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Abstract: The beneficial effects of adopting a triangular lattice on phased arrays with regular and
periodic grids for high-altitude platform station (HAPS) systems are presented in the scenario
of massive MIMO communications operating within the 5G NR n257 and n258 frequency bands.
Assessment of a planar array with 64 elements (8 × 8) is provided for both a triangular lattice and a
square one in terms of array gain, average sidelobe level (ASLL), and mutual coupling. Particular
attention is devoted to illustrating the impact of the antenna array lattice at the system level by
evaluating its significant merits, such as its spectral efficiency (SE) and signal-to-interference ratio
(SIR). The better performance exhibited by the triangular lattice array in comparison to the square
one makes it appealing for the 5G massive MIMO paradigm.

Keywords: phased array; massive MIMO; 5G; wideband array; triangular grid

1. Introduction

The upcoming next generation (5G) of wireless communication networks is expected
to drastically improve overall system performance, such as data throughput and energy
efficiency [1,2]. Currently, in most wireless communication systems, the users inside a
sector cell are served through a base station, whose radiation pattern consists of a fixed
broad main beam. In this scenario, the wireless communications system turns out to be
inefficient from the energy point of view, since most of the base station (BS)’s radiated
signal propagates towards directions in which there are no users [3]. The exploitation
of larger frequency bandwidths and the deployment of more BSs to reduce the cell area
are adopted in order to tackle the ever-increasing data throughput. On the other hand,
in upcoming 5G wireless technology, improvement of the data throughput is guaranteed
mainly by massive multiple-input and multiple-output (MIMO) technology [4–6], which is
capable of serving multiple users simultaneously within the same time–frequency resource,
through a multibeam radiation pattern with a consequent increase in the spectral efficiency
(SE) of the system [2]. The coverage of users inside a sector cell is achieved through the
deployment of phased arrays with a massive number of antennas. These arrays are able to
provide advanced beamforming and beam tracking to generate multiple concurrent beams
that send the different streams of data allocated on the same time–frequency resource
to separate users [7]. In addition to radiation pattern optimization, a large-frequency
spectrum is pivotal for supporting communication links with increased data transmission
rates between the base station and the users. For this reason, the limited available spectrum
below 6 GHz no longer satisfies the system’s needs; consequently, the millimeter-wave (mm-
wave) band has recently drawn great attention for the next 5G wireless communications
systems [8–11].

The design of massive MIMO phased array antennas represents one of the most
challenging aspects to tackle in order to guarantee reliable performance. In fact, the array
performance in terms of gain, beam steering, peak sidelobe level (PSLL), antenna mutual
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coupling, and inter-element distance directly affects the quality of the overall wireless com-
munication. Some examples of antenna arrays for mm-wave communication are reported
in Reference [12]. In Reference [13], a 28 GHz phased array composed of 64 elements
(8 × 8) is described. Massive MIMO systems with 64 elements operating around 28 GHz
and 40 GHz were designed with fully digital beamforming in References [14,15]. Dual-
polarized phased array transceivers able to provide two concurrent independent beams,
and hence double the channel capacity, have also been proposed [16,17].

However, some obstacles prevent the achievement of both seamless and ubiquitous
wireless connectivity if only the terrestrial infrastructure is considered. In fact, terrestrial
ground stations cannot be deployed in off-grid or inaccessible areas, such as rural zones,
oceans, deserts, and generally harsh and remote environments. To this end, aerial wireless
communication based on the employment of high-altitude platform stations (HAPSs) will
play a paramount role in providing everywhere with access to the global network [18–20].
A HAPS consists of an unmanned aerial vehicle (UAV)—such as a gas-filled balloon, airship,
or aircraft—operating in the stratosphere at an altitude of around 20 km [21] (Figure 1).
HAPSs can be deployed in wireless communication networks with different topologies,
within which they act mainly as aerial relays or aerial base stations to help improve the
wireless communication [19]. In the former case, a HAPS collaborates with a ground BS
by offering an alternative reliable link between it and a ground user by forwarding the
data in case of a blockage between them. In the latter case, the HAPS acts as an aerial
base station by offering wide wireless connectivity between ground users and the core
network in the event of an inadequate terrestrial network or temporary ground station
malfunction or maintenance. Moreover, thanks to their rapid deployment, HAPSs can
assist in readily deploying communication networks after catastrophic events, such as
earthquakes [22,23]. Furthermore, HAPSs can act as reliable relays between terrestrial
users and CubeSats [24,25]—low Earth orbit (LEO) satellites—in order to form an airborne
communication network (ACN) [26,27].
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Figure 1. Examples of several scenarios where HAPSs can be exploited.

The antenna system certainly represents one of the most important factors for HAPSs
where reliable performance is concerned [28]. In Reference [29] a multibeam lens antenna
for a HAPS operating at L/S band is presented. A Ka-band phased array composed of



Sensors 2021, 21, 3202 3 of 20

256 open-ended substrate-integrated square waveguides and a 4-channel beamformer
circuit produced by Anokiwave was described in Reference [30].

In addition to the above-mentioned critical phased array aspects, another meaningful
parameter that has to be accurately investigated for large phased arrays at mm-wave is
the thermal aspect [31]. From the electromagnetic perspective, the most straightforward
way of improving the cooling performance to dissipate heat is to increase the distance
between the array elements. However, increasing the minimum distance between the
single radiators too much can degrade the PSLL, with the appearance of grating lobes
inside the visible region. This is detrimental to the signal-to-interference ratio (SIR) in
massive MIMO systems with multiuser communication within the same time–frequency
resource. Recently, a solution based on aperiodic antenna element arrangement capable
of reducing the PSLL inside a defined sector cell for massive MIMO systems has been
proposed in Reference [32]. However, the array aperiodicity considerably increases the
design complexity of the feeding network, as well as complicating the array calibration.

Most of the designed phased arrays with uniform lattices rely on square or rectangular
element grids, although a triangular lattice allows for an increase in the minimum antenna
distance, avoiding the onset of grating lobes [33,34]. Few examples of triangular lattice 5G
phased arrays are reported in the literature [35,36]. However, a comprehensive analysis
addressing the overall performance of massive MIMO systems, including SE and SIR,
has not been yet presented, although some recent studies have proven the advantages of
triangular lattice arrays over square and rectangular ones for 5G massive MIMO system
ground stations [37].

The previous mm-wave 5G phased antenna arrays were designed to operate in one
specific band, even if there are different frequency bands allocated to 5G mm-wave world-
wide. For this reason, it is advantageous to design phased arrays that can operate over
a wide band in order to allow for multistandard operation or exploit interband carrier
aggregation (CA) to enhance spectral efficiency [38].

In this paper, the beneficial effects of adopting a triangular lattice rather than a square
one are described and tested on a phased array for HAPS communications within both
the 5G New Radio (NR) n258 (24.25–27.5 GHz) and NR n257 (26.5–29.5 GHz) bands.
A thorough analysis of the overall system performance—including array gain, average
sidelobe level (ASLL), signal-to-interference ratio (SIR), and spectral efficiency (SSE)—is
carried out in order to demonstrate the effects of the employed array lattice. Furthermore,
the comparison to a planar array of 8×8 elements in terms of array gain, the minimum
distance between elements, and ASLL is presented in Section 2. Section 3 is devoted
to highlighting the superior robustness of triangular lattices for the antenna elements’
impedance variation during beam steering inside the sector when compared to square
lattices, via full-wave electromagnetic simulations. This represents a step forward with
respect to Reference [37], since it better quantifies the effects of mutual coupling and
matching efficiency (ηΓ). Massive MIMO metrics, such as SE and SIR, are evaluated in
Section 4, whilst conclusions are summarized in Section 5.

2. Triangular vs. Square Lattice Planar Arrays

The radiation pattern (RP) generated by a planar array with N×M elements in the
event of uniform amplitude excitation, and when neglecting the mutual coupling, is equal
to [39]:

RP(θ, φ) =
N−1
∑

n=0

M−1
∑

m=0
ejϕnm Enm(θ, φ) ejβF

F = xnm sin(θ) cos(φ) + ynm sin(θ) sin(φ)
(1)

where β = 2π/λ0 is the phase constant; Enm(θ,φ) represents the elements’ radiation pattern;
and ϕnm represents the phase associated with the (n,m)-th element necessary to steer
the main beam toward the desired direction (u0, v0), which depends on the element’s
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position (xnm, ynm) within the employed lattice. The relation between the phase ϕnm and
the element’s position (xnm, ynm) is given by the following equation:

ϕnm = β(xnmu0 + ynmv0)
u0 = sin(θ0) cos(φ0)
v0 = sin(θ0) sin(φ0)

(2)

The minimum distance between elements (d0) is a fundamental parameter for array
radiation performance. Furthermore, d0 should be selected in order to avoid the appearance
of grating lobes within the visible region during the beam steering inside the angular sector
selected to serve the users. In fact, high lateral lobes do not only provide a considerable
reduction in the maximum array gain, but also produce interference for all other users
served within the same time–frequency resource. In general, the maximum value of the
minimum distance between the antenna elements depends on the maximum steering angle
necessary to cover the area of interest.

The HAPS scenario differs from that of a 5G ground BS—whose coverage spans 30◦

in elevation and 120◦ in azimuth [37,40]—since a circular scan area turns out to be more
appropriate [18]. Therefore, it is assumed to cover an angular sector with a maximum
steering angle of 60◦ off broadside (–60 ≤ θ0 ≤ 60◦) for all φ angles (0 ≤ φ0 ≤ 180◦), as
shown in Figure 2 in the u–v plane.
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Figure 2. Circular sector cell in the u–v plane within which the HAPS antenna array has to steer the
main beam to serve the 5G users.

As stated before, most of the designed phased arrays with uniform lattices rely upon a
square arrangement of the antenna elements. In this case, the condition on d0 for avoiding
the appearance of grating lobes inside the visible region is given by:

d0 ≤
λHF

R + sin(θmax)
(3)

where λHF represents the wavelength evaluated at the highest frequency (i.e., 29.5 GHz);
θmax is the maximum antenna array steering angle, which is 60◦ for the considered circular
angular sector shown in Figure 2; and R is a real number that represents the distance in
the u–v plane between the closest grating lobes and the center of the visible region (u = 0,
v = 0). Therefore, in order to guarantee the absence of undesirable high lobes inside the
visible region, R has to be set to greater than 1.

In the case of an antenna array with uniform spacing but with a triangular grid, the
spacing dx and dy—namely, the height and the base of the triangle (Figure 3)—are related
to the γ angle by the following equations:

dx = D sin(γ)
dy = 2D cos(γ)

(4)
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where D is the distance between the (n,m)-th element and the (n+1,m)-th, as depicted in
Figure 3.
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Figure 3. Planar antenna array with a triangular lattice.

Differently from a square lattice, there are different choices of grid spacing (dx, dy) in
an array with a triangular grid, which are able to guarantee the absence of grating lobes. In
this case the grating lobes are avoided if the following equations are satisfied:(

λHF
2dx
− u∗0

)2
+

(
λHF
dy
− v∗0

)2
≥ R2

2λHF
dy
− sin(θmax) ≥ R

λHF
dx
− sin(θmax) ≥ R

u∗0 = sin(θmax) cos(γ)
v∗0 = sin(θmax) sin(γ)

(5)

where u0
* and v0

* represent the u–v plane coordinates where the grating lobes can appear.
It is worthwhile to note that the previous grating lobes absence equations are only valid for
equilateral or isosceles triangular lattices. Scalene lattices have not been considered since
they provide a lower value for d0. Equation (5) was used to understand the effect of γ on
the element spacing in a circular scan sector. The elements’ spacing (dx, dy), along with the
minimum distance between them, were evaluated for γ within the interval [20◦,80◦] in the
event of R = 1.1. The plot summarizing the results is shown in Figure 4.
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It is apparent that the γ value has a considerable effect on d0. Specifically, γ = 30◦

and γ = 60◦ provide the largest minimum distance between elements, which is equal
to 5.97 mm (0.587 λHF) in the addressed scenario. Moreover, Figure 4 emphasizes how
the triangular lattice provides the designer more degrees of freedom due to different
possible combinations of element spacing (dx, dy). For example, let us consider the RP
of an 8 × 8 array of isotropic elements (i.e., Enm(θ,φ) = 1) when the main beam is steered
along one of the φ directions where there are grating lobes and when θ = 60◦. Figure 5
illustrates the outcomes for two values of γ, namely, 30◦ and 60◦. It is apparent that the
different antenna element spacing (Figure 4) determines a different pattern shape, although
the minimum distance remains the same. In particular, in the event of γ = 30◦ (Figure 5a),
the antenna array presents a superior spatial resolution along the v plane, whereas the
equilateral triangular lattice (γ = 60◦) provides an almost circular footprint in the u–v
plane. Moreover, in both cases the grating lobe is evidently outside the visible region (red
circle), located at a distance of R = 1.1 from the center (u = 0, v = 0), as expected. Therefore,
according to the desired spatial resolution in the u–v plane, it is possible to select the proper
γ value.
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γ = 30◦, and (b) γ = 60◦. The red circle represents the visible region, whereas the black circle highlights the circular sector
cell.

In order to find the most suitable triangular lattice grid—and hence, the γ value—the
angular average gain (ηGain), namely, the mean value of the gain attained during the
beam steering inside the all-circular sector, in the case of a planar array composed of
8 × 8 elements, was evaluated as a function of the γ value within the addressed bandwidth
(24.25–29.5 GHz), and by considering the beam scan within the circular sector cell, as shown
in Figure 2. An element pattern shape equal to E(θ,φ) = cos(θ), with a half-power beamwidth
(HPBW) of 90◦, was assumed as the element factor during the average gain evaluation.

From the color map of Figure 6 it can be concluded that ηGain always increases with fre-
quency, although it exhibits higher value fluctuations with respect to the γ value, especially
in the lower band. Furthermore, ηGain grows almost linearly up to γ = 30◦, then gradually
decreases with the increase of the γ value up to around γ = 45◦, where a reversal of the
trend occurs. Subsequently, the angular average gain reaches the second peak at γ = 60◦,
after which it quickly drops again. Therefore, by considering the minimum element spacing
(Figure 4) and the angular average gain (Figure 6), it is possible to infer that with a circular
sector cell there are two optimal γ values in cases of triangular grids, namely, γ = 30◦ and
γ = 60◦. In fact, these values ensure the largest minimum antenna element distance and,
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hence, the lowest performance degradation due to the elements’ mutual coupling [41,42],
in addition to having the highest angular average gain as a function of the frequency.
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(24.25 –29.5 GHz) in the case of a triangular lattice planar array of 8 × 8 elements.

In view of highlighting the impact of the antenna array lattice, two 8 × 8 planar arrays
were considered—the former with elements arranged on a square lattice, and the latter
on an equilateral triangular (γ = 60◦) grid. It is worth noting that, as stated before, in a
triangular lattice placement of the elements there are two most suitable values, namely,
γ = 30◦ and γ = 60◦. However, in the following performance comparison, it was decided to
use an equilateral triangular lattice due to its more uniform footprint in the u–v plane, as
shown in Figure 5b. By considering the Equations (3)–(5), with R = 1.1, for a square lattice
d0 turns out to be 5.17 mm (0.508 λHF), whereas the equilateral triangular grid exhibits a
minimum element distance of 5.97 mm (0.587 λHF), hence offering a 13.5% improvement.
It is worth observing that values of R greater than 1 assure the absence of grating lobes
during the beam steering inside the circular sector [43]. The same R value for both lattices
provides the same distance in the u–v plane between the closest grating lobes and the
center of the visible region (u = 0, v = 0), and hence, the same PSLL value as a function
of the beam steering inside the circular sector cell. Furthermore, PSLL is around –13.3 dB
at the broadside, whereas with the increase in the θ steering angle, PSLL degrades up to
around –9 dB for θ = 60◦ due to the cosine-shaped elements’ radiation pattern. The larger
minimum distance obtained via a triangular lattice arrangement allows us to achieve a
lower level of mutual coupling among antenna elements by ensuring greater robustness of
the active impedance of the array elements along the beam steering, a superior linearity of
the employed power amplifiers (PAs), and a general improvement of the massive MIMO
performance [41]. The wider element distance offered by the triangular lattice can be also
considered advantageous for the thermal aspect, by helping the cooling system of the
transceiver, which is critical in large mm-wave phased arrays [31]. The overlapped array
geometry of triangular and square lattices is illustrated in Figure 7.
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Figure 7. Array geometry of a planar array of 64 elements (8 × 8) in a triangular lattice (γ = 60◦) and
a square lattice.

The larger array area of the triangular element arrangement also guarantees a better
angular resolution and, in a massive MIMO scenario, a reduced angular interval within
which users cannot be spatially resolved [2].

The array gain as a function of the main beam direction (θ0, φ0) for both arrays of
Figure 7 is illustrated in Figure 8 by considering an element pattern equal to E(θ,φ) = cos(θ).
It can be noted that, although the employed array lattices present similar trends during
beam steering, the triangular lattice outperforms the square one due to a higher array gain.
Furthermore, the gain value presents the highest value along the broadside (θ0 = 0◦), then
decreases during the main beam steering due to beam widening and the approaching of
the grating lobes inside the visible region [39]. For a more comprehensive analysis, the
impact of the employed lattice on the array gain was also examined from a statistical point
of view, by calculating the mean value (ηGain), the variance (σ2

Gain), the minimum value
(minGain), and the maximum value (maxGain). The results reported in Table 1 emphasize that
the triangular lattice enables the attainment of an average linear array gain improvement
of around 13 %, when compared to a square lattice. Moreover, as visible from the color
maps of Figure 8, the use of a triangular lattice provides both a superior minimum value
(minGain) and maximum value (maxGain) to those of a square grid.
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Figure 8. Gain in dBi of a planar array composed of 64 elements (8 × 8 array) as a function of the main beam steering
inside the circular angular sector (−60◦ ≤ θ0 ≤ 60◦, 0◦ ≤ φ0 ≤ 180◦). Equilateral triangular lattice at (a) 24.25 GHz,
(b) 26.875 GHz, and (c) 29.5 GHz; square lattice at (d) 24.25 GHz, (e) 26.875 GHz, and (f) 29.5 GHz.

Table 1. Statistical comparison between the gain (dBi) of a square lattice and an equilateral triangular
lattice for an 8 × 8 array evaluated within the circular scan sector.

24.25 GHz 26.875 GHz 29.5 GHz

Tri Squ Tri Squ Tri Squ
ηGain 21.38 20.77 22.18 21.57 22.87 22.28
σ2

Gain 0.89 0.83 0.97 0.9 1.12 0.99
minGain 19.17 18.73 19.81 19.38 20.24 19.83
maxGain 22.42 21.78 23.26 22.61 24.03 23.37

Since the user’s interference plays a key role in massive MIMO systems, the impact
of the employed array lattice on the average sidelobe level (ASLL) was evaluated from a
statistical point of view. For the ASLL evaluation, the addressed region was selected for
each main beam pointing at a user by the following ellipse equation:

(u−u0)

r2
u

+ (v−v0)

r2
v

> 1

ru = 1.2 λ
Lx

, rv = 1.2 λ
Ly

(6)

where Lx and Ly represent the array side length along the x and y directions; λ is the
wavelength; (u0,v0) the desired direction in the u–v plane in which to steer the main beam;
and ru and rv identify the main beam in the u and v planes, respectively. Once the sidelobe
region has been selected for a desired (u0,v0) direction, the ASLL is calculated by averaging
all of the array’s radiation pattern values inside the sidelobe region. Moreover, since the
array can steer the main beam inside a circular area (Figure 2), we decided to evaluate the
ASLL mean (ηASLL), minimum (minASLL), and maximum (maxASLL) values by considering
different scan angles (Nθ = 15, Nφ = 91) uniformly distributed inside the circular sector
through the following equations:

ηASLL = 1
Nθ Nφ

Nθ

∑
i=1

Nφ

∑
j=1

ASLL(i, j)

minASLL = min{ASLL(i, j)} , i = 1, 2, 3, . . . , Nθ , j = 1, 2, 3, . . . , Nφ

maxASLL = max{ASLL(i, j)} , i = 1, 2, 3, . . . , Nθ , j = 1, 2, 3, . . . , Nφ

(7)

where ASLL(i,j) represents the ASLL when the array main beam direction is toward the
direction identified by (i,j). The calculated ASLL mean (ηASLL), minimum (minASLL), and
maximum (maxASLL) values are illustrated in Figures 9 and 10. Specifically, Figure 9 high-
lights the ASLL statistical comparison in the event that the sidelobe region is represented
by the intersection between Equation (6) and the u–v points inside the unit radio’s circle,
whereas the ASLL assessment of Figure 10 takes into account a sidelobe region represented
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by the intersection between Equation (6) and the u–v points inside the circular sector cell
shown in Figure 2.
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the circular sector cell.

By looking at Figures 9 and 10 it is evident that the use of triangular lattices in planar
antenna arrays outperforms that of square ones from a statistical point of view, in terms of
ASLL. The better performance of triangular lattices is highlighted by a lower ASLL mean
value, a reduced minimum value, and a similar maximum value. Specifically, triangular
lattices allow for a percentage reduction of the ASLL mean value (ηASLL) of 1–2% within the
desired bandwidth, compared to square lattices, when considering the whole visible region.
The ASLL superiority of triangular lattices is further confirmed by taking into account only
the investigated circular sector cell (Figure 10). Indeed, the ASLL mean value percentage
reduction in triangular lattices compared to square lattices turns out to be between 3.5%
and 4.5%. This feature is attractive for 5G massive MIMO systems, since it allows for a
reduction in both the intra-cell and inter-cell interference. Since lateral lobes related to
the main beam pointing at one user generate interference for all other users served within
the same time–frequency resource, the lower ASLL guaranteed by a triangular lattice is
appealing for use in a HAPS 5G massive MIMO system.

3. Phased Array Comparison of Triangular and Square Lattices

In this section, a planar array composed of 64 elements (8 × 8) is analyzed to better
emphasize the advantages of using a triangular lattice. The full-wave electromagnetic sim-
ulations were carried out using Ansys HFSS [44]. Each single element consists of a square
patch antenna printed on a 0.7 mm thick grounded dielectric layer (RO5880), fed through a
coaxial cable. As mentioned in the previous section, the minimum antenna element spacing
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for a square lattice is 5.17 mm (0.508 λHF), whereas the equilateral triangular grid provides
a minimum element distance of 5.97 mm (0.587 λHF).

Since antenna array design is beyond the scope of this paper, the lattice comparison as
a function of frequency was pursued by tuning the antenna array elements to be matched
in one narrowband frequency band at time. The finite array with 64 elements, with the
antenna elements tuned to 29.5 GHz, is illustrated in Figure 11. Specifically, the x–z plane
represents the E-plane of the array, whereas y–z represents the H-plane. At the beginning,
the mutual coupling (Sij) among antenna elements was addressed. The simulated mutual
coupling average value (ηSij) among antenna elements, and the maximum mutual coupling
as a function of the frequency, are illustrated in Table 2. It can be seen that a triangular
lattice enables us to considerably reduce both the mutual coupling average value and the
maximum mutual coupling. For instance, the peak mutual coupling achieved at the highest
frequency (29.5 GHz) with a square lattice (−14.4 dB) turns out to be worse than the peak
mutual coupling achieved at the lowest frequency (24.25 GHz) for the triangular lattice
planar array (−14.91 dB). In general, the mutual coupling difference between triangular
and square lattices is more pronounced at the lowest frequencies, and then the coupling
difference tends to reduce with the increase in frequency.
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Table 2. Simulated mutual coupling average values (ηSij) among antenna elements and the maximum
value comparison in dB between triangular and square lattice planar arrays composed of 64 elements
(8 × 8).

24.25 GHz 26.875 GHz 29.5 GHz

Tri Squ Tri Squ Tri Squ
ηSij −48.6 −42.52 −49.35 −44.8 −50.74 −46.2

Max(Sij) −14.91 −11.84 −15.62 −12.55 −16.9 −14.4

One of the detrimental effects of mutual coupling is the variation of the antenna
elements’ input impedance during beam steering. The impact of the employed array
lattice on active Sii parameters (i = 1, . . . ,64) was evaluated from a statistical point of view
through the cumulative distribution function (CDF) of the active Sii of all of the antenna
array elements during the coverage. From Figure 12, a better statistical behavior of active
Sii parameters in triangular lattice than in square one is clearly recognizable. Indeed, the
triangular lattice, thanks to a lower mutual coupling (Table 2), provides an average value
of the active Sii of around 13.8 dB within the investigated frequencies, whereas the square
one is characterized by a mean value between −11.8 dB and −12.5 dB.
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Figure 12. Active Sii CDF for square and equilateral triangular lattice planar arrays composed of
64 elements at 24.25 and 29.5 GHz.

To further emphasize the superior robustness of the antenna elements’ impedance
variation when using a triangular lattice, the simulated array matching efficiency (ηΓ) was
evaluated for all of the investigated steering angles by, using the following equation:

ηΓ =

64
∑

i=1

(
1− |Sii|2

)
64

(8)

The color maps of Figure 13 confirm the advantages of adopting triangular lattices in
planar arrays, rather than square ones, in that they provide higher efficiency values for all
investigated frequencies (24.25–29.5 GHz). Specifically, the triangular lattice provides a
higher matching efficiency value than the square lattice for all of the investigated steering
angles, except around φ = 90◦ plane (H-plane of the array) for θ angles greater than 40◦. In
particular, the triangular lattice shows a better matching efficiency in approximately 90%
of the covered area within the addressed frequency band.
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Figure 13. Matching efficiency (ηΓ) of a planar array composed of 64 elements (8 × 8) as a function of the main beam
steering inside the circular angular sector (−60◦ ≤ θ0 ≤ 60◦, 0◦ ≤ φ0 ≤ 180◦). Equilateral triangular lattice at (a) 24.25 GHz,
(b) 26.875 GHz, and (c) 29.5 GHz; square lattice at (d) 24.25 GHz, (e) 26.875 GHz, and (f) 29.5 GHz.

The main reason the triangular lattice’s matching efficiency undergoes a value re-
duction in the principal planes for θ angles close to 60◦ at the highest frequency is due to
scan blindness onset. This phenomenon can be observed through the active S11 parameter
related to the array’s central element at the highest frequency (29.5 GHz), as a function of
the beam steering shown in Figure 14. To emphasize the scan blindness onset, the active
S11 parameter was considered during beam steering within the whole visible region. More
in detail, the color maps highlight that the triangular lattice does not avoid the scan blind-
ness onset—characterized by a strong antenna element mismatch—but only reduces it by
pushing the involved angular sector a bit further [43]. In fact, by considering the simulated
phased array in the event of beam steering, the square lattice provides an active S11 higher
than –10dB within the angular ranges |θ0| > 60◦, φ0 < 60◦, and φ0 > 120◦ (Figure 14b). On
the other hand, the triangular lattice presents a milder mismatch of the central element for
|θ0| > 60◦, φ0 < 30◦, φ0 >150◦, and 80◦< φ0 < 100◦ (Figure 14a). Moreover, by considering
the angular sector with |θ0| > 60◦—hence, outside the desired scan angle area (highlighted
by dashed red lines)—the triangular lattice presents an S11 central array element higher
than −10dB in 40 % of cases, whereas the square lattice does so in 50 % of cases.
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Figure 14. Active S11 parameter related to the central array element as a function of beam steering for a planar array
composed of 64 elements with (a) a triangular lattice; and (b) a square lattice.

With the aim of evaluating the impact of the antenna array lattice on the radiation
pattern shape, the realized gain as a function of the θ angle at a broadside direction is
reported in Figure 15.
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Figure 15. Simulated realized gain for a planar array composed of 64 elements at a broadside direction: (a) 24.25 GHz
φ = 0◦; (b) 24.25 GHz φ = 90◦; (c) 29.5 GHz φ = 0◦; and (d) 29.5 GHz φ = 90◦.

Figure 15 confirms that a triangular lattice provides a narrower main beam in the
φ = 90◦ plane, thus providing a higher maximum gain and better angular resolution.
Moreover, a triangular lattice leads to comparable cross-polar levels to square one in
the φ = 90◦ plane, whereas it introduces a slight degradation in the E-plane of the array
(Figure 15a,c)—although a cross-polar level of about 50 dB around the mean beam is
still guaranteed.

4. Massive MIMO Performance Evaluation

The comparison of triangular and square lattices was carried out in terms of array
gain, ASLL, active Sii parameters, and matching efficiency, by considering a circular sector
in which to serve users. However, one of the key factors that will allow us to drastically
improve the data throughput of the upcoming 5G wireless technology will be the use
of massive MIMO technology capable of serving different users within the same time–
frequency resource through multibeam radiation patterns. In general, various beamforming
methods are available for the achievement of a multibeam system [10,45,46].

Let us consider a HAPS equipped with an array of M = 64 (8× 8) antenna elements that
serves K concurrent ground users, equipped with a single isotropic antenna, located inside
the above-mentioned circular angular sector (Figure 2), through a multibeam radiation
pattern in a line-of-sight (LOS) scenario. The assumption of a LOS channel is consistent
since, at mm-wave, the LOS ray represents the predominant mode of propagation between
the base station (BS) and the users, due to large path loss as well as the use of high-
gain antennas [47,48]. Furthermore, the LOS channel condition turns out to be further
emphasized in the case of HAPS wireless communication [49].

The received signal-to-interference-plus-noise ratio (SINR) for the nth user in case of a
multi-user scenario can be written as [40,50,51]:

SINRn =
δηΓ(θn, φn)G(θn, φn)

δ
K
∑

i=1
G(θi, φi)|hi ∗Wn|2 + 1

(9)
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where G(θn,φn) represents the HAPS array’s gain toward the nth user located at (θn,φn); δ
represents the ratio between the transmitted power (Pt) and the noise power (σ0); hn ε 1×M
(n = 1,2,..,K) corresponds to the channel propagation between the nth user and the HAPS
antenna array; and wn ε M×1 consists of the precoding vector that, in general, depends on
the selected beamforming method. It is worth noting that, differently from Reference [37],
the simulated matching efficiency (ηΓ) was included in (9) in order to achieve a more
accurate SINR estimate. To evaluate the system quality of service, a maximum ratio (MR)
precoding technique [2] with a perfect channel state information (CSI) was assumed in
the following analysis. However, it is worth noting that more efficient precoding and
combining algorithms able to reduce interference could be exploited [52] but, in general,
they require more complexity and turn out to be more sensitive to channel estimation
error. Additionally, since array elements’ mutual coupling (MC) undermines the MIMO
performance [53] due to the unwanted correlation among elements, the channel matrix H
is modelled as [54]:

H = H0

(
Imxm − SSH

)
(10)

where H0 ε K × M denotes the complex channel gain among the users and the HAPS
antenna elements in the absence of antenna mutual coupling; Im×m is an identity matrix;
and S ε M×M corresponds to the scattering parameters matrix of the HAPS planar array.
Unlike [37], the channel matrix was evaluated by taking into account in (10) the full-wave
simulation of the planar array, and not just the antenna element distance. Once the SINR is
known, the maximum achievable bitrate over 1 Hz of bandwidth for the nth user, which is
the spectral efficiency (SE) per user, is:

SEn = log2(1 + SINRn) (11)

For the SE assessment both the simulated array gain and the S-matrix of the planar
arrays shown in Figure 11 were used. Furthermore, 10,000 sets of K-concurrent users
randomly distributed inside the circular sector were adopted. It is worth observing that
a smart user’s selection inside the sector can improve the massive MIMO performance
and the energy efficiency of the wireless communication [55]. However, this aspect was
neglected, since the main goal of the paper is to highlight the performance differences
between square and triangular lattices. The achievable SE as a function of the δ value,
which is the ratio between the transmitted power (Pt) and the noise power (σ0), is reported
in Figure 16 for both square and triangular lattices in the event of eight simultaneous users
inside the investigated circular sector.
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It can be seen that the triangular lattice deployment of the array antenna elements
allows for the achievement of a considerable improvement in the SE. The SE starts to
grow almost linearly with the increase in the δ value, after which it reaches a superior
limit due to the SIR, and the system becomes interference limited. Therefore, once the
upper SE boundary is reached, further increasing the transmitted power does not represent
an efficient way of improving the SE. The improved SE in the triangular lattice array is
apparent from looking at the statistical behavior of the CDF of the SIR (Figure 17), and both
the average SIR (ηSIR) and 90% of the SIR occurrence (SIR90%), as highlighted in Table 3.
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Figure 17. SIR CDF comparison for a planar array composed of 8x8 elements, in cases of square and
triangular lattices, in the event of 8 concurrent users.

Table 3. Simulated average SIR (ηSIR) in dB and SIR90% across triangular and square lattice planar
arrays composed of 64 elements (8 × 8), in the event of 8 served users inside the circular sector.

24.25 GHz 26.875 GHz 29.5 GHz

Tri Squ Tri Squ Tri Squ
ηSIR 11.1 10 12 11.25 13.3 12.2

SIR90% 0.4 0 0.9 0.5 1.4 1

Since to improve the SE it is better to serve more users inside the predefined sector cell
rather than increasing the transmitted power, the SE is plotted as a function of the number
of users (K) for both triangular and square lattices in the event of a δ = 20 dB (Figure 18).
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The remarkable advantage of using a triangular lattice arrangement of the array
elements instead of a square one is confirmed by observing the SE in Figure 18a. To
emphasize the SE comparison, the percentage SE improvement is calculated and reported
in Figure 18b. As can be seen, the achievable SE between the two lattices turns out to be
comparable for few users, even if the triangular lattice’s SE is somewhat higher due to
a superior array gain value (Figure 8). Conversely, with the increase in the number of
concurrent users, the SE improvement guaranteed by the triangular lattice array grows
continuously, and reaches a value between 8.5% and 12 % in the event of 20 simultaneous
users inside the sector.

In view of highlighting the advantageous impact of the triangular lattice on planar
arrays in massive MIMO systems, the percentage SE improvement of the most suitable
triangular lattice, compared to rectangular or square lattices, is reported in Table 4 for a
case of 20 concurrent users deployed inside the different sector cells. Table 4 confirms
that, although with some performance differences, the triangular lattice turns out to be
the most efficient array grid regardless of the sector cell or the adopted frequency within
the considered range. It is worth observing that, in practice, a minimum user distance
within the same time–frequency resource is required in order to avoid high SIR and, hence,
increase the SE. However, SE improvement between triangular and square lattices remains
substantially unchanged. A further analysis aimed at understanding the role of array
gain and the elements’ mutual coupling (MC) was performed. The SE improvement
between triangular and square lattices, as shown in Figure 18b, was recalculated under
the hypothesis of having the same array gain (or the same received signal) for both of the
employed lattices (20 dBi for all the frequencies), and in the case of an ideal array without
MC (w/o MC).

Table 4. Percentage SE improvement offered by the most suitable triangular lattice, compared to
rectangular/square lattices, in the case of planar arrays composed of 64 elements (8× 8) for 20 served
users inside the different sector cells.

Sector Lattice
SE Improvement

24.25 GHz 29.5 GHz

[37] Rectangular γ = 36.6◦ vs Rect 14 % 10 %
This Paper Circular γ = 60◦ vs Squ 12 % 8.5 %

Figure 19a highlights how the higher array gain values, as a function of the steering
angles obtained in the case of the triangular lattice planar array (Figure 8), allow for an
increase in the SE for just a few users (up to three). In fact, the SE improvement with the
same array gain in the case of just a single user is equal to zero at all frequencies, whereas by
increasing the number of concurrent users the curves are overlapped to the case of different
gain values. Therefore, the higher SE provided by the triangular lattice in the event of
many users is due to the better interference robustness guaranteed by the superior angular
resolution. The SE improvement comparison of Figure 19b emphasizes how the MC effects
contribute to a further increase in the percentage SE improvement of the triangular lattice
compared to the square lattice, mainly at the lowest frequency (24.25 GHz). Conversely, the
MC effect on percentage SE improvement gradually vanishes as the frequency increases,
and becomes irrelevant at the highest frequency (29.5 GHz).
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5. Conclusions 

An extensive analysis of HAPS massive MIMO systems employing triangular lattices 

has been presented within the 5G NR n257 and n258 frequency bands (24.25–29.5 GHz). 

The noteworthy massive MIMO performance improvement when adopting a triangular 

lattice arrangement of the array elements instead of a square one in a planar array with a 

regular lattice has been highlighted. Specifically, a triangular lattice allows for the achieve-
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regular and periodic triangular lattice arrangement of antenna elements make it appealing 
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5. Conclusions

An extensive analysis of HAPS massive MIMO systems employing triangular lattices
has been presented within the 5G NR n257 and n258 frequency bands (24.25–29.5 GHz).
The noteworthy massive MIMO performance improvement when adopting a triangular
lattice arrangement of the array elements instead of a square one in a planar array with
a regular lattice has been highlighted. Specifically, a triangular lattice allows for the
achievement of a superior array gain and ASLL reduction, as well as greater robustness of
the antenna elements’ impedance variation during beam steering by exploiting lower MC
levels. Moreover, the larger minimum distance between elements in the case of a triangular
grid guarantees a better angular resolution that, in a massive MIMO scenario, provides
superior interference robustness and, hence, higher SE. The advantages offered by the
regular and periodic triangular lattice arrangement of antenna elements make it appealing
for 5G massive MIMO applications.
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