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Abstract: In this paper, we propose a novel filtering method based on deep attention networks for
the quality enhancement of light field (LF) images captured by plenoptic cameras and compressed
using the High Efficiency Video Coding (HEVC) standard. The proposed architecture was built using
efficient complex processing blocks and novel attention-based residual blocks. The network takes
advantage of the macro-pixel (MP) structure, specific to LF images, and processes each reconstructed
MP in the luminance (Y) channel. The input patch is represented as a tensor that collects, from an
MP neighbourhood, four Epipolar Plane Images (EPIs) at four different angles. The experimental
results on a common LF image database showed high improvements over HEVC in terms of the
structural similarity index (SSIM), with an average Y-Bjøntegaard Delta (BD)-rate savings of 36.57%,
and an average Y-BD-PSNR improvement of 2.301 dB. Increased performance was achieved when the
HEVC built-in filtering methods were skipped. The visual results illustrate that the enhanced image
contains sharper edges and more texture details. The ablation study provides two robust solutions to
reduce the inference time by 44.6% and the network complexity by 74.7%. The results demonstrate
the potential of attention networks for the quality enhancement of LF images encoded by HEVC.

Keywords: attention network; quality enhancement; light field images; video coding

1. Introduction

In recent years, the technological breakthroughs in the sensor domain have made
possible the development of new camera systems with steadily increasing resolutions and
affordable prices for users. In contrast to conventional Red-Green-Blue (RGB) cameras,
which only capture light intensity, plenoptic cameras provide the unique ability of distin-
guishing between the light rays that hit the camera sensor from different directions using
microlens technology. To this end, the main lens of plenoptic cameras focus light rays
onto a microlens plane, and each microlens captures the incoming light rays from different
angles and directs them onto the camera sensor.

For each microlens, a camera sensor produces a so-called Macro-Pixel (MP). The raw
LF image contains the entire information captured by the camera sensor, where the array
of microlenses generates a corresponding array of MPs, a structure also known as lenslet
images. Since each pixel in the MP corresponds to a specific direction of the incoming light,
the lenslet image is typically arranged as an array of SubAperture Images (SAIs), where
each SAI collects, from all MPs, one pixel at a specific position corresponding to a specific
direction of the incoming light. The captured LF image can, thus, be represented as an
array of SAIs corresponding to a camera array with a narrow baseline.

LF cameras have proven to be efficient passive devices for depth estimation. A broad
variety of depth estimation techniques based on LF cameras have been proposed in the
literature, including multi-stereo techniques [1,2], artificial intelligence-based methods [3]
as well as combinations of multi-stereo and artificial intelligence-based techniques [4].
Accurately estimating depth is of paramount importance in view synthesis [5] and 3D
reconstruction [6,7].
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The LF domain was intensively studied during recent decades, and many solutions
were proposed for each module in the LF processing pipeline, such as LF acquisition,
representation, rendering, display, and LF coding. The LF coding approaches are usually
divided into two major classes, including transform-based approaches and predictive-
based approaches, depending on which module in the image or video codec is responsible
for exploiting the LF correlations.

The transform-based approaches are designed to apply a specific type of transform,
such as Discrete Cosine Transform [8,9], Discrete Wavelet Transform [10,11], Karhunen
Loéve Transform [12,13], or Graph Fourier Transform [14,15], to exploit the LF correlations.

However, the predictive-based approaches received more attention as they propose
a more straightforward solution where different prediction methods are proposed to
take advantage of the LF structure. These approaches propose to exploit the correlations
between the SAIs using the coding tools in the High Efficiency Video Coding (HEVC)
standard [16].

The pseudo-video-sequence-based approach proposes to select a set of evenly dis-
tributed SAIs as intra-coded frames and the remaining SAIs as inter-coded frames,
e.g., [17,18]. In [19,20], the non-local spatial correlation is exploited when using the lenslet
representation. The view-synthesis-based approach proposes to encode only a sparse set of
reference SAIs and additional geometry information and then to synthesize the remaining
SAIs at the decoder side [21,22]. In this work, we first employ HEVC [16] to encode the
SAI video sequence and then to enhance the reconstructed lenslet image. The proposed
Convolutional Neural Network (CNN)-based filtering method can be used to post-process
any HEVC-based solution.

The attention mechanism was first proposed in the machine translation domain [23].
The main idea is that instead of building a single context vector, it is better to create
weighted shortcuts between the context vector and the entire source input. This revo-
lutionary concept now provides outstanding improvements in different domains, such
as hyperspectral image classification [24], deblurring [25], image super-resolution [26],
traffic sign recognition [27], and small object detection [28], to name a few. Many different
network architectures have leveraged the attention mechanism to significantly improve
over the state-of-the-art. In this work, an attention-based residual block is introduced to
help the architecture learn and focus more on the most important information in the current
MP context.

In our prior work, research efforts were invested to provide innovative solutions for
LF coding based on efficient Deep-Learning (DL)-based prediction methods [20,29–32]
and CNN-based filtering methods for quality enhancement [33,34]. In [29], we introduced
a lossless codec for LF images based on context modeling of SAI images. In [30], we
proposed an MP prediction method based on neural networks for the lossless compression
of LF images.

In [31], we proposed to employ a DL-based method to synthesize an entire LF image
based on different configurations of reference SAIs and then to employ an MP-wise predic-
tion method to losslessly encode the remaining views. In [32], we proposed a residual-error
prediction method based on deep learning and a context-tree based bit-plane codec, where
the experimental evaluation was carried out on photographic images, LF images, and
video sequences. In [20], the MP was used as an elementary coding unit instead of HEVC’s
traditional block-based coding structure for lossy compression of LF images. In recent
work, we focused on researching novel CNN-based filtering methods.

In [33], we proposed a frame-wise CNN-based filtering method for enhancing the
quality of HEVC-decoded videos. In [34], we proposed an MP-wise CNN-based filtering
method for the quality enhancement of LF images. The goal of this paper is to further
advance our findings in [34] by introducing a novel filtering method based on attention
networks, where the proposed architecture is built based on efficient processing blocks
and attention-based residual blocks and operates on Epipolar Plane Images (EPI)-based
input patches.
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In summary, the novel contributions of this paper are as follows:

(1) A novel CNN-based filtering method is proposed for enhancing the quality of LF
images encoded using HEVC [16].

(2) A novel neural network architecture design for the quality enhancement of LF images
is proposed using an efficient complex Processing Block (PB) and a novel Attention-
based Residual Block (ARB).

(3) The proposed CNN-based filtering method follows an MP-wise filtering approach to
take advantage of the specific LF structure.

(4) The input patch is designed as a tensor of four MP volumes corresponding to four
EPIs at four different angles (0◦, 45◦, 90◦, and 135◦).

(5) The elaborated experimental validation carried out on the EPFL LF dataset [35]
demonstrates the potential of attention networks for the quality enhancement of
LF images.

The remainder of this paper is organized as follows. Section 2 presents an overview
of the state-of-the-art methods for quality enhancement. In Section 3, we describe the
proposed CNN-based filtering method. Section 4 presents the experimental validation on
LF images. Finally, in Section 5, we draw our conclusions from this work.

2. Related Work

In recent years, many coding solutions based on machine learning techniques have
rapidly gained popularity by proposing to simply replace specific task-oriented coding tools
in the HEVC coding framework [16] with powerful DL-based equivalents. The filtering
task was widely studied, and many DL-based filtering tools for quality enhancement were
introduced to reduce the effects of coding artifacts in the reconstructed video.

The first DL-based quality enhancement tools were proposed for image post-filtering.
In [36], the Artifact Reduction CNN (AR-CNN) architecture was proposed to reduce
the effect of the coding artifacts in JPEG compressed images. In [37], a more complex
architecture with hierarchical skip connections was proposed. A dual (pixel and transform)
domain-based filtering method was proposed in [38]. A discriminator loss, as in Generative
Adversarial Networks (GANs), was proposed in [39]. An iterative post-filtering method
based on a recurrent neural network was proposed in [40].

Inspired by AR-CNN [36], the Variable-filter-size Residue-learning CNN (VRCNN)
architecture was proposed in [41]. The inter-picture correlation is used by processing
multiple neighboring frames to enhance one frame using a CNN [42]. In [43], the authors
proposed to make use of mean- and boundary-based masks generated by HEVC parti-
tioning. In [44], a CNN processes the intra prediction signal and the decoded residual
signal. In [45], a CNN processes the QP value and the decoded frame. In [46], the CNN
operates on input patches designed based on additional information extracted from the
HEVC decoder, which specifies the current QP value and the CU partitioning maps.

In another approach, the authors proposed to replace the HEVC built-in in-loop
filtering, the Deblocking Filter (DBF) [47], and the Sample Adaptive Offset (SAO) [48]. This
is a more demanding task as, in this case, the filtered frame enters the coding loop and
serves as a reference to other frames. In [49], a CNN was used to replace the SAO filter.
Similarly, in [50], a deep CNN was applied after SAO and was controlled by the frame-
and coding tree unit (CTU)-level flags.

In [51], the authors used a deep residual network to estimate the lost details. In [52],
the Multistage Attention CNN (MACNN) architecture was introduced to replace the HEVC
in-loop filters. Other coding solutions focus on inserting new filtering blocks in the HEVC
framework. In [53], an adaptive, in-loop filtering algorithm was proposed using an image
nonlocal prior, which collaborates with the existing DBF and SAO in HEVC. In [54], a
residual highway CNN (RHCNN) was applied after the SAO filter. In [55], a content-aware
CNN-based in-loop filtering method was integrated in HEVC after the SAO built-in filter.

In this work, we propose to employ the attention mechanism for the quality en-
hancement of LF images (represented as lenslet images) by following an MP-wise filtering
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approach. Our experiments show that an increased coding performance was achieved
when the SAI video sequence was encoded by running HEVC without its built-in filtering
methods, DBF [47] and SAO [48].

3. Proposed Method

In the literature, the LF image is usually represented as a 5D structure denoted by
LF(p, q, x, y, c), where the (p, q) pair denotes the pixel location in an MP matrix, usually of
N × N resolution; the (x, y) pair denotes the pixel location in an SAI matrix of size W × H;
and c denotes the primary color channel, c = 1, 2, 3. Let us denote MPx,y = LF(:, :, x, y, c)
as the MP captured by the microlens at position (x, y) in the microlens array; SAIp,q =
LF(p, q, :, :, c) as the SAI corresponding to view (p, q) in the SAI stack; and LL as the lenslet
image of size NH × NW, which is defined as follows:

LL((x− 1)N + 1 : xN, (y− 1)N + 1 : yN, c) = MPx,y, ∀x = 1 : W, ∀y = 1 : H. (1)

The experiments were conducted using the EPFL LF dataset [35] where N = 15 and
W × H = 625× 434. The LF images were first color-transformed from the RGB color-space
to the YUV color-space, and only the Y (luminance) channel was enhanced. Therefore,
c = 1 and MPx,y were of size 15× 15.

In this paper, a novel CNN-based filtering method is proposed to enhance the quality
of LF images encoded using the HEVC video coding standard [16]. Figure 1 depicts the
proposed CNN-based filtering scheme. The LF image, represented as an array of SAIs,
is first arranged as an SAI video sequence and then encoded by the reference software
implementation of HEVC called HM (HEVC Test Model) [56] under the All Intra (AI)
profile [57]. Any profile can be used to encode the SAI video sequence as the proposed
CNN-based filtering scheme is applied to the entire SAI video sequence. Therefore, in this
work, a raster scan order is used to generate the SAI video sequence, while in the literature,
a spiral order starting from the center view and looping in a clockwise manner towards
the edge views is used to generate the SAI video sequence. Next, the reconstructed SAI
sequence is arranged as a lenslet image using Equation (1), and EPI-based input patches
were extracted from the reconstructed lenslet image, see Section 3.1.
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Figure 1. The proposed CNN-based filtering scheme. (Top) Compression: The LF Image (represented
as an array of SAI) is arranged as a SAI video sequence and then encoded by HEVC. (Bottom) Quality
Enhancement: The reconstructed sequence is arranged as a lenslet image (represented as an array
of MPs) and each MP is enhanced by the proposed CNN-based filtering method using an AEQE-
CNN model.

A CNN model with the proposed novel deep neural architecture called Attention-
aware EPI-based Quality Enhancement Convolutional Neural Network (AEQE-CNN),
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see Section 3.2, processed the input patches to enhance the MPs and obtain the enhanced
lenslet image. Finally, the enhanced lenslet image is arranged as a LF image to be easily
consumed by users.

Section 3.1 presents the proposed algorithm used to extract the EPI-based input
patches. Section 3.2 describes in detail the network design of the proposed AEQE-CNN
architecture. Section 3.3 presents the training details.

3.1. Input Patch

In this paper, input patches of size 15× 15× 9× 4 were extracted from the recon-
structed lenslet image. More exactly, the input patch concatenated four EPIs corresponding
to 0◦ (horizontal EPI), 45◦ (first diagonal EPI), 90◦ (vertical EPI), and 135◦ (second diagonal
EPI) from the MP neighbourhood of b = 4 MPs around the current MP, as depicted in
Figure 2. Let us denoteNx,y as the MP neighbourhood around the current MP, MPx,y, where

Nx,y =



MPx−b,y−b . . . MPx−b,y . . . MPx−b,y+b
...

...
...

MPx,y−b . . . MPx,y . . . MPx,y+b
...

...
...

MPx+b,y−b . . . MPx+b,y . . . MPx+b,y+b

. (2)

Four EPIs of size N× N× (2b + 1) = 15× 15× 9 were extracted fromNx,y as follows:

(1) The 0◦ EPI of MP volume: [MPx,y−b MPx,y−b+1 . . . MPx,y+b];
(2) The 45◦ EPI of MP volume: [MPx−b,y−b MPx−b+1,y−b+1 . . . MPx+b,y+b];
(3) The 90◦ EPI of MP volume: [MPx−b,y MPx−b+1,y . . . MPx+b,y]; and
(4) The 135◦ EPI of MP volume: [MPx+b,y−b MPx+(b−1),y−(b−1) . . . MPx−b,y+b].
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Figure 2. Extraction of the EPI-based input patch from the lenslet image represented as an array of
MPs. Four EPIs are selected: 0◦ (horizontal) EPI marked with red, 45◦ (first diagonal) EPI marked
with cyan, 90◦ (vertical) EPI marked with blue, and 135◦ (second diagonal) EPI marked with green.
The current MP is marked with black.

The four EPIs were processed separately by the AEQE-CNN architecture as described
in the following section.
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3.2. Network Design

Figure 3 depicts the proposed deep neural network architecture. AEQE-CNN is
designed to process the EPI-based input patches using efficient processing blocks and
attention-based residual blocks. 3D Convolutional layers (Conv3D) equipped with 3× 3× 3
kernels are used throughout the network architecture.

AEQE-CNN was built using the following types of blocks depicted in Figure 4: (i) the
Convolutional Block (CB) contains a sequence of one Conv3D, one batch normalization
(BN) layer [58], and one Rectified Linear Unit (ReLU) activation function; (ii) the proposed
Processing Block (PB) contains a two branch design with one and two CB blocks where
the feature maps of the two branches are concatenated to obtain the output feature maps;
(iii) the proposed Attention-based Residual Block (APB) contains a sequence of two PB
blocks and one Convolutional Block Attention Module (CBAM), see Figure 5, and a skip
connection to process the current patch.
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Figure 3. The proposed network architecture called Attention-aware EPI-based Quality Enhancement
Convolutional Neural Network (AEQE-CNN).
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Figure 3 shows that the AEQE-CNN architecture processes the EPI-based input patch
using three stages. In the first stage, called EPI Pre-Processing, the MP volume correspond-
ing to an EPI is processed using one CB block and one PB block, each equipped with N/2
filters, to extract the EPI feature maps, which are then concatenated and further processed
by CB5 and PB5, which are both equipped with N filters. CB5 uses the stride s = (1, 1, 3) to
reduce the current patch resolution from 15× 15× 9 to 15× 15× 3 to decrease the inference
time and to reduce the MP neighbourhood from 9 MPs to 3 MPs.

In the second stage, called Attention-based Residual Processing, a sequence of four
APB blocks with N filters are used to further process the patch and extract the final feature
maps of size 15× 15× N. The final stage, called CNN Refinement Computation, is used to
extract the final CNN-refinement using one Conv3D layer with ReLU activation and one
Conv2D layer (equipped with a 3× 3 kernel) with one filter. The CNN-refinement is then
added to the currently reconstructed MP to obtain the enhanced MP.

In this paper, we propose to employ an attention-based module designed based on the
CBAM module introduced in [59]. Figure 5 depicts the layer structure of CBAM. CBAM
proposes the use of both channel attention and spatial attention. The channel attention
uses the shared weights of two dense layers to process the two feature vectors extracted
using global average pooling and global maximum pooling, respectively. The spatial
attention uses a Conv3D layer to process the feature maps extracted using average pooling
and maximum pooling. The two types of attention maps are obtained using a sigmoid
activation layer and then applied in turn using a multiplication layer. The CBAM block was
proposed in [59] for the processing of two-dimensional patches, while, here, the CBAM
design was modified to be applied to MP volumes (three-dimensional patches).

3.3. Training Details

The AEQE-CNN models were trained using the Mean Squared Error (MSE) loss
function equipped with an `2 regularization procedure to prevent model over-fitting. Let
us denote: ΘAEQE-CNN as the set of all learned parameters of the AEQE-CNN model; X(i)

as the i-th EPI-based input patch in the training set of size 15× 15× 9× 4; and Y(i) as the
corresponding MP in the original LF image of size 15× 15. Let F(·) be the function that
processes X(i) using ΘAEQE-CNN to compute the enhanced MP as Ŷ(i) = F(X(i), ΘAEQE-CNN).
The loss function is formulated as follows:

L(ΘAEQE-CNN) =
1
L

L

∑
i=1
‖vec(Y(i))− vec(Ŷ(i))‖2

2 + λ||ΘAEQE-CNN||22, (3)

where L is the number of input patches, λ is the regularization term that is set empiri-
cally as λ = 0.001, and vec is the vectorization operator. Here, the Adam optimization
algorithm [60] is employed.
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By setting N = 32, the AEQE-CNN models contain 782,661 parameters that must
be trained. Experiments using a more lightweight AEQE-CNN architecture were also
performed, see Section 4.4. Version HM 16.18 of the reference software implementation
is used for the HEVC codec [16]. Note that other software implementations of HEVC,
such as FFmpeg [61], Kvazaar [62], and OpenHEVC [63,64] are available; however, in this
work, the reference software implementation of HEVC was used due to its high popularity
within the research community. The proposed CNN-based filtering method trained four
AEQE-CNN models, one for each of the four standard QP values, QP = {22, 27, 32, 37}.

The proposed neural network was implemented in the Python programming language
using the Keras open-source deep-learning library, and was run on a machine equipped
with Titan Xp Graphical Processing Units (GPUs).

In our previous work [33,34], the experimental results showed that an improved
performance was obtained when HEVC was modified to skip its built-in in-loop filters,
DBF [47] and SAO [48]. Therefore, here, four models were trained using EPI-based input
patches extracted from reconstructed LF images obtained by running HEVC with its built-in
in-loop filters, called AEQE-CNN + DBF&SAO, and four models were trained using EPI-
based input patches extracted from reconstructed LF images obtained by running HEVC
without its built-in in-loop filters, called AEQE-CNN. This training strategy demonstrates
that the proposed CNN-based filtering method can be integrated into video coding systems
where no modifications to the HEVC anchor are allowed.

The proposed AEQE-CNN architecture differs from our previous architecture design
named MP-wise quality enhancement CNN (MPQE-CNN) [34] as follows. MPQE-CNN
operates on MP volumes extracted from the closest 3× 3 MP neighbourhood, while AEQE-
CNN operates on EPI-based input patches extracted from an 9× 9 MP neighbourhood.
MPQE-CNN follows a multi-resolution design with simple CB blocks, while AEQE-CNN
follows a design of multi-EPI branch processing and sequential residual block processing
built based on more efficient PB blocks and novel attention-aware ARB blocks.

4. Experimental Validation

Section 4.1 describes the experimental setup used to compare the proposed CNN-
based filtering method with the state-of-the-art methods. Section 4.2 illustrates the experi-
mental results obtained over the test. Section 4.3 presents the visual results of the proposed
CNN-based filtering method in comparison with the HEVC anchor. Finally, Section 4.4
presents an ablation study that analyses the possibility to reduce the network complexity
and runtime using different approaches.

4.1. Experimental Setup

LF image Dataset. The experimental validation was carried out on the EPFL LF
dataset [35], which contained 118 LF images in the RGB format, divided into 10 categories.
Similar to [34], here, only the first 8 bits of the RGB color channels were encoded, and,
similar to [29], 32 corner SAIs (8 from each corner) were dropped from the array of SAIs as
they contained sparse information due to the shape of the microlens used by the plenoptic
camera. Since the SAIs were color-transformed to the YUV format and only the Y channel
was enhanced, the SAI video sequence contained 193 Y-frames. The closest frame resolution
that HEVC [16] accepted as input was W × H = 632× 440.

For a fair comparison with MPQE-CNN [34], the experiments were carried out on
the same Training set (10 LF images) and Test set (108 LF images) as defined in [34],
i.e., the Training set contained the following LF images: Black_Fence, Chain_link_fence_1,
ISO_chart_1, Houses_&_lake, Backlight_1, Broken_mirror, Bush, Fountain_&_Vincent_1, Anky-
losaurus_&_Diplodocus_1, and Bench_in_Paris. A total number of 625× 434× 10 = 2,712,500
EPI-based input patches were collected from the 10 training images, and a 90%–10% ratio
was used for splitting the training set into training−validation data. A batch size of 350
EPI-based input patches was used.
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Comparison with the state-of-the-art methods. The two proposed methods, AEQE-
CNN + DBF&SAO and AEQE-CNN, were compared with (i) the HEVC [16] anchor, denoted
by HEVC + DBF&SAO; (ii) the FQE-CNN architecture from [33] where each SAI in the LF
image was enhanced in turn; and (iii) the MPQE-CNN architecture from [34] based on a
similar MP-wise filtering approach. The distortion was measured using the Peak Signal-to-
Noise Ratio (PSNR) and the Structural Similarity Index Measure (SSIM) [65]. The standard
Bjøntegaard delta bitrate (BD-rate) savings and Bjøntegaard delta PSNR (BD-PSNR) im-
provement [66] were computed using the four standard QP values: QP = {22, 27, 32, 37}.

4.2. Experimental Results

Figure 6 shows the compression results over the test set (108 LF images) for the rate-
distortion curves computed as Y-PSNR-vs.-bitrate and SSIM-vs.-bitrate. Figure 7 shows the
Y-BD-PSNR and Y-BD-rate values computed for each LF image in the test set. The proposed
methods provide an improved performance compared with HEVC [16] + DBF&SAO, FQE-
CNN [33], and MPQE-CNN [34] at both low and high bitrates. The results show that
AEQE-CNN provided a small improvement over AEQE-CNN + DBF&SAO. The proposed
CNN-based filtering method was able to provide a large improvement even when no
modification was applied to the HEVC video codec.

Table 1 shows the average results obtained over the test set. AEQE-CNN provided
Y-BD-rate savings of 36.57% and Y-BD-PSNR improvements of 2.301 dB over HEVC [16],
i.e., a more than 40% improvement was achieved compared with MPQE-CNN [33].

Table 1. Average results obtained over the test set.

Method
Bjøntegaard Metric

Y-BD-PSNR (dB) Y-BD-Rate (%)

FQE-CNN [33] 0.4515 −9.1921
MPQE-CNN [34] 1.5478 −25.5285
AEQE-CNN + DBF&SAO 2.2044 −35.3142
AEQE-CNN 2.3006 −36.5713

Figure 8 shows the Rate-Distortion (RD) results for three randomly selected LF images
in the test set, Chain_link_fence_2, Flowers, and Palais_du_Luxembourg. AEQE-CNN provided
an Y-BD-PSNR improvement of around 2 dB at both low and high bitrates. The SSIM-
vs.-bitrate results show that the visual quality at low bitrates was highly improved of
around 0.08.
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Figure 6. The Rate-Distortion results over the test set. (a) Y-PSNR-vs.-bitrate. (b) SSIM-
vs.-bitrate.
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Figure 7. The Bjøntegaard metric results for every LF image in the test set: (a) Y-BD-PSNR
gains (dB); (b) Y-BD-rate savings (%).
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Figure 8. The Rate-Distortion results for three LF images in the test set. (a) Y-PSNR-vs.-bitrate for
Chain_link_fence_2; (b) SSIM-vs.-bitrate for Chain_link_fence_2; (c) Y-PSNR-vs.-bitrate for Flowers;
(d) SSIM-vs.-bitrate for Flowers; (e) Y-PSNR-vs.-bitrate for Palais_du_Luxembourg; (f) SSIM-vs.-bitrate
for Palais_du_Luxembourg.

4.3. Visual Results

Figure 9 shows the pseudo-coloured image comparison between AEQE-CNN and
HEVC [16] + DBF&SAO for two LF images in the test set, Chain_link_fence_2 and Flow-
ers. The green, blue, and red pixels mark the positions where AEQE-CNN provided an
improved, similar, and worse performance, respectively, compared with HEVC [16] +
DBF&SAO anchor. Green is the dominant color, which shows that AEQE-CNN enhanced
the quality of almost all pixels in the LF image.
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(a)

(b)

Figure 9. Pseudo-coloured image comparison between AEQE-CNN and HEVC [16] + DBF&SAO
based on the absolute reconstruction error for the center SAI at position (p, q) = (8, 8), and for
QP = 37. Green marks the pixel positions where AEQE-CNN achieved better performance. Blue
marks the pixel positions where the two methods had the same performance. Red marks pixels
where HEVC [16] + DBF&SAO achieved better performance. The cyan rectangle marks an image area
shown zoomed-in at the top-left corner and the corresponding Y channel in Figure 10. The results for
two LF images in the test set: (a) Chain_link_fence_2; (b) Flowers.
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Figure 10 shows the visual result comparison between AEQE-CNN and HEVC [16] +
DBF&SAO for the corresponding Y channel of the two zoomed-in image areas marked by
cyan rectangles in Figure 9. AEQE-CNN provided much sharper image edges and added
more details to the image textures.
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Figure 10. Visual comparison between AEQE-CNN and HEVC [16] + DBF&SAO for the Y channel of
the zoomed-in image area marked by the cyan rectangle in Figure 9 above.

4.4. Ablation Study

In this work, we also studied the possibility to reduce the network complexity and
runtime using two different approaches. In the first approach, an architecture variation
of AEQE-CNN was generated by halving the number of channels used throughout the
architecture by the 3D Convolution layers from N = 32 to N = 16. This first AEQE-CNN
architecture variation is called AEQE-CNN [N=16]. In the second approach, the size of
the MP neighbourhood, Nx,y (see Section 3.1), was reduced from 9× 9 MPs (i.e., b = 4) to
3× 3 MPs (i.e., b = 1).

More precisely, the same neighbourhood window as in [34] was used here with the goal
of evaluating the influence of the size of the MP neighbourhood in the final enhancement
results. In this case, the EPI volumes were of the size 15× 15× 3; therefore, the CB5 block
in the AEQE-CNN architecture (see Figure 3) used a default stride of s′ = (1, 1, 1) instead
of s = (1, 1, 3). This second AEQE-CNN architecture variation is called AEQE-CNN [3×3].

Table 2 shows the average results obtained over the test set for the three AEQE-CNN
architectures. The AEQE-CNN provided the best performance using the highest complexity
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and runtime. The network variations corresponding to the two approaches for complexity
reduction still provided a better performance compared with the state-of-the-art methods
and a close performance to AEQE-CNN. AEQE-CNN [N=16] offered a reduction of 44.6%
in the inference runtime and a reduction of 74.7% in the network complexity, with a drop
in the average performance of only 8.93% in Y-BD-PSNR and 3.59% in Y-BD-Rate.

Table 2. The average results obtained over the test set for the three AEQE-CNN network variations.

Method
Bjøntegaard Metric Nr. of Trained Inference Time

Y-BD-PSNR Y-BD-Rate Parameters Per Img.

AEQE-CNN [N=16] 2.0954 dB −35.2581% 197,661 (−74.7%) 98 s (−44.6%)
AEQE-CNN [3×3] 2.0799 dB −35.0914% 782,661 105 s (−40.7%)
AEQE-CNN 2.3006 dB −36.5713% 782,661 177 s

AEQE-CNN [3×3] offered a reduction of 40.7% in the inference runtime, with a drop
in the average performance of only 9.6% in Y-BD-PSNR and of 4.05% in Y-BD-Rate. The
ablation study demonstrate that AEQE-CNN [3×3] provided a large reduction in the
network complexity and inference runtime while accepting a small performance drop
compared with AEQE-CNN.

Figure 11 shows the rate-distortion curves computed over the test set for AEQE-
CNN [N=16], AEQE-CNN [3×3], and AEQE-CNN. The results demonstrate again that
the two network variations provided a close performance to AEQE-CNN. The perfor-
mance dropped with less than 0.2 dB at low and high bitrates for the two architecture
variations. The results obtained by AEQE-CNN [3×3] demonstrate that the proposed
AEQE-CNN architecture, built using the PB and ARB blocks, provided an improved per-
formance compared with the MPQE-CNN architecture [34] when operating on the same
MP neighbourhood.
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Figure 11. The Rate-Distortion results over the test set for the three network variations. (a) Y-PSNR-vs.-bitrate.
(b) SSIM-vs.-bitrate.

Figure 12 shows the results of the Bjøntegaard metrics, Y-BD-PSNR and Y-BD-rate,
computed for each LF image in the test set. The results demonstrate again that the two
network variations provided a close performance to AEQE-CNN.



Sensors 2021, 21, 3246 16 of 19

0 10 20 30 40 50 60 70 80 90 100

Sorted file index

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Y
-B

D
-P

S
N

R
 (

d
B

)

AEQE-CNN [N=16]

AEQE-CNN [3x3]

AEQE-CNN

(a)

0 10 20 30 40 50 60 70 80 90 100

Sorted file index

-45

-40

-35

-30

-25

-20

-15

-10

Y
-B

D
-R

a
te

 (
%

)

AEQE-CNN [N=16]

AEQE-CNN [3x3]

AEQE-CNN

(b)

Figure 12. Bjøntegaard metrics results for every LF image in test set for the three network variations: (a) Y-BD-PSNR gains;
(b) Y-BD-Rate savings.

5. Conclusions

In this paper, we proposed a novel CNN-based filtering method for the quality en-
hancement of LF images compressed by HEVC. The proposed architecture, AEQE-CNN,
was built using novel layer structure blocks, such as complex processing blocks and
attention-based residual blocks. AEQE-CNN operated on an EPI-based input patch ex-
tracted from an MP neighbourhood of 9 × 9 MPs and followed an MP-wise filtering
approach that was specific to LF images. Similar to previous research works, the proposed
AEQE-CNN filtering method provided an increased performance when the conventional
HEVC built-in filtering methods were skipped. The results demonstrate the high potential
of attention networks for the quality enhancement of LF images.

In our future work, we plan to study different strategies to reduce the inference
runtime using lightweight neural network architectures, and to employ the CNN-based
filtering method to enhance the quality of the light field images compressed using other
video codecs, such as AV1 and VVC.
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