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Abstract: This paper investigated an energy-efficient beamforming and power allocation strategy for
cognitive heterogeneous networks with multiple-input-single-output interference channels. To maxi-
mize the sum energy efficiency of secondary users (SUs) while keeping the interference to primary
networks under a predetermined threshold, I propose a distributed resource allocation algorithm
using dual methods, in which each SU updates its beamforming vector and transmit power itera-
tively without any information sharing until convergence. The simulation results verify that the
performance of the proposed scheme is comparable to that of the optimal scheme but with a much
shorter computation time.

Keywords: cognitive heterogeneous networks; MISO interference channel; energy efficiency; joint
optimization; distributed algorithm

1. Introduction

With the rapid increase in mobile traffic and wireless devices, cognitive heterogeneous
networks (CHNs) have received a great deal of attention as a promising infrastructure for
improving data rates and communication coverage [1,2]. The spectral efficiency can be
significantly improved by sharing the same spectrum between different types of networks
in CHNs, which is not possible with conventional homogeneous networks; however, at
the same time, severe co-channel interference can occur. Accordingly, a number of studies
have been conducted regarding developing methods for mitigating co-channel interference
between different networks, such as interference coordination and cancellation [3–5], radio
resource management [6,7], and cooperative strategy [8,9].

The explosive growth in mobile traffic has also led to a considerable increase in the
energy consumption of wireless devices. Given that most wireless devices are powered by
limited batteries, energy shortages are regarded as one of the main obstacles for limiting
the performance of CHNs [10].

In this context, there have been attempts to develop energy-efficient communications
for CHNs [11–14]. In [11,12], resource allocations were investigated to maximize the energy
efficiency of underlying device-to-device (D2D) communications, and, in [13,14], energy-
efficient user-association methods were also investigated. To further improve the energy
efficiency of CHNs, studies on multi-antenna techniques have been undertaken [15–18].
In [15], joint beamforming and power allocation were designed to maximize the energy
efficiency of a point-to-point multiple-input-single-output (MISO) distributed antenna
system. An energy-efficient framework was provided for CHNs with multiple-input-
multiple-output (MIMO) in [16], and a beamforming design for energy-efficient CHNs was
proposed in consideration of co-channel interference in [17]. A joint power allocation and
reflecting beamforming was also proposed based on reinforcement learning to enhance
anti-jamming communication performance and mitigate jamming interference in [18].
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Although some existing works have investigated strategies for energy-efficient CHNs,
they used a centralized approach to deal with the non-convex optimization problems [11–13,17].
Given that this centralized approach needs high computational complexity and large
signaling overhead, it is required to devise a distributed algorithm for energy-efficient
CHNs that can be operated in practical systems.

This paper considered CHNs with MISO interference channels, in which the secondary
user (SU) pairs opportunistically to utilize the same spectrum as long as the interference on
the primary networks does not exceed the allowed threshold. I formulated a problem that
optimizes the beamforming vectors and transmit powers of SU pairs jointly to maximize the
sum energy efficiency while ensuring the constraint of the interference to primary networks.

An energy-efficient beamforming and power allocation strategy using dual methods,
which can be operated in a distributed manner without any information sharing is pro-
posed to deal with the formulated non-convex problem. Evaluating the performances of
the proposed scheme under a variety of environments shows that the proposed scheme
achieved near-optimal sum energy efficiency and violation probability while reducing the
computation time significantly.

The remainder of this paper is organized as follows. In Section 2, the considered
system model is introduced, together with the problem statement, and the energy-efficient
beamforming and power allocation is proposed in Section 3. In Section 4, the performance
of the proposed scheme is evaluated under a variety of scenarios, and finally the conclusions
are presented in Section 5.

2. System Model and Problem Statement

As shown in Figure 1, I considered CHNs with MISO interference channels, in which
N SU pairs, each of which is composed of a transmitter (Tx) equipped with K antennas
and a receiver (Rx) equipped with a single antenna [15,19], share the same spectrum with
primary users (PUs) equipped with a single antenna. The sets of SU pairs and antennas are
denoted as N and K, respectively, i.e., |N| = N and |K| = K. The channel between SU Tx i
and SU Rx j for antenna k is also denoted as g[k]i,j , and the index c for PUs is used, e.g., g[k]i,c is
the channel between SU Tx i and PU Rx for antenna k, and gc,i is the channel between the
PU Tx and SU Rx i. Each SU Tx can transmit a data signal to its paired SU Rx through the
same spectrum band as long as it does not interfere with the data transmission of PUs. g[k]i,c
for k ∈ K is known at SU Tx i to regulate the amount of interference on the PU Rx below a
predefined threshold.

SU Tx i SU Rx i

PU Tx

...

...

PU Rx

SU Tx j

SU Rx j

Data link
Interference link

gi,i

gi,j

gi,c

gc,c

gc,i

Figure 1. System model for cognitive heterogeneous networks with MISO interference channels.

The received signal at SU Rx i is represented by

yi =
√

pigH
i,iwixi + ∑

j∈N\{i}

√
pjgH

j,iwjxj +
√

pcgc,ixc + zi, (1)

where (·)H denotes a Hermitian transposition, xi and xc are the normalized data symbols
sent by SU Tx i with transmit power pi and the PU Tx with transmit power pc, respectively,
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and zi ∼ CN (0, σ2) indicates additive white Gaussian noise at SU Rx i. In addition,
gi,j = {g

[1]
i,j , g[2]i,j , · · · , g[K]i,j } ∈ CK×1, and wi is a beamforming vector with a unit norm, such

that wi = {w
[1]
i , w[2]

i , · · · , w[K]
i } ∈ CK×1 and ‖wi‖2 = 1.

The achievable spectral efficiency of the SU pair i is given by

ri = log2

1 +
pi|gH

i,iwi|2

σ2 + pc|gc,i|2 + ∑
j∈N\{i}

pj|gH
j,iwj|2

. (2)

The consumed power at the SU pair i is expressed as

PCE
i = Pcircuit + pi, (3)

where Pcircuit is the constant power consumed in communication circuits. From (2) and (3),
the energy efficiency of the SU pair i can be defined as the spectral efficiency divided by the
power dissipation (bits/Hz/Joule), i.e., ηEE

i = ri
PCE

i
, which implies how efficiently energy

is used for data transmission. At the same time, the transmission from SU Tx i causes
interference to the PU Rx; this interference is expressed as Ii = pi|gH

i,cwi|2.
Then, the problem is developed to find the optimal resource allocation strategy of

SU pairs, i.e., the beamforming vectors and transmit powers, to maximize the sum energy
efficiency while ensuring that the interference on the PU Rx is less than the maximum
allowable level, Imax, as follows.

max
W, 0�~p

η = ∑
i∈N

ηEE
i

s.t. pi|gH
i,cwi|2 ≤ Imax, i ∈ N

pi ≤ Pmax, i ∈ N
‖wi‖2 = 1, i ∈ N, (4)

where ~p = {p1, p2, · · · , pN}, W = {w1, w2, · · · , wN}, and Pmax is the maximum transmit
power for each SU Tx. Given that (4) is a non-convex problem due to the co-channel inter-
ference, deriving the optimal values of W and ~p mathematically is intractable. Although
the optimal solutions can be numerically obtained by an exhaustive search, in which W and
~p are quantized with equally spaced values and all possible combinations are examined in
a centralized manner, this requires high computational complexity and message passing
overheads for sharing the channel state information (CSI) of all channels.

3. Proposed Algorithm

In this section is the proposal of an energy-efficient beamforming and power allocation
strategy that can be operated in a distributed manner. In the absence of the knowledge
of CSI for interference channels, the optimal beamforming strategy for maximizing the
energy efficiency of each SU pair is the maximum ratio transmission (MRT) [15]. Thus, the
beamforming vector for SU Tx i can be set to wi =

gi,i
‖gi,i‖

.

With wi =
gi,i
‖gi,i‖

, (2) is translated to

ri = log2

1 +
pi‖gi,i‖2

σ2 + pc|gc,i|2 + ∑
j∈N\{i}

pj|ĝj,i|2

, (5)

where |ĝj,i|2 =
|gH

j,igj,j |2

‖gj,j‖2 . The interference on the PU Rx caused by SU Tx i can also be

transformed to
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Ii = pi
|gH

i,cgi,i|2

‖gi,i‖2

= pi|ĝi,c|2. (6)

With the determined beamforming vector, the optimization problem is reduced to
finding the transmit power of Tx i that maximizes its own energy efficiency, and this can
be developed as follows.

max
0≤pi

ηEE
i

s.t. pi|ĝi,c|2 ≤ Imax

pi ≤ Pmax. (7)

Defining qi = ri
PCE

i
, the fractional objective function in (7) can be translated into a

subtractive form by using nonlinear fractional programming [20]. Problem (7) can then be
reformulated as

max
0≤pi

ri − qiPCE
i

s.t. pi|ĝi,c|2 ≤ Imax

pi ≤ Pmax. (8)

To solve the problem (8) using dual methods [21], first define the following Lagrangian
function of (8).

L(pi, λi, µi)= ri−qiPCE
i +λi

(
Imax−pi|ĝi,c|2

)
+µi(Pmax−pi), (9)

where λi and µi are the Lagrange multipliers for the first and second constraints of (8),
respectively, which have non-zero values. ~λ = {λ1, λ2, · · · , λN} and ~µ = {µ1, µ2, · · · , µN}
are also denoted.

Then, the dual objective is defined as

G(λi, µi) = max
0≤pi

L(pi, λi, µi), (10)

and the dual problem is written as

min
0≤λi , 0≤µi

G(λi, µi). (11)

According to (10) and (11), pi can be updated to maximize L(pi, λi, µi) while λi and
µi are updated to minimize G(λi, µi) in each SU Tx in an iterative manner.

The Karush–Kuhn–Tucker (KKT) conditions with complementary slackness are repre-
sented by

∂L
∂pi

=
‖gi,i‖2

ln 2

pi‖gi,i‖2+σ2+pc|gc,i|2+ ∑
j∈N\{i}

pj|ĝj,i|2
 − qi − λi|ĝi,c|2 − µi = 0 (12)

λi

(
Imax − pi|ĝi,c|2

)
= 0 (13)

µi(Pmax − pi) = 0 (14)

pi ≥ 0, λi ≥ 0, µi ≥ 0. (15)
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The transmit power that satisfies the KKT conditions is found from (12)–(15), as follows.

p∗i =

[
1

ln 2(qi+λi|ĝi,c|2+µi)
− Θi
‖gi,i‖2

]+
, (16)

where [·]+ = max(·, 0) and Θi = σ2 + pc|gc,i|2 + ∑j∈N\{i} pj|ĝj,i|2. Given that Θi is the sum
of the noise power and interference power from the PU and the other SU pairs in (16),
it can be measured by subtracting the signal power transmitted by SU Tx i from the total
power received at SU Rx i. This indicates that the SU pair i can determine its transmit
power without knowledge of the individual values of the parameters in Θi.

In addition, the Lagrange multipliers are updated by the gradient algorithm, as follows.

λi ←
[
λi − κ

(
Imax − pi|ĝi,c|2

)]+
, (17)

µi ← [µi − ν(Pmax − pi)]
+, (18)

where κ and ν are step sizes that are sufficiently small to ensure the convergence of iterations.
The proposed algorithm works as described in Algorithm 1. In particular, SU Txs

perform the initialization of the transmit powers and the Lagrange multipliers randomly
and then determine the beamforming vectors with MRT. They also calculate the energy
efficiencies with the determined transmit powers and beamforming vectors. Next, each
SU Tx calculates the transmit power based on (16) and updates the Lagrange multipliers
based on (17) and (18) iteratively until the transmit powers for all SU Txs converge to the
stationary points.

Then, all SUs update the achievable spectral efficiencies and consumed powers with
the converged values of the transmit powers and examine the convergence of energy
efficiencies iteratively until convergence is achieved. There is no need to share information
among SUs to find wi and pi in the proposed algorithm, thereby, enabling a distributed
operation. From the fact that ε−2 iterations are required to make the norm of the gradient
less than ε in the worst case [22], i.e., the number of iterations for the convergence of inner
loop, the computational complexity of the proposed algorithm is O

(
IcN2ε−2), in which

O(·) denotes the big-O notation, N2 is the number of computations for the calculation of ~p,
and Ic is the number of iterations for the convergence of the outer loop [23].

Algorithm 1 Energy-efficient beamforming and power allocation.

1: Initialize ~p(0),~λ, and ~µ, randomly
2: Determine wi =

gi,i
‖gi,i‖

, ∀i ∈ N
3: repeat
4: Set~q =~r/~PCE

5: j← 1
6: repeat
7: ~pold ← ~p(j−1)

8: for i = 1 to N
9: Compute p(j)

i according to (16)
10: Update λi and µi according to (17) and (18)
11: end for
12: ~p(j) = {p(j)

1 , p(j)
2 , · · · , p(j)

N }
13: j← j + 1
14: until ‖~p(j) − ~pold‖ < ε

15: Update~r and ~PCE with ~p
16: until ‖~r−~q~PCE‖ < ε



Sensors 2021, 21, 3186 6 of 10

4. Performance Evaluation and Discussion

The following system parameters are considered as the default to evaluate the perfor-
mance of the proposed scheme [24–28]: N = 2, K = 2, Imax = −50 dBm, Pmax = pc = Pcircuit
= 30 dBm, and σ2 = −100 dBm. The nodes are randomly generated over an area of
35 × 35 m, in which the maximum distance between SU Tx and SU Rx in the same SU pair
is set to 15 m. The path-loss and multi-path fading are considered to generate wireless
channels. For example, the path-loss exponent and the attenuation at a reference distance
of 1 m are determined as 3.6 and −30 dB, respectively, for the path-loss model. In addition,
the multi-path fading is generated by an independent and identically distributed (i.i.d.)
circularly symmetric complex Gaussian (CSCG) random variable with a zero mean and
unit variance. The following five schemes are compared for performance evaluation.

• Optimal scheme: The beamforming vector is determined by the MRT, i.e., wi =
gi,i
‖gi,i‖

,

and the optimal ~p is obtained by exhaustive search where all possible combinations
over 100 equally spaced values of ~p are examined.

• Proposed scheme: ~p is determined according to Algorithm 1 with wi =
gi,i
‖gi,i‖

.

• Maximum sum rate scheme: ~p is determined to maximize the sum rate with wi =
gi,i
‖gi,i‖

.

• Maximum power scheme: Pmax is used for each SU Tx with wi =
gi,i
‖gi,i‖

.

• Random power scheme: Randomly generated~p is used for each SU Tx with wi =
gi,i
‖gi,i‖

.

As shown in Figure 2, the proposed scheme converged within 60 iterations. More specif-
ically, each SU Tx update transmitted power to maximize its energy efficiency, which,
in turn, affected the energy efficiency of the other SU pair. However, the transmit powers of
all SU Txs converged as the iteration progressed, and finally the sum energy efficiency also
converged. The convergence value of the sum energy efficiency was observed as 8.1, which
indicates that the achievable sum rate per unit energy and unit frequency was 8.1 bits.

Figure 3 shows the sum energy efficiency, sum spectral efficiency, and average transmit
power versus the maximum transmit power (Pmax) for all the considered schemes. As the
proposed scheme does not use transmit power of more than 25 dBm, which is a loss in
terms of energy efficiency, its energy efficiency converges to a stationary point even though
Pmax increases by more than 25 dBm. The proposed scheme was confirmed to achieve
near-optimal performance.
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Figure 2. Convergence of the proposed scheme.
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Figure 3. Performance comparison versus the maximum transmit power (Pmax). (a) Sum energy
efficiency vs. Pmax. (b) Sum spectral efficiency vs. Pmax. (c) Average transmit power vs. Pmax.

On the other hand, the maximum sum rate scheme used more transmit power to
maximize the sum rate as Pmax increased. As a result, the sum spectral efficiency improved
with increasing Pmax, but the energy efficiency degraded rapidly when Pmax was larger
than 25 dBm due to excessive energy use. Both the sum energy and spectral efficiencies
were decreased in the maximum and random power schemes, which did not perform
adaptive resource management, because of the strong interference as Pmax increased.

Figure 4 depicts the sum energy efficiency and violation probability versus the max-
imum allowable interference level (Imax). Here, the violation probability indicates how
much the constraint of allowable interference on the PU Rx is violated, and a penalty is
imposed to sum the energy efficiency by setting it to zero if the violation occurs. It is harder
to guarantee the constraint of Imax as Imax decreases. As a result, the violation probability
increased, and the sum energy efficiency degraded seriously in the maximum and random
power schemes, which validates the need for efficient resource management. On the other
hand, the violation occurred rarely in the remaining three schemes owing to adaptive
resource management.
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Figure 4. Performance comparison versus the maximum allowable interference level (Imax). (a) Sum
energy efficiency vs. Imax. (b) Violation probability vs. Imax.

The proposed scheme performed comparably with the optimal scheme over the
entire range of Imax, while the maximum sum rate scheme achieved a much lower energy
efficiency compared with the proposed scheme because it utilized the power control to
maximize the sum rate rather than the sum energy efficiency. When the constraint of the
maximum allowable interference was violated, the SU pairs ceased to use the frequency
band so as to avoid causing serious interference with the PU Rx. Therefore, a high violation
probability limited the use of the frequency band by the SU pairs. Given that the effect of
violation is included in the sum energy efficiency by imposing the penalty, the result for
the violation probability is omitted in the following results for brevity.

Figure 5 shows the sum energy efficiency versus the number of antennas (K). As K
increased, the sum energy efficiency improved for all considered schemes due to the
antenna diversity, which confirms that multiple antennas can generally be utilized to
enhance the energy efficiency of the system. The proposed scheme also achieved near-optimal
performance for a large-antenna system.
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Figure 5. Sum energy efficiency vs. the number of antennas (K).

Figure 6 shows the performance comparison versus the number of SU pairs (N) in
terms of the computation time and sum energy efficiency. The proposed scheme achieved a
much shorter computation time compared with the optimal scheme, in which the computa-
tion time increased exponentially with N. As confirmed in Figure 3, SU pairs caused severe
interference with each other as N increased, which degraded the sum energy efficiency of
the maximum and random power schemes. However, the proposed scheme outperformed
the conventional schemes by adequately coping with serious interference even for a large
number of SU pairs.
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Figure 6. Performance comparison versus the number of SU pairs (N). (a) Computation time vs. N.
(b) Sum energy efficiency vs. N.

5. Conclusions

This paper investigated an energy-efficient beamforming and power allocation strat-
egy for CHNs with MISO interference channels, in which the resource allocation for each
SU was optimized to maximize its own energy efficiency while guaranteeing the con-
straint of the allowable interference on primary networks. More specifically, I derived the
equations for the beamforming vector and transmit power analytically and proposed an
iterative algorithm using dual methods, which is operated in a distributed manner without
any information sharing. Our simulation results demonstrated that the proposed scheme
not only surpassed the existing ones but also achieved almost optimal performance with
a shorter computation time. For future work, our study can be extended to distributed
resource management for CHNs with MIMO interference channels.
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