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Abstract: Multimodal bio-signals acquisition based on wearable devices and using virtual reality (VR)
as stimulus source are promising techniques in emotion recognition research field. Numerous studies
have shown that emotional states can be better evoked through Immersive Virtual Environments
(IVE). The main goal of this paper is to provide researchers with a system for emotion recognition
in VR environments. In this paper, we present a wearable forehead bio-signals acquisition pad
which is attached to Head-Mounted Displays (HMD), termed HMD Bio Pad. This system can
simultaneously record emotion-related two-channel electroencephalography (EEG), one-channel
electrodermal activity (EDA), photoplethysmograph (PPG) and skin temperature (SKT) signals. In
addition, we develop a human-computer interaction (HCI) interface which researchers can carry
out emotion recognition research using VR HMD as stimulus presentation device. To evaluate the
performance of the proposed system, we conducted different experiments to validate the multimodal
bio-signals quality, respectively. To validate EEG signal, we have assessed the performance in terms
of EEG eyes-blink task and eyes-open and eyes-closed task. The EEG eyes-blink task indicates that
the proposed system can achieve comparable EEG signal quality in comparison to the dedicated
bio-signals measuring device. The eyes-open and eyes-closed task proves that the proposed system
can efficiently record alpha rhythm. Then we used signal-to-noise ratio (SNR) and Skin Conductance
Reaction (SCR) signal to validate the performance for EDA acquisition system. A filtered EDA signal,
with a high mean SNR of 28.52 dB, is plotted on HCI interface. Moreover, the SCR signal related
to stimulus response can be correctly extracted from EDA signal. The SKT acquisition system has
been validated effectively by the temperature change experiment when subjects are in unpleasant
emotion. The pulse rate (PR) estimated from PPG signal achieved the low mean average absolute
error (AAE), which is 1.12 beats per minute (BPM) over 8 recordings. In summary, the proposed
HMD Bio Pad offers a portable, comfortable and easy-to-wear device for recording bio-signals. The
proposed system could contribute to emotion recognition research in VR environments.

Keywords: emotion recognition; bio-signals; Head-Mounted Displays; virtual reality; HCI interface

1. Introduction

Automated emotion recognition (AEE) is a process of automatic recognition to hu-
man emotional responses by computers. It is an important research branch in the field
of human-computer interaction (HCI) [1]. The use of AEE has great potential in various
intelligent systems, including education (students’ learning status assessment), marketing
(customers’ feedback assessment), and mental health monitoring (patients’ emotional states
adjustment) [2]. Emotion recognition can be achieved through facial expression, body
posture, voice and bio-signals, etc. [3]. Among them, bio-signals can further objectively
and truly express human emotions because of their non-subjective manipulation [1,4].

In recent years, with the development of virtual reality (VR) technology, emotion
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recognition based on multimodal bio-signals in VR environments has become a hot re-
search topic [5,6]. VR creates an immersive virtual environment for users and allows
them to experience the real feelings [7]. It is very important for the research in the field of
psychology, which is also considered as the most likely prospective research technique to
replace real and laboratory environments. Up to the present, the music, pictures, videos
and other non-immersive stimulating materials are used by most of researchers to evoke
emotions. Moreover, it has been proved that VR scenes can evoke the emotion of users
better [8].

Bio-signals show excellent data consistency in emotion analysis because they represent
an unfiltered immediate response to human emotions. At present, bio-signals used in
emotion analysis mainly include electroencephalogram (EEG) [9–11], photoplethysmogram
(PPG) [12–14], electrodermal activity (EDA) [15,16] and skin temperature(SKT) [17,18], etc.
There are mainly three types of devices for acquiring bio-signals. One is the special medi-
cal devices, such as electroencephalograph, electrocardiograph, electromyography, pulse
oximeter and thermometer. However, there is a problem of data synchronization in the
combination of multiple devices. The second category is dedicated bio-signals measuring
devices, such as Biopac MP150, Procomp Infiniti and Power Lab, etc. The advantage of
these dedicated bio-signals measuring devices is that these can collect multiple bio-signals
synchronously. The common drawbacks of these two types of devices are high price,
cumbersome cables and time-consuming wearing.

With the development of wearable physiological detection, bio-signals sensors can al-
ready be built into terminals such as clothes, hats, shoes, gloves, beds and game handles for
long-term users’ emotional perception and feedback. The Empatica company launched E4
smart watch to collect data for affective computing researchers [19]. This watch can collect
EDA, PPG and SKT at the wrist, and can also calculate pulse rate (PR) through PPG signal.
The reference [20] embedded dry electrodes EEG sensor and two eye-tracking cameras
in the HTC Vive headset. It can synchronously record muli-channel EEG signals and eye
movement image. Moreover, the authors of [20] provided an emotion recognition interface
for predicting users’ evaluations of attractiveness. While there are two disadvantages in the
system, one is that it cannot acquire other peripheral bio-signals which is vital for emotion
recognition. The other is that the EEG sensors module cannot be equipped with other VR or
AR HMD on the market. A single dry-electrode wearable device NeuroSky MindWave was
applied to collect prefrontal EEG signal to connect personality traits and emotional states
in [21]. The wearable devices Emotive EPOC and SHIMMER are used in [22] to collect
14-channel EEG signals and one-channel PPG signal in five VR game scenes, respectively.
The results suggested that the bio-signals acquired by low-cost wearable devices could be
employed to recognize emotion, with high precision. All the above researches indicate that
with the development of wearable technology, the effectiveness of the use for wearable
devices to collect bio-signals for emotion recognition has proven. However, there are
still some drawbacks in the above mentioned wearable devices for emotion recognition
in VR environments. For example, none of the wearable devices mentioned above can
synchronously collect emotion-related EEG signals and other peripheral bio-signals. In ad-
dition, these devices lack a unified interface to perform stimulus selection, data acquisition,
and emotion modeling simultaneously.

In this paper, we propose a wearable forehead bio-signals acquisition platform called
HMD Bio Pad which can be attached to most of the VR or AR HMD on the market using a
velcro fastener. The HMD Bio Pad hardware consists of flexible sensors pad and bio-signals
acquisition system. Flexible sensors pad is designed by flexible printed circuit board (PCB)
which can be bent at will. The metal dry electrodes and sensors are placed on the flexible
sensors pad. Bio-signals acquisition system is mainly responsible for signal conditioning,
acquisition and transmission. Two-channel EEG signals, one-channel EDA signal, PPG
signal and SKT are recorded simultaneously via Bluetooth when users ordinarily wear
HMD Bio Pad. Wireless communication supports the portability of HMD Bio Pad. Then we
conducted different experiments to evaluate the performances of EEG signal, EDA signal,
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PPG signal and SKT. Finally, we developed a user-friendly HCI interface for the researches
in field of psychophysiology in VR environments. The major contributions of this work can
be summarized as follows:

• A wearable forehead bio-signals acquisition device called HMD Bio Pad is developed
which has the advantages of portability, comfort and ease of wearing;

• Using metal dry electrodes and attaching flexible sensors pad to HMD can greatly
reduce experimental preparation time and improve the convenience of the system.

• HMD Bio Pad can simultaneously collect EEG signals and other peripheral bio-signals,
of which performances have been validated by different experiments;

• A HCI interface is provided for researchers to perform stimulus selection, data acquisi-
tion, and emotion modeling simultaneously.

The remainder of this paper is organized as follows: Section 2 describes the system
overview. Sections 3 and 4 introduce HMD Bio Pad hardware and software platform
respectively. Evaluation of HMD Bio Pad is presented in Section 5. Conclusions and future
works are discussed in the last Section.

2. System Overview

The block diagram of HMD Bio Pad is shown in Figure 1. The overall system design
can be divided into three parts.

(1) Flexible sensor pad: The flexible PCB is composed of golden dry electrode and sensors
(PPG, Temperature, Acceleration, etc.), which is connected with bio-signals acquisition
system through USB Type-C connector;

(2) Bio-signals acquisition system: The system contains switch and power management
block including battery charging and power supply circuit. It also includes signal
conditioning analog front-end (AFE), high-speed data acquisition module, data fusion
module and bluetooth low energy (BLE) data transmission module;

(3) Human-computer interaction (HCI) interface: The HCI interface consists of data
visualization interface, VR scene parameter configuration interface and mapping
model construction interface. Data visualization interface is construsted by real-
time waveform display, communication configuration and data storage. The scene
parameters can be set by VR scene parameter configuration interface based on the
requirements for different experiments. Common machine learning methods can be
provided by Mapping model construction interface for emotion modeling.
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EEG - 2 Active        

EDA - 2 Active 

 - 1 Reference
 - 1 Ground

PPG
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Sensors

Analog Front-end

2ch.

Analog Front-end
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Figure 1. The block diagram of the proposed system.

Figure 2 shows a flow diagram of our proposed system to complete the emotion mod-
eling experiment.The VR HMD automatically plays the VR scenes according to the preset
experimental paradigm, and the bio-signals of the subjects are recorded simultaneously by
HMD Bio Pad. After receiving the recorded bio-signals data on the HCI interface software,
the emotion model is constructed through signal pre-processing, feature extraction, feature
selection and feature classification.
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Figure 2. A flow diagram of our proposed system to complete the emotion modeling experiment.

3. The Hardware Design of HMD Bio Pad

In this section, we give the description of the HMD Bio Pad hardware design. The main
goal is to design a wearable device which collects multimodal bio-signals from forehead.
The HMD Bio Pad hardware consists of flexible sensor pad and bio-signals acquisition
system. They are connected by USB Type-C connector. The structure diagram of flexible
sensor pad can be seen in Figure 3a. One side of flexible printed circuit board (PCB) is
covered with a breathable, skin-friendly leather material, and the other side is covered
using a velcro fastener. The electrodes and sensors are placed on the flexible PCB, which
are shown in Figure 3b.

PPG 

sensor

ECG_R

eletrode

ECG_L

eletrode

EEG_FP1

eletrode

EEG_FP2

eletrode

SKT

sensor

EDA-2

eletrode

EDA-1

eletrode

(a) (b)

Velcro

Flexible

PCB

Leather Ground

eletrode

Figure 3. The flexible pad: (a) The structure of flexible pad. (b) The electrodes and sensors placement
on the flexible pad.

Bio-signals acquisition system consists of the following parts: EEG acquisition system,
EDA acquisition system, SKT acquisition system, PPG acquisition system, switch, power
management, microcontroller unit (MCU) and BLE wireless communication.

3.1. EEG Acquisition System

In recent years, numerous neurophysiological researches have been reported the
correlations between EEG signals and emotions. Recent studies showed that the frontal
scalp seems to store more emotional activation than other regions of brain [23,24]. The EEG
asymmetry of the left and right hemispheres is an important reference feature to judge
cognitive and affective disorders [25]. Since the forehead is not covered by hair, it has
small skin-to-electrode interface impedance, which is more conducive for the use of dry
electrodes to collect high-fidelity EEG signal. Therefore, we place dry electrodes on each
of the left and right sides of the prefrontal lobe. The reference electrode is applied with a
ear-clip which is welded to the bio-signals acquisition system by a shield cable. According
to the 10–20 international EEG standards, the FP1 and FP2 are chosen as the positions of
active electrodes, the earlobe is used as the position of reference electrode (A2), which
form the forehead two-channel EEG signals acquisition system. The electrodes placement
positions are shown in Figure 4a.

EEG is a technique for recording the electrophysiological activity of brain neurons on
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the surface of the cerebral cortex or scalp. The amplitude of EEG in microvolt(µV) order of
magnitude is usually very weak. Therefore, EEG signal is susceptible to interference and
difficult to be directly detected. It is necessary to design analog front-end (AFE) circuit for
signal amplification and conditioning. The two-channel AFE circuit of EEG designed in
this paper is shown in Figure 4b.

Single-ended to 

differential

IA

G=100

G=2

ADC
LPF

f=35Hz

HPF

f=0.5Hz

V
LPF

f=5Hz

G=2

ADC

SKT

PPG

(a) (b)

EEG analog front-end

EDA analog front-end

Rg

EDA1

EDA2

FP2

FP1
GROUND

REF
REF AGND

Fpz F4

T3

F7

F3

F8

C3 Cz C4 T4

P3 Pz P4

T5 T6

Q1 Q2

FP1 FP2

A1 A2

Figure 4. The positions of electrodes and the flowchart of AFE circuit: (a) The positions of electrodes
placement according to the 10–20 international EEG standards. (b) The positions of electrodes and
sensors, the AFE circuit of EEG and EDA.

The AFE circuit of EEG is composed of instrument amplifier (IA) circuit, DC voltage
correction circuit, second-order low-pass filter circuit and single-ended to differential circuit.
Due to weak amplitude of EEG signal as 10–50 µV, the IA with low input-referred noise,
high common-mode rejection ratio (CMRR) and high input impedance was required for
the first stage amplification of EEG signal. AD8422 chip (Analog Devices, Norwood, MA,
USA) with low input-referred noise (0.1 µVPP), high CMRR (94–150 dB) and high input
impedance (200 GΩ) is used as IA. It is the third generation product of AD620 chip (Analog
Devices, USA), and the gain G is determined by the gain setting terminals resistance Rg.
The range of the gain G is 1–1000. It is noted that excessive gain will also amplify the DC
voltage contained in EEG and saturate the output of amplifier. Therefore, the gain G is set
as 100. According to Equation (1), the value of Rg is 200 Ω.

G = 1 +
19.8 kΩ

Rg
(1)

According to Equation (2), CMRR is about 120 dB.

CMRR = 80 dB + 20 lg G (2)

The transfer function of the AD8422 is given as follows:

Vout = G ∗ (Vin+ −Vin−) + Vre f , (3)

where Vin+ and Vin− represent the positive and negative inputs, respectively. Vre f denotes
the input reference voltage.

The DC voltage introduced by the electrode wires contacting with the scalp is called
polarization voltage (millivolt magnitude). The polarization voltage amplified by IA will
result in saturation and serious distortion of EEG signal. At the same time, the polarization
voltage also limits CMRR of the preamplifier and shortens the gain range of IA. The purpose
of the DC voltage correction circuit is to eliminate the polarization voltage. In this paper,
the integral feedback circuit with a cut-off frequency of 0.5 Hz is applied to realize DC
voltage correction in Figure 4b. After the amplification of the input EEG signal by the
IA, the signal passes through the integral feedback circuit. Then the output signal is fed
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back to the REF pin of IA, the output of the integral feedback circuit can be calculated by
Equation (4).

Vre f = −
1

RC
∗
∫

Vout dt (4)

We substitute Equation (4) into Equation (3), the output transfer function of the
instrument amplifier can be found in Equation (5).

Vout = G ∗ (Vin+ −Vin−)−
1

RC
∗
∫

Vout dt (5)

It can be seen from Equation (5) that the amplified DC offset voltage will be eliminated
at the output of the instrument amplifier through the integral circuit. The integral feedback
circuit can realize dynamic DC correction.

The EEG signal after IA amplification and DC correction mainly removes the influ-
ence of extremely low frequency, while still contains high frequency interference signal
in EEG signal. The high frequency interference signal mainly includes environmental
electromagnetic waves, electromyography (EMG) signal and noise caused by the active
devices. Therefore, it is necessary to design a low-pass filter to eliminate high frequency
interference. The frequency range of EEG signal is generally from 0.5 to 100 Hz, but the
frequency range of alpha (8–13 Hz), beta (13–30 Hz), theta (4–8 Hz) and delta (0.5–4 Hz)
associated with emotion ranges from 0.5 to 30 Hz [2]. In this paper, a second-order low-pass
filter with 35-Hz cutoff frequency is designed for eliminating noise from EEG signal. In
addition, the filter circuit amplifies 2 times of the EEG signal.

The conversion of single-ended signal into differential signal can effectively reduce the
common mode interference and increase the dynamic range of the signal. The output signal
of the second-order low-pass filter is converted into a differential signal by performing a
single-ended to differential circuit. The differential conversion circuit uses fully differential
amplifier THS4521 chip (Texas Instrument, Dallas, TX, USA). THS4521 has very low input
noise and power. When the bandwidth is 100 kHz, the voltage noise density is low to 4.6
nV/
√

Hz, which is very suitable for driving the high precision Σ-∆ type analog-to-digital
converter (ADC). The converted differential signal is fed into the high-precision differential
ADC, which converts the analog signal into digital signal. The ADC chip ADS1256 (Texas
Instrument, Dallas, TX, USA) has extremely low-noise, 24-bit resolution, 4-channel Σ-∆
differential inputs. The ADC conversion result is calculated using the following Equation:

ADCout =

(
2 ∗VREF

223 − 1
∗ L− 5

)
/PGA, (6)

where reference voltage VREF = 2.5 V, PGA is the internal gain value, L represents the
complement of digital quantities collected by the ADC.

3.2. EDA Acquisition System

Electrodermal activity (EDA) refers to the sympathetic response caused by strong
emotional stimulation, which leads to the rapid increase of secretion of sweat glands in
a short period of time, that is, the generation of mental sweating [26]. Mental sweating
is the most obvious on the palmar and plantar sites, and can also be found on the back
of the hands, forehead, neck, forearms and legs [27]. In this paper, the EDA electrodes
are placed on the forehead, as shown in Figure 4b. The acquisition of EDA converts the
change of forehead surface impedance into that of electrical signal. The AFE circuit of EDA
is depicted in Figure 5, where SR+ and SR− represent two mental electrodes.
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Figure 5. The AFE circuit of EDA.

The AFE circuit of EDA consists of the following two stages. The first stage is the Ω/V
conversion of forehead surface impedance. Considering the power consumption (4.4 µA/
Amplifier (Typical)), offset voltage (±1 mV (Maximum)), output voltage swing and the
number of operation amplifiers, the MCP6422 chip (Microchip Technology, Chandler, AZ,
USA) with two internal low-power amplifiers is selected in this paper. According to the
principle of “virtual short” and “virtual break” of the operational amplifier, the flowing
current from SR+ to SR− is calculated in Ω/V stage. After the calculation, the maximum
current going through the human body is less than 10 µA, which is within the safety range
of human body. Generally, the impedance of human body range from tens KΩ to hundreds
KΩ. Thus, according to the calculation results, the output voltage from the AFE circuit
of EDA ranges from 0.4 to 2.4 V. Since the useful frequency range of EDA signal is below
5 Hz [28], the second stage of the circuit uses the classical Sallen-Key second-order active
low-pass filter to eliminate the high frequency interference. The cut-off frequency of the
low-pass filter can be calculated by Equation (7):

fp =
1

2πRC
, (7)

where R = R4 = R5 = R6 = R7 = 300 KΩ, C = C1 = C2 = 0.1µF. According to the
calculation results, the cut-off frequency of the filter is approximately 5.3 Hz. The output
EDA signal is calculated by Equation (8):

Ueda = 3.3 ∗ ( R2
R1 + R2

) ∗ (1 + Reda
R3

) ∗ (1 + R7
R6

), (8)

where Reda represents skin impedance. Substituting the marked parameters in Figure 5
into Equation (8), the relationship between Ueda and Reda can be obtained as shown in
Equation (9).

Ueda =
3.3
8
∗ (1 + Reda

200 KΩ
) (9)

The skin impedance Reda can be obtained by collecting the AFE output Ueda through
the ADC. EDA signal is generally represented by conductance. According to Equation (9),
the solution formula of conductance ρeda can be obtained as shown in Equation (10):

ρeda =
3.3

0.2 ∗ (8Ueda − 3.3)
) ∗ 103, (10)

where the unit of ρeda is µS.

3.3. SKT Acquisition System

The change of skin temperature is a manifestation of vascular response. There are
slight differences in body skin temperature with different emotional states, which can be
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used for emotion recognition research [29]. At present, the body temperature measurement
sites mainly include oral, rectal, armpit, ear and forehead, etc. In this paper, the integrated
temperature sensor is placed at the center of the forehead, as shown in Figure 4b. The
integrated contact temperature sensor LMT70 (Texas Instrument, Dallas, TX, USA) with
small-size (0.88 mm * 0.8 mm), high-accuracy (20–42 ◦C, ±0.05 ◦C) and low-power con-
sumption (9.2 µA), which is suitable for wearable devices. The schematic diagram of the
temperature sensor structure is shown in Figure 6.

S
k
in

Conductive 

metal

LMT70

FPC board

Thermal conductive 

adhesive

Figure 6. The schematic diagram of the temperature sensor structure.

LMT70 is welded on the flexible PCB by reflow soldering technology, and the high-
performance thermal conductive adhesive is filled into the customized internal hollowing
thermal conductive metal. The thermal conductive metal after filling the thermal conductive
adhesive is connected and fixed with LMT70. The purpose of this structure design is to keep
the conductive metal at the same height with the EEG and EDA metal electrodes, so that the
electrodes and the conductive metal can fully contact with forehead skin. Another purpose
is to avoid skin injury that may be caused by long-term direct contact of LMT70 with the
skin. The output of LMT70 is analog quantity, which needs to be converted into digital
quantity through ADC. We use the third channel of ADS1256, and the voltage value VTAO
can be calculated according to Equation (6). The temperature value T can be calculated by
Equation (11):

T = m ∗VTAO + b, (11)

where m represents slope value, b denotes the intercept value. It is known that the forehead
temperature range of normal human body is between 30 ◦C and 40 ◦C in a laboratory
environment. In this paper, according to the corresponding typical values of the voltages
associated with 30 ◦C and 40 ◦C in the LMT70 chip manual, the slope value m and the
intercept value b are set as 0.1943 ◦C/mv and 213.340 ◦C, respectively.

3.4. PPG Acquisition System

The amplitude, period, pulse rate (PR) and pulse rate variability (PRV) of PPG can
be used as features of emotion recognition, especially PR. Researches have been reported
that when people are in positive emotional state, the corresponding PR value will be low;
otherwise, the PR value increases, which is not beneficial to health. The common locations
for obtaining PPG signal are fingers, wrists, earlobes and forehead [30]. Studies showed that
4 cm on the left or right of the forehead center is the ideal location for PPG acquisition [31].
In this paper, a reflective PPG sensor is selected and placed on the forehead, as shown in
Figure 4b. The PPG sensor selects the high-sensitivity, low-power consumption (<1 mW)
MAX30102 chip (Maximum Integrated, San Jose, CA, USA), which integrates 2 internal
LEDs (red and infrared LED) and a photodetector. The PPG sensor communicates with the
MCU bidirectionally through the I2C bus. MCU can set LED current, sampling frequency,
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ADC bits and other parameters, and can read the photoelectric detector output results
through the I2C bus.

3.5. Switch, Power Management, MCU and BLE Wireless Communication

The system can be run or stopped by a long 3 s touch switch. The touch switch-
activated green LED is indicates whether the system is running. The power management
includes battery charging and power supply circuit. The 3.7 V (full charge around 4.2 V)
lithium-ion battery is used for power supply of the whole system. The chip LTC4054
(Linear Technology, Milpitas, CA, USA) is used to control battery charging through the
USB Type-c connector. The red charge indicator led extinguish when battery is full. The
low dropout regulator(LDO) will generate ±5.0 V, 3.3 V and 2.7 V voltages according
to the power supply requirements of the whole system analog and digital circuits. The
MCU is mainly responsible for the multimodal physiological data collection, fusion and
transmission. Based on the above requirements, this paper selects the low energy Bluetooth
SOC nRF52832 (Nordic Semiconductor, Trondheim, NOR). This chip supports Bluetooth 5
protocol and programmable broadcast gain, and its effective data transmission speed is as
high as 1447 Kbps. In addition, the overall architecture is based on Arm CortexTM-M4F
CPU with built-in floating-point operation unit and DSP processing unit, which can quickly
handle complex tasks, so that the CPU can work in a low energy state for a long time.
nRF52832 integrates a wealth of digital peripherals, such as: UART, I2C and SPI, etc. The
multi-channel Easy DMA and PPI functions allow communication between peripherals
without CPU intervention.

The PCB of bio-signals acquisition system is shown in Figure 7a. The board size is
5.2 cm × 3.2 cm. The main hardware function modules are marked with red line and tested.
An example that HMD Bio Pad is assembled in DPVR E3 VR HMD is depicted in Figure 7b.
Figure 7c shows HMD Bio Pad worn by the subject who is in VR scene.

Main 

control

(a) (b)
5.2cm

3
.2

c
m

5 2

33
22

c
m

MCU

BLE

ADS1256

EEG 

AFE

TYPE-C

(c)

Figure 7. The HMD Bio Pad: (a) The PCB of Bio-signals acquisition system. (b) Attaching HMD Bio
Pad to DPVR E3 VR HMD. (c) HMD Bio Pad wearing by a subject.

4. HCI Interface Software Design

The human-computer interaction (HCI) interface can develop a unified interface for
researchers to acquire bio-signals, induce emotions and recognize emotions. It can raise the
work efficiency and improve the user experience. The HCI interface is implemented via
Python language. The system software is mainly divided into three parts: data visualization
interface, experimental paradigm setting interface and emotion modeling interface.

4.1. Data Visualization Interface

Data visualization interface is mainly used to complete the process of the real-time
waveform display of multimodal bio-signals, the communication rate and port number
setting, and the data storage. The visualization interface program design mainly includes
two threads. One is responsible for data receiving, unpacking, verification, etc, and the
other is mainly responsible for waveform drawing. Data receiving module receives bio-
signals data from MCU through Bluetooth according to certain data packet format. The
data packet format is shown in Figure 8. In this paper, the sampling frequency of EEG
is 400 samples per second. Since other peripheral bio-signals are low frequency signal,
they are recorded at a sampling frequency of 100 Hz. The data packet consists of 168 bytes
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including a header byte (0x7F), a payload length byte (0xE6), data payload packet and a
CRC checksum byte. After calculation, 20 data packets of 168 bytes each in size need to
be transmitted per second. Every 50 ms, a data packet is transmitted to PC. Therefore, the
establishment connection time is 50 ms. Bluetooth is in sleep state when there is no data
transmission, which can reduce the number of data transmission, thereby reducing the
power consumption of Bluetooth.

7F

Header Length

E6 XX

Checksum

PPG (15 bytes) EDA (15bytes) SKT(15bytes)Right_EEG (60 bytes)

Payload

H_XX

Left_EEG (60 bytes)

XXXX

M_XX L_XX H_XX M_XX L_XX H_XX M_XX L_XX H_XX M_XX L_XX H_XX M_XX L_XX

Figure 8. The data packet format.

After receiving one data packet sent by BLE, the PC unpacks and verifies it according
to the data format shown in Figure 8. By observing the time-domain and frequency-domain
waveform of the two-channel EEG signals, it can be found that there is partial power line
interference in the collected data. Considering the low energy and small size of wearable
devices, we did not design an analog 50-Hz notch filter when designing the AFE circuit of
EEG. Therefore, a digital comb filter has been implemented on the PC to eliminate power
line interference. In this paper, the Filter Design & Analysis Tool (FDATool) in MATLAB
(Mathworks, Natick, MA, USA) signal processing toolbox is used to design filter. The
FDATool interface provides an interactive design environment for filter design. We choose
the infinite impulse response (IIR) comb filter with eighth-order and 1-Hz bandwidth.
From the frequency response of the comb filter in Figure 9a, it can be seen that there is an
attenuation of 20.4 dB at 50 Hz and its frequency doubling. The difference equation of the
comb filter is as follows:

y(n) =
1 + rh0

2
[x(n)− x(n− N)] + rh0[y(n− N)], (12)

where N = 8 is the order of the filter. x(n) and y(n) represent input and output signal,
respectively. rh0 represents filter coefficient which is generated by FDATool with the value
of 0.96852105385218623. The blinking EEG data collected from the forehead before and
after passing through the comb filter are shown in Figure 9b. It can be seen that the filtered
EEG signal attenuates 50-Hz power line interference.

The frequency of emotion-related EEG signal ranges from 0.5 to 30 Hz, and after the
comb filter processing, there may still be some high frequency interference greater than
30 Hz. Therefore, a low-pass filter after the output of the comb filter is applied to further
eliminate the high frequency interference. In this paper, a direct II type Butterworth IIR
low-pass filter with a cut-off frequency of 30-Hz is designed. Considering the real-time
display of EEG signal, the filter order is set to be 2. The forward and feedback channels are
respectively expressed as:

w(n) = x(n)−
2

∑
i=1

aiw(n− i), (13)

y(n) = x(n)−
2

∑
j=0

bjw(n− j), (14)

where ai and bj are filter coefficients. The feedback value w(n) after iteration can be
calculated by substituting the input signal x(n) into Equation (13), then the output signal
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y(n) can be calculated according to Equation (14). Figure 9c represents the frequency
response of the second-order low-pass filter, and Figure 9d describes the waveform before
and after the blinking EEG data passing through the low-pass filter.

(a) (b)

(c) (d)

Figure 9. Response of the filter and examples of the filter effect: (a) the frequency response of the
comb filter. (b) an example of blinking EEG raw data and the output EEG data with the comb filter.
(c) the frequency response of the low-pass filter. (d) an example of blinking EEG raw data and the
output EEG data with low-pass filter.

Since other peripheral bio-signals are known to be low frequency signals, different
cuff-out frequency low-pass filters are designed to meet the requirements according to the
above method. The filtered data can be drawn in real-time by calling the drawing thread.
Data visualization interface can display the real-time SKT and PR value. It can also save
the current collected data to the local document at any time.

4.2. Experimental Paradigm Setting Interface

The experimental paradigm interface is used to set the experimental paradigm accord-
ing to the requirements of researchers. It mainly includes the following functions.

(1) VR scene selection: Users can select the VR scene required for this experiment from
the VR scene library;

(2) Parameter setting : Users can set the length parameters of subjects immersed in VR
environments, including prompt time, VR scene playback time and questionnaire
survey time, etc;

(3) VR scene play : Users start the VR scene by clicking the ‘Play’ button. When the
experiment time reaches the specified value, the VR scene automatically stops playing.
The ‘Stop’ button and the ‘Reset’ button are used to stop playing the VR scene and
reset the parameters, respectively;

(4) Interactive control: Users interact with the controls on the interface to change the
parameters, so as to send instructions to the system and finally realize the function.
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4.3. Emotion Modeling Interface

Emotion modeling interface mainly includes data pre-processing, feature extraction,
feature dimension reduction, feature standardization, model training, model preservation,
model loading, emotion classification, etc.

(1) Data Pre-processing: Using digital IIR filter such as Butterworth type, Chebyshev I
type. According to the requirements, user can choose low-pass, high-pass, band-pass,
band-stop four kinds of filters and then set the sampling frequency, order, cut-off
frequency and other parameters;

(2) Feature Extraction: Extracting time-domain, frequency-domain, time-frequency do-
main and nonlinear feature extraction. User can choose multi-feature fusion function
of multimodal bio-signals;

(3) Feature Dimensionality Reduction: Using different feature dimensionality reduction
methods to avoid “dimension disaster”, including principal component analysis
(PCA) and linear discriminant analysis (LDA). User can set the number of dimensions
required for dimension reduction;

(4) Feature Standardization: Including Z-score standardization, maximum and minimum
value standardization;

(5) Feature Classification: Selecting common classifier and set parameters. The common
classifiers are Support Vector Machine (SVM), Logistic Regression (LR), Random
Forest (RF), Bayesian Network (BN) and Decision Tree (DT).

The schematic diagram of the HCI interface is shown in Figure 10.

Figure 10. The schematic diagram of the HCI interface.

5. Performance Evaluation
5.1. System Structure Evaluation

We tested the performances of portability, comfort and ease of wearing of the HMD
Bio Pad system and compared with those of Biopac, Mindwave and E4 watch. Eight healthy
individuals were recruited as volunteers to evaluate the level of portability, comfort and
ease of wearing. We used a scale of 1–5, where 1 is minimum level and 5 is maximum level.
Table 1 gives a summary of the average level of portability, comfort and ease of wearing
by participants of each device. It can be seen that the average level of HMD Bio Pad in
portability, comfort and ease of wearing are better than that of Biopac or Mindwave. It can
be observed that the comfort level of E4 watch is sightly higher than that of HMD Bio Pad.
However, HMD Bio Pad can collect EEG signals.
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Table 1. Comparison of Portability, Comfort and Ease of wearing of different devices.

Device Portability Comfort Ease of Wearing

HMD Bio Pad 4.6 4.4 4.7
Biopac 1.4 2.5 1.8

Mindwave 3.6 2.6 3.0
E4 watch 4.3 4.8 4.0

5.2. EEG Acquisition System Evaluation

In order to evaluate the performance of EEG acquisition system, two common ex-
periments are provided in the following parts. Five healthy volunteers were recruited to
evaluation the EEG acquisition system.

5.2.1. EEG Eyes-Blink Task

In this paper, EEG signals in the FP1 area are recorded simultaneously by HMD
Bio Pad and the EEG module of Biopac, USA. The correlation between the EEG signal
collected by the two devices with mental dry electrodes is observed after normalization. In
Figure 11a, the pulse signal encircles by black dotted line corresponds to the eyes blink,
which indicates that the EEG signals collected by the two devices have a strong consistency
and prove the effectiveness of HMD Bio Pad. Meanwhile, the power spectral density also
indicates that the two systems have the same spectral components in Figure 11b. The
Pearson correlation coefficient between the power spectral density of both EEG signal
is 0.945, which indicates a strong linear positive correlation between these two signals.
The above results demonstrate that the proposed EEG acquisition system can achieve the
comparable signal quality in comparison with the dedicated bio-signals measuring device.
While in FP1 area, although the recorded EEG signal has high similarity, most of EEG signal
is drowned by eyes blink. This may not be very persuasive for EEG measurement. To
further verify the performance of HMD Bio Pad in EEG measurement, an eyes-open and
eyes-closed task was performed.

(a) (b)

Figure 11. An example of eyes-blink task: (a) An example of FP1 region EEG signal obtained by
HMD Bio Pad and Biopac. (b) EEG power spectral density of (a).

5.2.2. Eyes-Open and Eyes-Closed Task

A common method used to verify whether EEG signal can be collected correctly is the
eyes-open and eyes-close task [32]. Quantities studies have revealed that when subjects are
in wakeful relaxation with eyes closed, clear alpha rhythm can be observed generally in
the frequency range of 8 to 13 Hz. When the subjects open their eyes, the alpha rhythm
reduces. In order to verify the performance of EEG acquisition system, we performed an
eyes-open and eyes-close task. In this task, the subjects were lying comfortably in a room
with dim light and less sound interference, and the HMD Bio Pad was used to acquire
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EEG signal in the FP1 area. The EEG data consists of 30 s wakeful relaxation with eyes
closed data and 30 s of eyes open data. Excluding the influence of psychological factors
and eyes blink in the experiment, the clean data of 15 s in eyes open and eyes closed data
were selected, respectively.

Figure 12 demonstrates the EEG power spectral density of eyes-open and eyes-closed
task. It can be seen from the figure that compared to the eyes open state, the dominant
frequencies of the EEG power spectral density is in the frequency range of 8 to 13 Hz when
the subject are in eyes closed state. It proved that the proposed system can efficiently record
the EEG signal in two different states.

(a) (b)

Y: 2.064×10−5 

Figure 12. An example of eyes-open and eyes-closed task: (a) EEG power spectral density of eyes-
open. (b) EEG power spectral density of eyes-closed.

5.3. EDA Acquisition System Evaluation
5.3.1. Signal-to-Noise Ratio

SNR represents the ratio, in dB, between signal and noise. For the SNR of EDA
signal, we refers the method mentioned in reference [28]. The method uses the sum of
power spectral density in the range of (0, 5] Hz as the useful signal, and the signal beyond
frequency range is the noise signal. The SNR of EDA can be calculated by Equation (15):

SNR =
PSDEDA(0,5]Hz

PSDEDA(5,Fs/2]Hz
, (15)

where Fs represents the sampling frequency. Referring to the experimental paradigm of
EDA signal acquisition in reference [28], 5 subjects were required to use HMD Bio Pad to
collect data for 2 min and 30 s (4 relaxation phases of 30 s and 3 hyperventilation phases of
10 s) in a quiet room with temperature of 25 ◦C. The data were divided into 29 segments
according to a segment of 10 s (50% overlap), and the SNR of each segment was calculated
respectively. By comparing the calculated mean SNR with the commercial device and
open source hardware mentioned in reference [28], it can be seen from Table 2 that the
average SNR of EDA signal recorded in this paper is 28.52 dB under the similar sampling
frequency. In comparison to other commercial devices or open source hardware, the EDA
acquisition system achieves similar SNR and the minimum standard deviation (0.41 dB),
which indicats that the SNR of EDA in this paper is relatively stable. SNR can not fully
prove the effectiveness of EDA signal, this paper further verifies the performance of EDA
acquisition system using skin conductance reaction (SCR).

Table 2. Mean and standard deviation of SNR for EDA signal.

Device HMD Bio Pad PSD-D EH QS ML

Mean_SNR (dB) 28.52 29.83 27.25 19.82 34.18
SD_SNR (dB) 0.41 0.68 2.46 6.96 10.25
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5.3.2. Skin Conductance Reaction

The skin conductance response (SCR) in EDA signal is considered to be a vital feature
because it responds to the internal response of the human body to external stimulus. In this
paper, the virtual scene is used as the stimulus source to observe the SCR after stimulation
for verifying the performance of the EDA acquisition system. According to the instructions
of the experiment instructor, the subjects firstly wore HMD Bio Pad and then recorded
baseline EDA data for 20 s in a quiet room with temperature of 25 ◦C. Then subjects were
immersed in the virtual village scene for 60 s. During the process of scene playing, stimulus
events would appear regularly in the scene. The experimental paradigm and scene are
shown in Figure 13a. The EDA signal recorded in the experiment is shown in Figure 13b.
In this paper, the SCR extraction method mentioned in literature [33,34] is used to extract
SCR from the EDA signal. The process of calculating SCR is shown in Figure 13c. The EDA
raw data is first sampled down to 20 Hz, then differentiated, and the differentiated signal
is convolved with the 20 points Barlett window. The SCR signal is shown in Figure 13d,
and the red dotted line represents the moment when the triggering event occurs. It can be
seen from the figure that the SCR occurs after a few seconds of the stimulus event, which is
consistent with the conditions of SCR generation described in literature [34]. This indicates
that the EDA acquisition system can correctly collect EDA signal and extract SCR signal
related to stimulus response from EDA signal, which verifies the feasibility of the EDA
acquisition system.

Down-sampling

20Hz
Differentitation

Convolution with 

Barrtlett(20)

EDA raw data

(a) (b)

(c) (d)

SCR

Rest

Immersing in VR scene    60s 5s
15s

Baseline

SCRs

Figure 13. An example of SCR extraction: (a) Experimental paradigm of EDA acquisition. (b) An
example of raw data of EDA under emotional stimulation. (c) Block diagram of SCR detection
module. (d) SCR extraction from (b) using (c) method.

5.4. SKT Acquisition System Evaluation

As mentioned above, we use a contact temperature sensor (LMT70) for skin temper-
ature (SKT) acquisition. Numerous studies have showed that unpleasant emotions like
sadness, fear, anxiety may cause the decreasing of SKT temperature [1,35]. In order to
validate the performance of SKT acquisition system, we designed a experimental to observe
SKT of subjects who immersed in the sadness VR scene. The experimental paradigm is
designed according to the literature [1] and showed in Figure 14a. The subjects firstly wore
HMD Bio Pad and then waited a few seconds until the temperature stabilized in a quiet
room with room temperature of 25 ◦C. Next, we recorded 20 s baseline data, 60 s immersing
in sadness VR scene data, followed by 90 s resting data allowing the thermal response to
build up.



Sensors 2022, 22, 142 16 of 19

The collected SKT data are smoothed using a three point moving average algorithm
with 3 weights (0.8, 0.1, 0.1). A SKT response example when the subject immersed in the
sadness ruin scene is shown in Figure 14b. It can be seen that the SKT of the subject firstly
keep stable in the baseline. Then the SKT decreases about 0.2 ◦C between the beginning and
the end of stimulation. Finally, the SKT rises after the stimulations. The SKT change curve
is consistent with the conclusion that SKT decreases in unpleasant scenes in literature [1].
Therefore, the proposed SKT acquisition system can correctly collect the SKT changes in
the negative emotional scenes, which verifies the feasibility of the system.

Baseline

20 seconds

Rest

90 seconds

Sadness scene

60 seconds

Time

(a) (b)

VR scene

onset

VR scene

offset

Figure 14. An example of SKT acquisition under emotional stimulation: (a) Experimental paradigm
of SKT acquisition. (b) An example of SKT under emotional stimulation.

5.5. PPG Acquisition System Evaluation

Pulse rate (PR) is an important reference feature in the research of emotion recognition.
In view of the random swing of the head and movement of the body in the virtual envi-
ronments, the light path of the PPG sensor illuminating the skin will change irregularly,
leading to light leakage phenomenon. Therefore, the reflected light intensity contains
random interference, which makes the collected PPG signal contain motion artifact (MA).
In this paper, the method proposed in literature [36], which used the parallel RLS adaptive
filtering algorithm with acceleration signal as reference signal is adopted to attenuate MA.
Then the spectral peak tracking with verification based on the FFT method is used to esti-
mate PR value. Eight heart-healthy subjects were immersed in VR scenes of joy, calmness,
sadness and fear for 60 s. Each scene was separated by 30 s (relaxation music), and a
total of 6 min of data were collected. The two-channel PPG signals, tri-axis acceleration
signals and one-channel ECG signal using wet electrodes firmly attached on the chest were
recorded simultaneously by HMD Bio Pad (reserved ECG analog channel). The function of
the one-channel ECG signal was applied to extract the heart rate (HR) value, which was
used as ground-truth value. We estimated PR in 8 s for each time window. There are 6 s
overlaps between the successive time windows. After the calculation, about 180 windows
of PR could be recorded in each recording. In this paper, we evaluate the performance of
our method using the average absolute error (AAE), Bland-Altman plot and Scatter plot.
The mean average absolute error (AAE) is defined as

AAE =
1

W

W

∑
i=1
|PRest(i)− PRtrue(i)|, (16)

where W represents the number of time windows and PRest(i) represents the estimated
PR in the i-th time window using our proposed method. The ground-truth PR PRtrue is
extracted from the simultaneous ECG signal in each time window.

Table 3 shows the mean AAE of PR for each subject using the parallel RLS algorithm
calculation. As can be seen from the Table 3, the mean AAE of the 8 recordings is 1.12± 1.53.
Figure 15a shows the Bland-Altman plot, the limit of agreement (LOA) is [−4.23,3.70] BPM
which shows that 95% data exist within 1.96σ from mean. Figure 15b shows the Pearson
correlation plot over 8 recordings. The Pearson correlation is 0.960. It can be seen from the
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above results that the PR value can be accurately estimated from the collected forehead
PPG signal by PPG acquisition system with the method of literature [36].

Table 3. AAE in BPM used algorithm structure in [36].

Recording # 1 2 3 4 5 6 7 8 µAAE ± SD

Parallel RLS [36] 1.75 1.31 1.01 1.15 1.20 0.85 0.57 1.10 1.12 ± 1.53

(a) (b)

Figure 15. The Bland-Altman plot and Scatter plot: (a) Bland-Altman plot over 8 recordings. (b) Scat-
ter plot between the ground-truth and the estimated PR values over 8 recordings.

5.6. Software

The application of the HCI interface, including data visualization interface, the emo-
tional experiment paradigm setting, and the emotion recognition modeling interface have
been tested and evaluated. The real-time bio-signals in the data visualization interface can
be correctly displayed and stored in the local file. The emotion experimental paradigm
setting can correctly play the experimental scene, set the experimental scene duration
and interval time parameters after testing. The emotion recognition modeling interface
can easily perform pre-processing, feature extraction, feature dimension reduction and
feature classification for multimodal bio-signals. The model after training can also be
correctly imported into the real-time emotion recognition system to determine the current
emotional state.

6. Conclusions

In this paper, a wearable multimodal bio-signals acquisition system called HMD Bio
Pad is developed. The HMD Bio Pad is connected to the VR HMD using a velcro fastener,
and the multimodal bio-signals acquired from the forehead are transmitted to the HCI
interface via BLE. Metal dry electrodes were used to record EEG signals in FP1 and FP2 area.
The consistency of EEG signal with eyes blink between HMD Bio Pad and Biopac is verified
by eyes-blink task. The eyes-open and eyes-closed task indicates that the power spectral
density of alpha rhythm in the frequency range of 8 to 13 Hz with eyes closed state is much
higher than that with eyes open state. The above two tasks show that the EEG acquisition
system designed in this paper is feasible. The feasibility of EDA acquisition system is
proved from the SNR and the SCR extracted from EDA signal after stimulation. The SKT
acquisition system can monitor the SKT changes of subjects in the unpleasant scene. Real-
time PR value is estimated from the collected forehead PPG signal. According to the results,
the mean AAE of PR is 1.12 ± 1.53 among 8 recordings. The above results show that the
proposed HMD Bio Pad can effectively record multimodal bio-signals. At the same time,
the functions of HCI interface software are tested, and the results indicate that the software
can correctly perform all functions. In future work, we will incorporate more bio-signals
related to emotion recognition into HMD Bio Pad such as EMG, electrooculography (EOG)
and oxyhemoglobin saturation (SpO2).
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