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Abstract: Recently, most state-of-the-art anomaly detection methods are based on apparent motion
and appearance reconstruction networks and use error estimation between generated and real
information as detection features. These approaches achieve promising results by only using normal
samples for training steps. In this paper, our contributions are two-fold. On the one hand, we propose
a flexible multi-channel framework to generate multi-type frame-level features. On the other hand,
we study how it is possible to improve the detection performance by supervised learning. The multi-
channel framework is based on four Conditional GANs (CGANs) taking various type of appearance
and motion information as input and producing prediction information as output. These CGANs
provide a better feature space to represent the distinction between normal and abnormal events.
Then, the difference between those generative and ground-truth information is encoded by Peak
Signal-to-Noise Ratio (PSNR). We propose to classify those features in a classical supervised scenario
by building a small training set with some abnormal samples of the original test set of the dataset.
The binary Support Vector Machine (SVM) is applied for frame-level anomaly detection. Finally, we
use Mask R-CNN as detector to perform object-centric anomaly localization. Our solution is largely
evaluated on Avenue, Ped1, Ped2, and ShanghaiTech datasets. Our experiment results demonstrate
that PSNR features combined with supervised SVM are better than error maps computed by previous
methods. We achieve state-of-the-art performance for frame-level AUC on Ped1 and ShanghaiTech.
Especially, for the most challenging Shanghaitech dataset, a supervised training model outperforms
up to 9% the state-of-the-art an unsupervised strategy.

Keywords: anomaly detection; deep learning; generative model; Conditional GAN; supervised
learning; video processing; transportation application

1. Introduction

Abnormal events detection in video sequences is the identification of unpopular
actions which produce different features from normal ones. The necessity of automatic
anomaly detection in real world context, especially for autonomous driving systems, helps
this topic getting more and more attention. Obviously, the differences between anomaly
detection and classical action recognition problem are of two types. Firstly, the frequency
of abnormal events is really low compared with normal ones, and it leads to an unbalanced
scenario where the number of samples in each class is significantly different. Secondly,
the features of abnormal events usually do not follow any spatial or temporal relation, so it
raises the difficulty of pre-defining the structure or class of abnormal events.

Most of recently successful studies [1–6] have tackled this challenge in specific unsuper-
vised ways. They only use normal samples from training sets to generate the standards for
normal actions, then try to enlarge the deviation between abnormal samples in the test set
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and their standards. Using unsupervised strategy naturally follows the structure of popular
benchmarks datasets containing only normal samples that do not require annotation task.

The state of the art proposes two approaches for defining the anomalous feature
that are, respectively, based on changing detection [1,3,7] and reconstruction/prediction
errors [4–6]. The first solution is a natural approach where each event is compared with
its neighbors to find the most different ones. The weakness of this solution appears
when an abnormal event always or never happens in a sequence. Besides, this solution
is mainly appropriated for binary classification and it has limitations when we need
further information, such as type and localization. The second approach deals with
these limitations and achieves state-of-the-art performance. Technically, they generate the
future prediction or reconstruct current information for each actions by GANs models and
Convolutional Auto Encode-decode (CAE) models. Intuitively, the models trained by only
normal samples of the training set will reconstruct better images for normal frames than
abnormal ones in the test set. Inspired by the promising results following this approach
and the benefits from the rise of CGANs and CAE models, we continue to extend the
architecture of reconstructing models by integrating four pix-to-pix Image Translation
CGAN models [8] as four parallel channels. This 4-channels framework processes both
appearance and motion information in grayscale or color format. Our architecture is
presented more specifically in Section 3.1.

In terms of feature extractions and descriptors encoding, previous anomaly detec-
tion frameworks proposed various feature types reasoning: at object-centric or local
level [2,6,9–11], at frame level [4,5], or at both [1]. On the one hand, some methods encode
their features to calculate abnormality scores; the decision is done thanks to a threshold or
a peak estimation [4,5]. In fact, by integrating all features into one score value, spatial and
temporal information are discarded, and a simple comparing decision model is learned.
On the other hand, some keep their large scale features [3,6] to train a classifier. If these
solutions maintain the wealth of information of the features, the learning process is more
complex and takes a long time to converge. To solve this problem, we propose to integrate
the complete wealth of the features produced by each of the channels of our framework
into a 10-dimensions vectors by PSNR technique. The implementation details will be
introduced in Section 3.2. Our descriptors bring specific information of each channel, but
are light enough for fast learning models.

In this paper, we first have modified the state-of-the-art unsupervised GAN-based
abnormality detection by increasing the feature space. Second, we have added a supervised
final step to improve the detection rate. In summary, our contributions are as follows:

• We introduce a flexible and powerful framework containing a multi-channels CGANs
(four streams with nine output channels in our case) to generate multi-type future
appearance and motion information. Our architecture considers more consecutive
frames forward translation from t to (t + 2) than previous methods with only encode-
decode reconstruction [6] or translation from t to (t + 1) [4,5]. The number of channels
can be freely inserted or removed for multiple purposes.

• We experimentally prove the effectiveness of PSNR in image comparison task. Based
on PSNR method, a useful descriptor of output from our generative framework and
ground-truth is proposed. The size of the descriptor is also flexible (equal to the
number of channels) and small to adapt to fast classifiers.

• We demonstrate the improvement of anomaly detection by adding a supervised stage
exploiting the feature extractor proposed by our unsupervised architecture. We add a
SVM stage that we train on abnormal samples from the test dataset. We achieve at
least competitive performances on all benchmarks: Avenue, Ped1, Ped2 in term of
frame-level AUC, and a huge improvement on the most challenging datasets, such as
Shanghaitech.

The rest of the paper is organized as follows. We summarize related studies on
anomaly detection in Section 2. Section 3 describes our architecture in detail. All the
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experiment implementations and results are presented in Section 4. Finally, we draw final
conclusions and future work in Section 5.

2. Related Work

In this section, we briefly summary recent successful works in anomaly detection.

2.1. Early Works with Hand-Crafted Features

Before Convolutional Neural Networks (CNNs) became popular, most of early meth-
ods were based on the extraction of hand-crafted features to estimate the models of normal
and abnormal events. Motion trajectories were used as the principal features [12,13] be-
cause of their fast extraction and simple implementation. However, the single motion
information was not sufficient to represent all the spectrum of abnormal events, and the
motion estimator was easily confused in crowed and complex scenes. To improve these lim-
itations, both appearance and motion were extracted along the trajectories. Kim et al. [14]
used Histogram of optical flow to build a space–time Markov Random Fields graph. Ma-
hadevan et al. [9] learned the Mixture of Dynamic Textures (MDT) during training then
computed negative log-likelihood of the spatio-temporal patch at each region at test phase.
Histograms of optical flow orientation (HOFO) were extracted by Wang et al. [15] to classify
abnormal events by one-class SVM or kernel PCA. More recently, Giorno et al. [7] built
a combination of HOG, HOF, and MBH to train their classifiers, then took the average
classification scores to draw the output signal. Generally, most of those methods yielded
just moderate performance due to the limitation of hand-crafted features in case of large
datasets and complex scenarios.

2.2. Recent Successful Models with Deep Learning Features

Recently, the existence of powerful deep learning models leads to many successful
approaches in anomaly detection. Hasan et al. [1] learned all motion trajectories features
(HOG, HOF, MBH) then built an auto-encoder to reconstruct the scene. The idea of us-
ing reconstruction error to measure the regularity score was promising and has been
extended by almost all the state-of-the-art methods. Hinami et al. [16] solved the prob-
lem of environment-dependent nature by integrating a generic Fast R-CNN model and
environment-dependent anomaly detectors. They learned CNN with multiple visual tasks
to exploit semantic information that is useful for detecting and recounting abnormal events,
and then appropriately plugged the model into anomaly detectors. Ionescu et al. [3] in-
troduced a framework without requirements of training data by applying unmasking
techniques. They combined the motion features computed from 3D gradients at each
spatio-temporal cube with conv5 layer of VGG-net with fine-tuning as appearance fea-
tures. Then, a binary classifier was trained to distinguish between two consecutive video
sequences while removing at each step the most discriminant features. The higher train-
ing accuracy rates of the intermediately obtained classifiers represented abnormal events.
Liu et al. [2] integrated the ConvNet encoding appearance features for each frame and a
ConvLSTM memorising motion features for all past frames with auto-encoder to learn
the regularity of appearance and motion for the ordinary moments. During this period,
they also proposed another work in [11], in which they mapped the temporally-coherent
sparse coding, where they enforced similar neighboring frames being encoded with simi-
lar reconstruction coefficients with a special type of stacked Recurrent Neural Network
(sRNN). At the same time, Liu et al. [4] introduced the first work of future prediction-based
anomaly detection. They adopted CGAN techniques with U-Net model as generator to
predict the next frame. To generate a high quality image, they made the constraints in
terms of appearance (intensity loss and gradient loss) and motion (optical flow loss). Then,
the difference between a predicted future frame and its ground truth was used to detect
an abnormal event. Developing this approach, Nguyen et al. [5] designed a model as the
combination of a reconstruction network and an image translation model that share the
same encoder. The former sub-network determined the most significant structures that
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appear in video frames, and the latter one attempted to associate motion templates to
such structures. Then, Ionescu et al. [6] achieved state-of-the-art performance on various
popular benchmarks [4,9,10] by building the reconstruction error models that learned both
appearance and temporal gradient feature at object-centric levels, then combined K-means
clustering with SVMs techniques to produce abnormality scores.

3. Proposed Method

We propose a method based on the prediction/reconstruction of the motion and image
streams that exploits errors of prediction to detect abnormality. We define a multi-channel
framework based on CGAN to produce feature maps for better representing appearance
and motion. Unsupervised strategy is used to train the proposed networks and we yield
state-of-the-art performance. In a second part of the work, we add a supervised binary
SVM as a final layer that takes these feature maps as input after a PSNR transformation. We
also present how we extend our model from frame-level detection to pixel level anomaly
localization task. Our general pipeline is illustrated in Figure 1.

Figure 1. Our multi-channels pix2pix-CGANs framework for anomaly detection. In each CGAN
stream, the number of channels and the type of each channel for input image (i.e., source image I) and
output image (i.e., generated or predicted image Ig) are different. CGAN1 takes 2 grayscale channels
as input and 2 optical flow channels as output. CGAN2 takes 1 grayscale channel and 2 optical flow
channels as input, then 1 grayscale channel and 2 optical flow channels as output. CGAN3 takes 3
RGB channels as input and 3 RGB channels as output. CGAN4 takes 2 grayscale channels as input
and 1 grayscale channel as output. The configuration is described in detail in Table 1. The channels
of generated images are similar to the channels of ground-truth images (i.e., target images It). Best
viewed in color.

3.1. Multi-Channel pix2pix-CGAN Framework

Our framework combines 4 parallel streams containing 9 channels corresponding to
the same pix2pix-CGANs [8] architecture described in Figure 2.

Pix2pix-CGAN: Our model contains 8 blocks (i.e., a sequence of layers with the same
shape) encode–decode U-Net with skipped connections for the Generator, and 4 blocks
for the Discriminator. The Encode block of the Generator and the Discriminator include
Convolution, Batch Normalization, and Activation layers. The Decode block is integrated
by an extra Dropout layer with a dropout rate of 50%. Let Ck, CEk, and CDk denote,
respectively, a Discriminator block, an Encoder block, and a Decoder block with k filters.
The model architecture is defined as:
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• Encoder: CE64-CE128-CE256-CE512-CE512-CE512-CE512-CE512
• Decoder: CD512-CD512-CD512-CD512-CD512-CD256-CD128-CD64
• Discriminator: C64-C128-C256-C512

Figure 2. Our pix2pix-CGAN architecture. Encoder blocks CEk are from first block 256× 256× Ni to
bottleneck block 1× 1× 512 of Generator. Decoder blocks CDk are from bottleneck block 1× 1× 512
to last block 256× 256× No of Generator. Ni, No denote the number of input and output image
channels of Generator. Discriminator blocks Ck are from block 256 × 256 × (Ni + No) to block
16× 16× 1. Because of the skip connection, the total channels that pass to Discriminator is Ni + No.
Best viewed in color.

Only the last CE512 block does not have a BatchNorm layer. All convolutional layers
of Encoder are applied 4× 4 filters with stride 2 for downsampling the input source image
to the bottleneck layer. Then, Decoder uses transpose convolutional layers for upsampling
from the bottleneck output size to the predicted output size. We also add skip connections
between the layers of encode–decode corresponding to the same size of feature maps.
The source image is considered as the input of the Generator, and it is concatenated with
the target image to produce the first input for Discriminator. The output image of the
Generator concatenated with the source image is fed to the Discriminator as second input.
We apply L1 loss to measure the distance between target image It and generated image Ig
from source image I:

LG = Eg‖It − Ig‖1 (1)

The adversarial loss of Discriminator D is calculated by Conditional GAN strategy:

LD = Et logD(It|I) + Eg log(1−D(Ig|I)) (2)

where D(It|I) is the discriminator’s estimate of the probability that target image It is real
w.r.t input image I (i.e., the image contains Nt + Ni channels); D(Ig|I) is the discriminator’s
estimate of the probability that predicted image Ig is real w.r.t input I (i.e., the image
contains No + Ni channels).
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The final loss is the sum of both loss with regularization factors λG and λD:

L = λDLD + λGLG (3)

Multi-channel pix2pix-CGAN: In order to achieve richer and more sensitive features
of appearance and motion, we propose 4 parallel pix2pix-CGANs with different input and
output configurations, as mentioned in Table 1. We separately investigate the temporal
evolution of motion and appearance (in both grayscale and RGB format) by CGAN-1,
CGAN-3, and CGAN-4, while CGAN-2 explores the relation between appearance and
motion at the same time. Regarding temporal length, CGAN-1 and CGAN-3 learn the
short evolution from current frame to its next frame, while CGAN-2 and CGAN-4 study
the evolution from t to t + 2.

Table 1. Configuration of input I, output (i.e., predicted images Ig) and target images It for each
pix2pix-CGAN stream. Ni, No, Nt denote the number of input, output, and target image channels. In
all the cases, the channels of output and target images must be similar. Gt, Fx,y

t→t+1, and RGBt equal
to grayscale image at frame t, optical flow from frame t to t + 1 along axis x, y, and RGB color frame
at frame t. All channels are taken into account for calculating loss functions.

Channel Input (I) Ni Output Ig & Target It No = Nt

CGAN-1 Gt, Gt+1 2 Fx,y
t→t+1 2

CGAN-2 Gt, Fx,y
t→t+1 3 Gt+1, Fx,y

t+1→t+2 3
CGAN-3 RGBt 3 RGBt+1 3
CGAN-4 Gt, Gt+1 2 Gt+2 1

Before passing into CGAN streams, all source image channels are resized to 256× 256
resolution. We also normalize optical flow maps along both axis to range [0, 1] by the
following equation:

Fnorm
m,n =


(Fm,n − Fmin)×

−0.5
Fmin

, for Fm,n 6 0

Fm,n ×
0.5

Fmax
+ 0.5, for Fm,n > 0

(4)

where Fm,n is the flow value at pixel (m, n), Fmax, and Fmin are the maximum and the
minimum value of optical flow over all videos. By this way, negative flow values are
mapped to [0, 0.5], while positive values are mapped to [0.5, 1]. Hence, we can maintain
the difference between motion directions. All pix2pix-CGAN streams are then trained by
Adam optimizer [17] with a learning rate of 0.0002 and momentum parameter β1 = 0.5,
β2 = 0.999 for both Generator and Discriminator. We test with different activation functions
(LeakyReLU, ClippedReLU, eLU) and other hyper-parameters such as mini-batch size to
find the most suitable parameter values for each stream and dataset.

3.2. Feature Extraction with PSNR

In order to measure the distance between two images, we can use two metrics: Mean
Square Error (MSE) and Peak Signal to Noise Ratio (PSNR). The work of Mathieu et al. [18]
shows that PSNR is a promising way to compare the quality of target (or ground-truth)
image It with generated Ig:

PSNR(It, Ig) = 10 log10
[max(I)]2

1
N ∑N

i=0(Ii
t − Ii

g)
2

(5)

Higher PSNR value indicates a better generated image. Obviously, if we accumulate
all PSNR values along all channels and all streams to learn a threshold, we might lose the
distinction of each channels. So we apply late fusion strategy by separately calculating PSNR
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for each one. For 4 streams with 9 output channels, we obtain 9 PSNR values to encode as a
feature vector. All these vectors are normalized to range [0, 1] for all videos sequences. Finally,
an abnormal event is detected at frame-level for low values of the global PSNR.

3.3. Frame-Level Inference Model

As mentioned in the previous section, we cast anomaly detection problem as a super-
vised action recognition scenario. We use the unsupervised multi-channel pix2pix CGANs
described previously and trained on a dataset containing only regular events. Then we split
the test set into two parts: a first part for learning binary SVM classifier and a second part
for testing the performance of the trained model. Both parts have abnormal and normal
samples. Thus, labeled training data are required. During the evaluation, we analyze
how the performance is modified regarding the size of the dataset used to train the SVM
classifier. We aim at defining a trade-off between the performance improvement and the
amount of work required for the annotation task.

In detail, we have two typical classes for each frame: normal and abnormal frame.
Each frame is represented by its feature vector. The full size of feature vector is 9-dimension
corresponding to the 9-streams of CGANs. In practical experiments, we also separately
test the performance of each CGAN streams and various combinations, so the practical
size of feature vector can be from1 to dimension to 9-dimension depending on which
combinations are evaluated. Before learning binary SVM classifier, all feature vectors are
normalized to [0, 1].

3.4. Object-Centric Anomaly Localization Model

The objective of this last task is to localize the object related to the abnormal event
detected at image-level. For each abnormal frame, we run a fast detector to compute
bounding boxes (BB) for each object in the sequence. Each box is considered as a new input
and PSNR scores are computed for each one. The BBs yielding minimum values for PSNR
scores or values smaller than a threshold refer to the abnormal objects.

To speed up the computational complexity in practical experiments, we do not re-pass
each BB throughout whole framework, but we directly apply each BB to error maps. The
error map of each frame is the subtract of generated images and its ground-truth after
CGAN-streams. The pipeline is illustrated in Figure 3.

Figure 3. The pipeline of object-centric anomaly localization framework. After the frame-level
anomaly detection stage, we obtain the labels for each frame. Only positive samples (i.e., abnormal
frame) are taken into account to localization stage. For each abnormal frame, we run a fast detector
to compute bounding boxes (BB) for each object in the sequence. To speed up the computational
complexity in practical experiments, we do not re-pass each BB throughout whole framework but
we apply directly each BB to error maps. PSNR scores are computed for each one. The BBs yielding
minimum values for PSNR scores or values smaller than a threshold refer to the abnormal objects.
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Generally, this framework applies a hard-decision strategy to localize the abnormal
objects. It leads to the issue that the final performance is highly dependent on the accuracy
of bounding box detector. The missing detections or confusing detections can affect the
final decision. Another problem is how to pre-define the number of abnormal objects in
case of hard-decision. In popular datasets, this number should be one or two object. Then
we could search for two BBox candidates obtaining minimum PSNR scores. It based on
the fact that the key object in our real world scenario is abnormal one, so the false positive
decision is more acceptable than false negative one. We could also go beyond this limitation
by searching for a soft threshold of PSNR score.

4. Experiments

In this section, we evaluate our unsupervised backbone network with supervised
classifier methods on 4 popular datasets for anomaly detection: CUHK Avenue [10], USCD
Pedestrian 1-2 [9], and ShanghaiTech [4]. First of all, we briefly introduce those benchmarks
and the evaluation metric that we use to measure performance. Then, we present our
implementation step by step. Next, we show our promising results in Section 4.3. We end
this section by some discussions.

4.1. Datasets and Evaluation Metric

CUHK Avenue: 16 training sequences with some outliers and 21 testing videos
containing 47 irregular events as throwing objects, loitering, and running. The size of the
people are changing because of the camera position and angle. The normal samples of the
test set are more numerous than abnormal ones.

USCD Ped1 & Ped2: Ped1 has 34 training and 36 testing videos with 40 abnormal
events. Ped2 is smaller with 16 training and 12 testing videos. Almost abnormal events
are related to moving vehicles. Ped1 seems to be more challenging than Ped2 due to the
different camera angle. Both have more abnormal events than normal ones on the test set.

ShanghaiTech: A very large benchmark containing 13 scenes integrating complex
light conditions and camera angles. There are 130 abnormal events and over 270,000
training frames. Moreover, the pixel level ground truth of abnormal events is also annotated.
Normal samples are more numerous than abnormal ones on the test set.

Evaluation metric: As in the literature, we use a frame-level AUC metric as the main
measurement for quantitative evaluation and comparison with state-of-the-art methods.
The type of AUC that we applied is AUC of Receiver Operating Characteristic (ROC) curve.
A strong classification model has AUC near 1, which means it has a good measure of
separability. A weak model has AUC near 0, which means it has the worst measure of
separability. In case of AUC = 0, the model is predicting all positive samples as negative
and vice versa. Particularly, when AUC = 0.5, it means the model has not the ability
of distinguishing between class or the model is achieving the performance at randomize
level. For quantitative evaluation of abnormality localization, we use the same pixel-level
AUC and EER metrics reported in [19]. If the intersection between a detected box and the
ground-truth box are smaller than 40% of the area of ground-truth box, the detected box
are removed.

4.2. Implementation Details

Implementation frameworks: To build each Pix2pix CGAN stream, we implement
our architecture based on Justine Pinkney framework [20] on Matlab. Regarding optical
flow extraction, we apply Full Flow [21] on Avenue, Ped1, and Ped2. Because Shang-
haiTech is larger than the other datasets, we use the simple Lucas-Kanade [22] optical flow
implemented in OpenCV to reduce time processing. After calculating PSNR score for each
CGAN stream to encode feature vectors, we learn binary SVM classifier using Classification
Learner Toolbox on Matlab. For the object-centric anomaly localization step, we apply the
pre-trained model Mask R-CNN [23] as the object detector. All steps are implemented on



Sensors 2021, 21, 3179 9 of 16

Matlab R2020a with Nvidia GeForce GTX 1080 environment except Fullflow algorithm that
is used on Matlab R2018a.

Implementation parameters: For each CGAN stream, we investigate the effect of
mini-batch size (M), activation function (A), and number of training epoch (E). We start
from E = 20 for Avenue, Ped1 and Ped2 with M = 32, 64, 128, 256 and A= leakyRELU
(α = 0.2), clippedReLU(α = 0.5), eLU(α = 1). Then, we increase E up to 30, 40 and observe
the convergence of each loss function to choose the most suitable parameters according to
the balance between time consumption and loss convergences. An example is illustrated
in Figure 4. Particularly, because ShanghaiTech has a very large training set, we train at
only 1 epoch and optimize parameter for CGAN-2, then adapt those parameters for the
other CGANs to reduce processing time. We choose CGAN-2 as reference stream for all
optimization process because CGAN-2 can learn the relation between both appearance
and motion evolution. For inference phase, we split test set into two subsets: SVM-train
and SVM-test. To explore the effect of supervised scenario, we start to take from 10% up
to 80% from the training set to build SVM-train. We also split SVM-train into train and
validation sets for 5-fold cross validation. To optimize the classifier, we run optimization
process on SVM learner with different kernel types: Gaussian, linear, cubic, and quadratic.
Similarly to the previous phase, on ShanghaiTech dataset, we run the optimization process
only once when SVM-train equals 80%. Then we apply optimized parameters for the rest
to save time.

(a)

(b)

Figure 4. Comparison of loss convergence between different paramenters for CGAN-2 on Av-
enue dataset. (a) shows the case where the losses are not convergent at 40 epochs, Minibatch
size 64 and leakyReLU activation function, while (b) illustrates a good set of parameters, E = 20,
M = 128, A = eLU, corresponding to good loss convergence. We find that the total loss is stable from
1000th iteration, and each loss is almost convergence. Best viewed in color.

Outliers removing on Avenue: Several outlier frames exist in Avenue training set.
For the frameworks that calculate abnormal scores then compare with threshold [4–6],
this task is necessary. Because the outlier actions in the training set are annotated as
abnormal in the test set. By removing outliers, we avoid the case when a same action is
classified as abnormal in the test set, but normal in the training set. Not to do it manually,
we train CGAN-2 on the training set to produce output images. Then, we accumulate
MSE values between output and ground-truth images for all three channels and we draw
the corresponding values. We can easily observe some peaks (Figure 5) occurring at the
abnormal frames on training videos. We remove the outlier images corresponding to the
peaks to obtain a new clean Avenue training set.
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Figure 5. Example of outliers removing on Avenue dataset. Not to do it manually, we train CGAN-2
on training set to produce output images. Then we accumulate MSE values between output and
ground-truth images for all 3 channels and we draw the corresponding values. We can easily observe
some peaks occurring at the abnormal frames on training videos. We remove the outlier images
corresponding to the peaks to obtain a new clean Avenue training set. Best viewed in color.

4.3. Results

Quantitative evaluations: We do the first experiments to evaluate the performance of
feature encoding using PSNR and MSE. We choose Avenue benchmark as reference dataset
because there are color images with acceptable dataset size (Pedestrian dataset have only
grayscale frames and ShanghaiTech is too large). Results are illustrated in Table 2. The
large margin about 10% on all streams and combination shows that PSNR technique is
significantly better for frame level anomaly detection task.

Next, we apply PSNR technique for the other benchmarks. We go further by investi-
gating various combinations of four streams. Multi-stream is combined by concatenating
PSNR features of each stream to produce a new vector. Results are shown in Table 3. On
two grayscale datasets, Ped1 and Ped2, CGAN-3 and CGAN-4 produce almost the same
performance. The longer temporal evolution of CGAN-4 brings us a small improvement
1∼2% with respect to CGAN-3. On the other RGB datasets, CGAN-3 surpasses CGAN-4
with a huge difference of 10%. Generally, CGAN-2 achieves the best performance among
the four streams. It shows that learning both appearance and motion evolution can help us
generating better features. Obviously, the combination of CGAN-1 (flow) and CGAN-4
(grayscale) produce similar or slightly better performance than CGAN-2 (combines flow
with grayscale). This result also proves that the longer study of temporal evolution at
CGAN-4 improves performance. Besides, when we combine several streams, we usually
achieve better performance than single stream up to combination of two, three, and all four
streams. The fact that the four streams combination always produces the best results is
a strong experimental proof of the relevance of our proposed idea about multi-channel
framework.

Then, we explore the effectiveness of the supervised layer. By increasing sequentially
the SVM-train set size from 10% of the original test set size up to 80%, we report the
evolution of performance on Figure 6. Obviously, the larger size of SVM-train set we create,
the better performance we obtain.
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We compare our best results for each benchmark with recent state-of-the-art methods
in Table 4. We split those methods in two groups. The first group contains the fully
unsupervised methods without adding extra abnormal samples from original test set to
training set. We notice that the method of Ionescu et al. [6] is unsupervised, but they
calculated abnormal scores by supervised SVM strategy. The second group contains the
semi-supervised and supervised methods that insert abnormal samples into the training
set. Generally, it is difficult to comparing the methods in different scenarios, especially in
the second group, because the number of testing samples is not the same. Our solution
performs almost uniformly and produces promising results on all four datasets. We achieve
moderate improvement on Ped1 by about 2% while producing a competitive result on
Avenue and Ped2. Particularly, we obtain a large margin of about 9% compared to the
state-of-the-art method [6] on the challenging ShanghaiTech dataset. Considering the effect
of the supervised scenario, we show that from 50% of the original test set size, we surpass
state-of-the-art performance on Ped1 and ShanghaiTech.

Figure 6. Evolution of AUC performance according to the size of SVM-train set. The vertical axis
shows the AUC performances and the horizontal axis shows the size of SVM-train set corresponding
to how many samples of the original test set. By increasing sequentially the SVM-train set size
from 10% of the original test set size up to 80%, we report the evolution of performance. Obviously,
the larger the size of SVM-train set we create, the better performance we obtain. Considering the effect
of supervised scenario, we show that from 50% of the original test set size, we surpass state-of-the-art
performance on Avenue, Ped1, and ShanghaiTech. Best viewed in color.

Table 2. Frame-level AUC performance comparison between two methods of prediction error
encoding: PSNR and MSE. Results are reported on Avenue dataset using SVM classifiers. 80%
samples of test set are used for training SVM.

CGAN Stream MSE PSNR

CGAN-1 0.72 0.82
CGAN-2 0.69 0.81
CGAN-3 0.73 0.79
CGAN-4 0.62 0.67
CGAN-(1 + 2 + 3 + 4) 0.81 0.92
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Table 3. Frame-level AUC performance on all 4 benchmarks using PSNR encoding and SVM
classifiers. 80% samples of the test set are used for training SVM. SHT = ShanghaiTech.

CGAN Stream Avenue Ped1 Ped2 SHT

CGAN-1 0.82 0.75 0.89 0.68
CGAN-2 0.81 0.78 0.92 0.78
CGAN-3 0.79 0.64 0.75 0.73
CGAN-4 0.67 0.65 0.77 0.62
CGAN-(1 + 2) 0.83 0.80 0.93 0.80
CGAN-(3 + 4) 0.86 0.70 0.77 0.81
CGAN-(1 + 4) 0.86 0.79 0.93 0.76
CGAN-(1 + 2 + 3) 0.86 0.83 0.95 0.87
CGAN-(1 + 2 + 4) 0.83 0.83 0.93 0.83
CGAN-(1 + 2 + 3 + 4) 0.92 0.85 0.96 0.94

Table 4. Comparison of Frame level AUC on 4 datasets between ours solution and recent state-of-the-
art methods that reported their performance on at least 2 similar datasets. The best performance on
each dataset is highlighted by bold number. We split those methods in two groups. The upper group
contains the fully unsupervised methods without adding extra abnormal samples from original
test set to training set. The second group contains the semi-supervised and supervised methods
that insert abnormal samples into training set. Generally, it is difficult to comparing the methods
in different scenarios, especially in second group, because the number of testing samples is not the
same. For our case, all the output channels of our model are used. 80% samples of test set are used
for training SVM. SHT = ShanghaiTech.

Methods Avenue Ped1 Ped2 SHT

Unsupervised
methods

Luo et al. [2] 0.77 0.88
Nguyen et al. [5] 0.87 0.96
Hinami et al. [16] 0.89 0.92
Vu et al. [19] 0.72 0.82 0.99
Ouyang et al. [24] 0.89 0.97 0.81
Ionescu et al. [6] 0.90 0.98 0.85

Semi and
supervised
methods

IVC with OS [25] 0.83 0.56
IVC with OS & FL [25] 0.83 0.50
IVC with OS & FL &2streams [25] 0.81 0.50
TripleLoss + OCSVM [25] 0.80 0.50
Hasan et al. [1] 0.80 0.75 0.85 0.61
Luo et al. [11] 0.82 0.92 0.68
Ionescu et al. [3] 0.81 0.68 0.82
Liu et al. [4] 0.85 0.83 0.95 0.73
Liu et al. [25] 0.93 0.77

Ours 0.92 0.85 0.96 0.94

For the abnormal object localization models, we evaluate our quantitative perfor-
mances in Avenue dataset using AUC and ERR metrics at pixel-level in Table 5. Most of
state-of-the-art researches [4–6] have not reported quantitative performances for abnor-
mality localization task but only qualitative analysis. Hence, we compare our quantitative
results with recent methods of Vu et al. [19,26] that applied the same evaluation metrics.
We achieve significant improvements on both metrics.
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Table 5. Pixel-level AUC and EER performance of abnormal object localization on Avenue dataset.
The best performance on each dataset is highlighted by bold number.

Methods AUC EER

OC-SVM [26] 33.16 47.55
GMM [26] 43.06 43.13
Multilevel Representations [19] 52.82 38.83

Ours 74.43 30.21

Qualitative evaluation: To understand the distinction of our features on each stream,
we explore the distribution of test samples for each CGAN on each dataset. Figure 7 shows
us the distribution of test samples in Ped2 dataset. Obviously, almost normal samples
situate in higher values than abnormal ones. This distribution corresponds to the fact that
PSNR techniques produce high scores if predicted images tend to similar source images.
Besides, because Ped2 contains only grayscale images, all three channels of CGAN-3 must
be equal so we observe a straight line distribution.

(a) (b)

(c) (d)

Figure 7. Distribution of normal and abnormal samples in Avenue dataset. For CGAN-2 (b) and
CGAN-3 (c), normal points are blue and abnormal points are black. For CGAN-1 (a) and CGAN4 (d),
normal = light blue and abnormal = red. Obviously, normal samples situate in higher values than
abnormal ones. This distribution corresponds to the fact that PSNR techniques produce high scores if
predicted images tend to similar source images. On one side, because Avenue contains RGB images,
CGAN-3 has 3-dimensions values.

Figure 8 present several examples selected from Avenue, Ped1, Ped2, and Shang-
haiTech to demonstrate true positive and failure cases of object-centric anomaly localization.
Obviously, we can strongly detect various types of abnormal events even in crowed and
occlusive background with multiple camera angle, involving not only single, but also
multiple objects. Many failure cases appear when abnormal objects are too close to the
other normal boxes then PSNR score of those boxes can be effected by the features of
abnormal objects. Other common errors are directly caused by false negative frame-level
detection at previous phase.
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Figure 8. Qualitative results of abnormal objects localization on Avenue, Ped1, Ped2, and Shang-
haiTech dataset. The left side contains correct localizations and the right side shows the failure cases
with two main errors: false negative frames and detect wrong objects. The true objects are marked by
green boxes. Best viewed in color.

4.4. Discussion

Strengths: Our experiments show that we achieve very promising results, although
we have not optimized all of the steps. Suppose that we replace Full-Flow [21] and
Lucas-Kanade [22] by recent state-of-the-art methods, we might improve our performance.
Besides, our framework is quite flexible, so we can add more streams with more chan-
nels representing various types of data to learn richer features. Those features are also
appropriated for many classifiers.

Limitations: On one hand, the mix of unsupervised CGAN streams with supervised
SVM help us obtaining impressive performance on the offline case, where all test data
are prepared and well pre-processed. For online works, we get trouble when brand new
abnormal actions suddenly occur without existing in the previous learned database. On
the other hand, the anomaly localization is significantly affected by the detector we use
(Figure 9). Sometimes, bounding boxes is imperfectly generated with size and labels. We
can go beyond this limitation by not applying a high-level detector such as Mask R-CNN,
but only a low-level region proposal network.

Figure 9. Several imperfect cases of anomaly localization affected by Mask R-CNN detector. Left:
Too large bounding box; Middle: Too small box; Right: Wrong object. Best viewed in color.
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5. Conclusions and Future Work

In this paper, we present a flexible multi-channel generative framework for supervised
anomaly detection in surveillance videos. Various types of input images are passed into 4
CGAN streams to predict future information. Then we apply PSNR technique to encode
prediction error into feature vectors. A supervised scenario is built based on a part of the
test set to train a SVM classifier. Our solution is evaluated on 4 datasets: Avenue, Ped1,
Ped2, ShanghaiTech, and surpass state-of-the-art performance on three of them, especially
producing a huge improvement on ShanghaiTech.

For future work, we first plan to replace optical flow estimation methods as discussed
above. The USCD Ped2 is relatively easy, so we will evaluate our methods with more
datasets [27–29]. Some of those datasets are suitable for supervised scenario. Then, we
would like to build a new dataset for supervised anomaly detection containing both
normal and abnormal samples in its training set. Furthermore, we would like to build an
end-to-end model without adding SVM classifiers.
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