaluation result is served as the feedback value to update the DQL model.

Simulation results show that with the proposed jamming method, the radar joint
strategy of mode switching and pulse parameters can be learned within limited interactions,
and the optimal jamming effectiveness is reached while the radar’s threat level is minimized.
Furthermore, compared with the standard Q-learning, our method improves the average
JSR by 4.05% and reduces the convergence time by 34.94%.

It should be emphasized that due to the complex electromagnetic environment, the es-
timation of radar work mode and pulse parameters is often inaccurate. When there are
errors in the input state, the performance of the proposed DQL model will deteriorate.
Therefore, in the near future, how to enhance the robustness of the model to deal with the
uncertainty of the input is the focus of our investigation.

Author Contributions: Investigation, H.L.; methodology, H.L.; project administration, Y.H.; re-
sources, H.Z.; supervision, Y.H.; validation, H.L.; writing—original draft preparation, H.L.; writing—
review and editing, H.Z.; data curation, Y.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China under
Grant 61971064 and Grant 61901049 and the Beijing Natural Science Foundation under Grant 4202048
and Grant L212028.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xing, Q.; Zhu, W.; Chi, Z.; Zheng, G. Jamming decision under condition of incomplete jamming rule library. J. Eng. 2019, 2019,

7449–7454. [CrossRef]
2. Haykin, S. Cognitive Radar: A Way of the Future. IEEE Signal Procesing Mag. 2006, 23, 30–40. [CrossRef]

http://doi.org/10.1049/joe.2019.0486
http://dx.doi.org/10.1109/MSP.2006.1593335


Sensors 2022, 22, 145 17 of 17

3. Gao, L.; Liu, L.; Cao, Y.; Wang, S.; You, S. Performance analysis of one-step prediction-based cognitive jamming in jammer-radar
countermeasure model. J. Eng. 2019, 2019, 7958–7961. [CrossRef]

4. Zhang, B.; Zhu, W. Research on Decision-making System of Cognitive Jamming against Multifunctional Radar. In Proceedings of
the 2019 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Dalian, China, 20–22
September 2019; pp. 1–6.

5. Zheng, T.; Gao, X. Research on the self-defence electronic jamming decision-making based on the discrete dynamic Bayesian
network. J. Syst. Eng. Electron. 2008, 19, 702–708. [CrossRef]

6. Pan, W.; Jin, X; Xie, H.; Xia, Y. Radar Jamming Strategy Allocation Algorithm based on Improved Chaos Genetic Algorithm. In
Proceedings of the 2020 Chinese Control And Decision Conference (CCDC), Hefei, China, 22–24 August 2020; pp. 4478–4483.

7. Wang, L.; Zeng, Y.; Li, Y.; Wang, M. An Optimal Jamming Strategy Aiming at Cognitive MIMO Radar. In Proceedings of the 2016
CIE International Conference on Radar (RADAR), Guangzhou, China, 10–13 October 2016; pp. 1–5.

8. Slimeni, F.; Scheers, B.; Chtourou, Z.; Nir, V. L. Jamming mitigation in cognitive radio networks using a modified Q-learning
algorithm. In Proceedings of the 2015 International Conference on Military Communications and Information Systems (ICMCIS),
Cracow, Poland, 18–19 May 2015; pp. 1–7.

9. Machuzak, S.; Jayaweera, S. K. Reinforcement Learning Based Anti-jamming with Wideband Autonomous Cognitive Radios. In
Proceedings of the 2016 IEEE/CIC International Conference on Communications in China (ICCC), Chengdu, China, 27–29 July
2016; pp. 1–5.

10. Peng, J.; Zhang, Z.; Wu, Q.; Zhang, B. Anti-Jamming Communications in UAV Swarms A Reinforcement Learning Approach.
IEEE Access. 2019, 7, 180532-180543. [CrossRef]

11. Lu, X.; Xiao, L.; Dai, C.; Dai, H. UAV-aided cellular communications with deep reinforcement learning against jamming. IEEE
Wirel. Commun. 2020, 27, 48–53. [CrossRef]

12. Yao, F.; Jia, L. A collaborative multi-agent reinforcement learning anti-jamming algorithm in wireless networks. Wirel. Commun.
Lett. 2019, 8, 1024–1027. [CrossRef]

13. Sutton, R. S.; Barto, A. G. Reinforcement Learning: An Introduction, 1st ed.; MIT Press: Cambridge, MA, USA, 1998; pp. 216–224.
14. Xing, Q.; Zhu, W.; Jia, X. Research on method of intelligent radar confrontation based on reinforcement learning. In Proceedings

of the 2017 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA), Beijing, China, 8–11
September 2017; pp. 471–475.

15. Wang, L.; Peng, J.; Xie, Z.; Zhang, Y. Optimal jamming frequency selection for cognitive jammer based on reinforcement learning.
In Proceedings of the 2019 IEEE 2nd International Conference on Information Communication and Signal Processing (ICICSP),
Weihai, China, 28–30 September 2019; pp. 39–43.

16. Li, K.; Jiu, B.; Liu, H.; Liang, S. Reinforcement learning based anti-jamming frequency hopping strategies design for cognitive
radar. In Proceedings of the 2018 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC),
Qingdao, China, 14–16 September 2018; pp. 1–5.

17. Lei, M.; Zhang, J. Study on anti-jamming frequency selection in radar netting. In Proceedings of the 2016 2nd IEEE International
Conference on Computer and Communications (ICCC), Chengdu, China, 14–17 October 2016; pp. 1781–1784.

18. Ak, S.; Brüggenwirth, S. Avoiding Jammers: A Reinforcement Learning Approach. In Proceedings of the 2020 IEEE International
Radar Conference (RADAR), Florence, Italy, 21–25 September 2020; pp. 321–326.

19. Li, K.; Jiu, B.; Liu, H.; Pu, W. Robust antijamming strategy design for frequency-agile radar against main lobe jamming. Remote
Sens. 2021, 13, 3043. [CrossRef]

20. Quan, Y.; Wu, Y.; Li, Y.; Sun, G.; Xing, M. Range-Doppler reconstruction for frequency agile and PRF-jittering radar. IET Radar
Sonar Navig. 2018, 12, 348–352. [CrossRef]

21. Ou, J.; Zhao, F.; Ai, X.; Liu, J.; Xiao, S. Quantitative evaluation for self-screening jamming effectiveness based on the changing
characteristics of intercepted radar signals. In Proceedings of the 2016 CIE International Conference on Radar (RADAR),
Guangzhou, China, 10–13 October 2016; pp. 1–5.

22. Li, C.; Zhou, J. Jamming effectiveness evaluation from the jamming side. Electron. Inf. Warf. Technol. 2008, 23, 46–49.
23. Peng, X.; Yu, J.; Ren, W.; Weng, X. Radar jamming effectiveness evaluation method based on feature space weighting. In

Proceedings of the IET International Radar Conference (IET IRC 2020), Chongqing, China, 4–6 November 2020; pp. 629–633.
24. Rabiner.L.R. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 1989, 77, 257–286.

[CrossRef]
25. Osner, N.R.; du Plessis, W.P. Threat evaluation and jamming allocation. IET Radar Sonar Navig. 2017, 11, 459–465. [CrossRef]
26. Han, L.; Ning, Q.; Chen, B.; Lei, Y.; Zhou, X. Ground threat evaluation and jamming allocation model with Markov chain for

aircraft. IET Radar Sonar Navig. 2020, 14, 1039–1045. [CrossRef]

http://dx.doi.org/10.1049/joe.2019.0916
http://dx.doi.org/10.1016/S1004-4132(08)60142-5
http://dx.doi.org/10.1109/ACCESS.2019.2958328
http://dx.doi.org/10.1109/MWC.001.1900207
http://dx.doi.org/10.1109/LWC.2019.2904486
http://dx.doi.org/10.3390/rs13153043
http://dx.doi.org/10.1049/iet-rsn.2017.0421
http://dx.doi.org/10.1109/5.18626
http://dx.doi.org/10.1049/iet-rsn.2016.0277
http://dx.doi.org/10.1049/iet-rsn.2019.0433

	Introduction
	System Model and Problem Formulation
	System Model
	Problem Formulation

	Proposed Jamming Scheme Based on DQL Model
	Jamming Decision-Making through DQL Model
	Outer Q-Learning
	Inner Q-Learning

	Jamming Effectiveness Evaluation through Dynamic Measuring of Vector Distance
	The Jamming Effectiveness Evaluation Method Based on Vector Distance Measuring
	The Method of Dynamically Weighting for Evaluation Indicators


	Numerical Results
	Conclusions
	References

