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Abstract: At present, new data sharing technologies, such as those used in the Internet of Things
(IoT) paradigm, are being extensively adopted. For this reason, intelligent security controls have
become imperative. According to good practices and security information standards, particularly
those regarding security in depth, several defensive layers are required to protect information assets.
Within the context of IoT cyber-attacks, it is fundamental to continuously adapt new detection
mechanisms for growing IoT threats, specifically for those becoming more sophisticated within
mesh networks, such as identity theft and cloning. Therefore, current applications, such as Intrusion
Detection Systems (IDS), Intrusion Prevention Systems (IPS), and Security Information and Event
Management Systems (SIEM), are becoming inadequate for accurately handling novel security
incidents, due to their signature-based detection procedures using the matching and flagging of
anomalous patterns. This project focuses on a seldom-investigated identity attack—the Clone ID
attack—directed at the Routing Protocol for Low Power and Lossy Networks (RPL), the underlying
technology for most IoT devices. Hence, a robust Artificial Intelligence-based protection framework
is proposed, in order to tackle major identity impersonation attacks, which classical applications are
prone to misidentifying. On this basis, unsupervised pre-training techniques are employed to select
key characteristics from RPL network samples. Then, a Dense Neural Network (DNN) is trained
to maximize deep feature engineering, with the aim of improving classification results to protect
against malicious counterfeiting attempts.

Keywords: Clone ID attack; deep learning; Internet of Things; IoT; intrusion detection; IDS; machine
learning; RPL

1. Introduction

The Internet of Things (IoT) is a network comprised of smart devices, equipped with
embedded sensors, actuators, processors, and transceivers [1], mostly connected to an
application or server over the Internet. A recent study [2] mentioned that, by 2020, IoT tech-
nology will be available in 95% of the electronic circuitry of newly emerging products,
comprising approximately twenty billion smart devices in constant use. Moreover, a report
presented by Cisco [3] demonstrated that, due to the rapid evolution and popularity of IoT
gadgets and wearables, the amount of fully connected devices around the world may be
as high as fifty billion. Due to the interoperability of the IoT paradigm, Wireless Sensor
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Networks (WSN) have been sketched as a subset of IoT technology, in which each device
can employ inherent sensors to work as a mesh network.

At present, the applications of IoT and WSNs are predominantly being engaged for
industrial needs; as an example, in [4], WSNs were used to monitor power transmission
lines, in order to reduce the damage caused by natural disasters and extreme weather
conditions, by collecting data from different types of sensors distributed on transmission
towers. On the other hand, in [5], cluster-based data aggregation methods were executed
in different-sized WSNs, in order to gauge configurations and identify pests in coffee
plantations. Furthermore, in [6], a set of WSNs was arranged to measure earth vibrations
and to monitor the structural health of constructions. One of the most important (and
often critical) form of industrialized WSNs is in aircraft manufacturing: Figure 1 illustrates
Aircraft Strength Testing (AST), an auditing procedure that exploits linked sensors to assess
structural damage, such as fatigue cracks, part rigidity, corrosion, and so on [7].

Figure 1. The AST–WSN topology comprises cluster head nodes that forward data to the router
nodes, which finally sends the sensed information to an AST Server for storage and analysis.

By their very nature, IoT and WSNs are likely to crash due to packet transmission
loss and low network throughput—constraints that are being progressively amended
by standardizing different routing protocols [8], among which the Routing Protocol for
Low-Power and Lossy Networks protocol (RPL) stands out, due to its rapid flexibility
and efficient routing—characteristics required to deal with different network technologies,
smart IP addresses, the enabling of IoT nodes, and quality of service (QoS) support [8,9].
In view of its noticeable advantages, RPL is becoming the underlying technology for many
IoT device manufacturers and vendors in a wide range of application domains; however,
it also provides an entry point for security threats that compromise legacy structures that
are implicit in RPL networks, such as the Low Power and Lossy Networks (LLNs). Data
collection, sharing, transparency, updating, and secure communication enforcing are not
just the only inquiries for IoT and WSNs protocols to reach security goals, but also how
protection tactics and strategies are being modeled to offer reliable end-to-end solutions.
A lack of security controls, mechanisms, and incident monitoring capabilities can expose
distinct weaknesses across the network layers of RPL and IoT architectures. Firstly, at the
network layer, common vulnerabilities include eavesdropping, packet sniffing, routing
attacks, and Denial of Service (DoS); the latter is possible thanks to the high accessibility
to smart devices running with default configuration, with hardly any security measures
implemented [10]. At the application layer, frequent attacks include phishing, malicious
code and object injection, and Cross-Site-Request-Forgery (CSRF), as well as any risk
concerning web-based applications.
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As explained in [11], RPL and LLN security is an extensive subject of study; however,
certain breaches remain unaddressed: Routing falsification, Clone ID, and Byzantine
intrusion. In addition, in [12], it was mentioned that perimeter defensive systems must
update their detection controls towards major routing attacks, such as sinkhole, blackhole,
selective forwarding, sybil and, specifically, identity cloning. A summary of cyber-attack
types directed at IoT protocols, emphasizing those aimed at RPL and LLNs, is depicted
in Figure 2.

Figure 2. Number of cyber-attack types directed at IoT protocols, emphasizing those aimed at
RPL and LLNs.

Detection/prevention mechanisms work through observations of network traffic, by
means of IDS, IPS, firewall, and Security Information and Event Management (SIEM)
systems. The aforementioned are physical or logic implementations working on a network,
host, or hybrid environments and, for instance, are configured with rules, policies, and/or
behavioral- and anomaly-based signatures [13]. Indeed, monitoring network flows for
malicious signature matching, rules/policy disruption, and flagging abnormal patterns
can lead to time and resource consumption, an increase in high false/positive rates, limited
customization, and constant database updating, making this last factor a significant setback,
as intruders are constantly crafting novel and more sophisticated artifacts [14].

Although the efforts to mitigate the previously mentioned flaws have been addressed
by a comprehensive number of secure protocols [15], the proposed mechanisms are still not
entirely suitable for IoT resource-constrained ecosystems with novel and unconventional
attack surfaces, affecting the integrity of routing algorithms and the trustworthiness of
RPL node identity. In that sense, Wallgren et al. [16] mentioned that, due to the misuse
of the Directed Acyclic Graph (DAG)—the core engine for RPL topology organization—
attackers can easily bypass voting schemes by counterfeiting the identities of legitimate IoT
physical nodes. This type of identity impersonation, better known as the Clone ID attack, is
challenging to overcome, considering that RPL algorithms are bound to multiple metrics to
determine each node level and ranking within a network, opening the possibility of a worst-
case scenario: when the root node, as it is known by the Destination-Oriented Directed
Acyclic Graph (DODAG) is compromised. As a result, any data sent through a cloned root
node will be directly available to an attacker and might be susceptible to alteration, leaking,
spoofing, and ex-filtration, while the cloned node and siblings can remain unreachable,
levering transmission inconsistencies over the entire network. ID Cloning attacks have
been cited in early work [17,18]; however, the remediation and mitigation methods have
only been partially disclosed and have been limited to node ranking optimization, secure
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node election mechanisms, and malicious node elimination through blacklisting additions
to IDS/IPS rules.

Consequently, more intelligent and adaptable schemes are being developed to expand
the detection capabilities of classical security defense systems. In that sense, the incorpo-
ration of Artificial Intelligence (AI), Machine Learning (ML), Deep Learning (DL), and
Reinforcement Learning (RL) sensors has become imperative to deal with large amounts of
samples, maximize feature engineering, learn from latent abnormal patterns, reduce the
time for disclosing unknown vulnerabilities, and reinforce classification outcomes [19]. De-
spite this, AI-enhanced and semi-enhanced frameworks are more oriented towards easing
flooding attacks [19,20], wormhole attacks [21], machine-driven hello-flood attacks [22],
Received Signal Strength Indicator (RSSI) flooding attacks [23], and DDoS attacks [24], leav-
ing Cloning ID attacks as a virtually unexplored area of research. In this work, we present
a novel protection framework based on unsupervised ML pre-processing techniques, along
with a Dense Neural Network (DNN) approach, to effectively detect counterfeiting attacks
on RPL-based network conversations.

Aiming and Research Contributions

The RPL protocol has been the subject of several studies since its creation and imple-
mentation. Like any type of standard, IoT device manufacturers and application developers
have adapted new technologies based on the premises of RPL, in which information se-
curity has not been a primary point in its design. Over time, many vulnerabilities have
been reported, which have been fully or partially remediated, according to their level of
risk. One of the most difficult threats to counter is the Clone ID Attack, as, according
to [25], this type of threat is independent of the applications supported in WSNs, where
stealthily malicious actors are able to impersonate multiple identities in the absence of
default authorization mechanisms. With the rise of the information security landscape, cor-
rective controls have been proven to be not entirely effective, as centralized and distributed
methods are needed, including the use of cryptographic algorithms, hardware modifi-
cations, high-cost resources to evaluate sensor nodes positions, neighbourhood analysis
and, above all, the ability to operate in restricted environments, such as IoT. On the other
hand, the addition of physical or logical perimeter systems must allow for the in-depth
filtering of the content of RPL messages, where the rules and detection policies may not be
adequate, leaving a large gap in the writing of a signature and the craft of a new threat. This
means that there are no intelligent or adaptive controls for most of these applications [26].
As mentioned in Section 1, one of the novel approaches that can detect a Clone ID pattern
is the incorporation of AI techniques, which can better characterize the behaviour of an
attack and present a faster detection, supported by performance measures that endorse
the functionality of the algorithms used. The contribution of this paper highlights this
importance, focusing on a robust solution and implementation as a possible framework for
an IDS/IPS appliance. Although there have been works that presented AI as an alternative
choice (specifically, ML or DL) to solve several vulnerabilities in RPL, their scope was lim-
ited to threats in areas such as routing, localization, data aggregation, and synchronization.
Moreover, the proposals had procedures limited to shallow algorithms, with little capacity
for the extraction and selection of important features. To date, it is unknown if there is any
other work using DL to tackle the Clone ID Attack. The contributions of this article are
listed below:

1. One of the first detection frameworks for Clone ID Attack based on Artificial Intelli-
gence algorithms is developed; the construction is based on the following premises:

• The pre-processing of traffic samples obtained by simulations with real traffic
from IoT and WSN sensors, which can filter, scale, and reduce the complexity of
the samples;

• The use of low-cost feature selection and extraction techniques, in order to ideally
represent key evidence resulting from an attack and regular behaviours over
a WSN.
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2. The presentation of a possible real deployment detection scenario, taking into account
the on-premise capabilities and constraints of current IDS/IPS systems, as well as the
implications of using an ML-based solution.

The rest of this paper is organized as follows: Section 2 provides a review of the RPL
protocol and a synopsis of identity cloning attacks. Section 3 describes the related work.
In Section 4, the intended framework is detailed, as well as data gathering, pre-processing,
and DNN training tasks. Section 5 presents the experimental results and discussions.
Finally, Section 6 concludes this work.

2. The RPL Protocol

The IoT is a compound of multiple linked and interoperable devices, majorly framed
with limited resources and lossy radio-links. To grant a successful management and
routing control, two main protocols are used in IoT network layers: IPv6 over Low-
Power 6LoWPAN (WPAN) and RPL. Initially, the 6LoWPAN protocol was standardized by
The Internet Engineering Task Force (IETF), in order to allow IPv6 packets to be carried
efficiently in small link layer frames in WSNs backgrounds [27].

In its more recent adaptations, 6LoWPAN has been used over broadened networking
media, such as Low-Power Radio Frequency (LPRF), Bluetooth Smart (BS), Power Line
Control (PLC), and Low-Power Wi-Fi (LPWIFI). To drive forward different routing paths on
Low-power and Lossy Networks (LLNs), such as point-to-point (P2P), point-to-multipoint
(P2MP), and multipoint-to-point (MP2P), the RPL protocol has been established as a more
resilient alternative, by creating a Destination-oriented Directed Acyclic Graph (DODAG)
between the IoT nodes and 6LoWPAN unidirectional traffic. To assemble incoming network
nodes, DODAG senses and ranks each node by indicating its relative position with respect
to others and with respect to the DODAG itself. As a case in point, in Figure 3, the sensor
nodes A and C are parents of nodes D, E, and F, while node F acts as the parent of node G.

Figure 3. Concept diagram of DODAG node organization.

As with any network protocol, RPL uses a control message medium to identify
requested and forwarded packets. The message body is a DODAG object composed of
ICMPv6 code fields, as well as source/destination addresses for all nodes in a hierarchical
structure. In Table 1, the RPL control message types are listed [28].

From Table 1, it is worth noticing two objects that play a principal role in DODAG
organization: The DIS control message, which is responsible for sensing, discovering, and
requesting neighbouring nodes to join a DODAG tree; and the DIO control message, for
assigning an identity to a newly added node and hierarchically reconstructing the DODAG.
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Table 1. Codes for RPL control message types.

Code Field ID Description

0x00
0x01
0x02
0x03
0x80
0x81
0x82
0x83
0x8A

DODAG Information Solicitation (DIS)
DODAG Information Object (DIO)
Destination Advertisement Object (DAO)
Destination Advertisement Object Acknowledgment (DAO-ACK)
Secure DODAG Information Solicitation
Secure DODAG Information Object
Secure Destination Advertisement Object
Secure Destination Advertisement Object Acknowledgment
Consistency Check

2.1. Clone ID Attack on the RPL Protocol

In the process of sensing RPL-based connections, the DIS and DIO control messages
are liable to be manipulated or created to commit identity counterfeiting—namely, the
Clone ID attack—in which malicious actors learn about the configuration of DODAG trees
and modify the information required to add a malicious node. This attack is possible
because the RPL standard version is not intended to implement security and self-healing
mechanisms by default. In fact, the IEFT strongly recommends data confidentiality and
integrity configurations using pre-shared key authentication. These characteristics can
increase the reliability of the resources, but its implementation has a severe impact, in terms
of limiting the nodes mobility and network performance. It has also been demonstrated that
an attacker inside the network can easily bypass security controls, due to the complexity
of self-configuration and organization between nodes, making key management and
peering a major complication. On this basis, nodes can join freely without enforcing any
authorization or authentication policy, opening a great opportunity to replicate multiple
nodes in different locations [29]. In Figure 4a,b, the steps to conduct a Clone ID attack on a
RPL default environment are pictured: 1. A malicious actor senses a RPL-based network
and targets it, then the DODAG configuration is read and a malicious node Z learns from
sibling identities and impersonate a selected one, E. In this stage, Z remains a sibling node
with no competition with the targeted node; 2. Forged DIS control messages containing
the cloned identity of the sibling node, E, are sent by the malicious node, Z, until access
is granted to the network; 3. Therefore, when the malicious node, Z, is accepted as a
member of the graph, all the other nodes in the network send a DIO control message to
reconstruct the DODAG topology and communication with the malicious node, Z, begins
in a transparent way. It is important to mention that the legitimate node, E, may send
another DIS message in order to restore communication with the network, resulting in a
continuous competition between the malicious node, Z, and the legitimate node E, in order
to gain trustworthiness among the graph members, in such a way that the winner will be
the one who can maintain DIS messages for a longer span of time. As described by [30], this
is possible due to two main factors: 1. The IEFT states that the RPL protocol uses by default
a mode called Unsecured, where the basic messages DIS, DIO, DAO and DAO-ACK can be
easily modified, without any integrity nor authenticity check. This is a great advantage
for the attacker to impersonate a node within the network. 2. RPL allows any node to join
the DODAG tree at any time, by means of DIS and DIO messages to incorporate itself and
re-arrange the DODAG tree, as mentioned before. With this, an illegitimate node will take
advantage of the Trickle Timer mechanism of the protocol, which periodically sends DIO
messages to check the stability of the DODAG tree and thus, generate persistence within
the DODAG tree.
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Figure 4. (a) Clone ID attack launching and (b) outcome.

Internally, RPL sensing algorithms are not aware of node identities, nor are security
access control lists, mechanisms, and verification schedules mandatory to affiliate to a
DODAG tree. Additionally, the geographical information of each node is not deemed to
track its position, according to its node parent hierarchy, such that a single cloned node
can be distributed in multiple leaves on the DODAG graph. Crafting and deploying a
Clone ID Attack is directly linked to the absence of security methods contained in the
implementation of RPL on conventional devices. With this in mind, sensors are susceptible
to physical capture attacks, such that adversaries can easily program an unlimited number
of replicated nodes by spoofing the WSN. In agreement with the taxonomies presented
in [31], node replication is an application-independent attack over IoT networks that
can be reproduced in static or mobile ways, depending on the WSN architecture. In a
static manner, each node is randomly created with a fixed geographical position inside
a DODAG graph; in counterpart, in the mobile form, nodes can move through dynamic
routing. The steps to reproduce a Clone ID Attack, either static or mobile, are listed as
follows: 1. A malicious actor inside a vulnerable WSN captures sensor nodes physically;
2. A selected legal node is isolated in a span of time from the network; 3. The node is
analyzed and sensible information is collected (node id, secret keys, cryptographic data,
and so on); 4. The attacker replicates the selected node by counterfeiting its identity and
mounts it in key geographical positions. Additionally, an intruder can decide if is worth
replicating multiple nodes in the network and place them in other positions [15]. The
latter makes it a challenging duty to accurately detect a malicious node request; however,
beyond this, the impact of a Clone ID attack can lead to serious consequences. As with
any impersonation threat, the losses can involve private data sniffing, data modification
and alteration, unwanted data re-transmission and, in its worst case, when the DODAG
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root node is compromised, the ecosystem can have repercussions from lateral movement
attacks, data ex-filtration, and privilege escalation access [32].

2.2. Detecting a Clone ID Attack

To conduct a security evaluation of emerging technologies, such as IoT and WSNs
infrastructures, the Security-in-Depth paradigm introduces the idea of minimizing any risk
by maximizing the effectiveness of various security layers [33]. Within this context, security
layers are the combination of physical and logical control measures that contribute to the
reinforcement of abilities to prevent, detect, delay, or respond to any security disruption
attempt [34]. With this, IDS, IPS, SIEM, and firewall appliances are common perimeter de-
fensive systems, merged and placed at various network layers and operating in accordance
with anomaly- and behavioural-based signatures. Once a malicious pattern is matched
and flagged, the intruder may be banned or eradicated from attempting new incursions.
Table 2 summarizes basic logging information gathering and detection capabilities of IoT
perimeter security solutions.

Table 2. Common logging information gathering and detection capabilities of perimeter security solutions. Those who
interact with IoT protocols are highlighted in bold.

Logging Information Gathering Capabilities Detection Capabilities

-Timestamp (e.g., date and time) -Application layer reconnaissance and attacks
-Connection or session ID -Network layer reconnaissance and attacks:
-Event or alert type Sinkhole attack ‡ ;
-Rating (e.g., priority, severity, impact, confidence) Neighbour attack; ‡

-Network, transport, and application layer IoT protocols: DIS attack ‡ and
CORPL †; CARP †; 6LoWPAN † and RPL † Local repair attack ‡

-Source and destination IP addresses -Unexpected application services
-Source and destination TCP or UDP ports, or ICMP types and codes
-Number of bytes transmitted over the connection
-Decoded payload data, such as application requests and responses
-State-related information (e.g., authenticated username)

† IoT network protocols; ‡ already recognized RPL-oriented attacks.

Corrective controls have been proposed to achieve a certain level of prevention and
mitigation towards clone node attacks over IoT and WSN protocols. In [35], the review
concluded that detection and prevention techniques can fall in two main categories—
centralized and distributed—for static and mobile WSNs, with different taxonomies de-
pending on the security control algorithms and computational memory costs. It is impor-
tant to highlight that, while the algorithms proposed can partially or experimentally ease
some vulnerabilities, there are no ML, DL, RF, or statistical implementations to compare
with. More importantly, the adjustments are not specifically oriented to RPL, thus creating
a gap in the study of more intelligent solutions. Table 3 describes the proposed categories
and taxonomies in the corrective controls for the mitigation of Clone ID Attacks. It is worth
mentioning that the reported complexity varies exponentially, depending on the adapta-
tions, experiments, specifications, and tests performed. This directly affects the memory
cost data, as it is a measure that indicates the complexity of the number of operations
that the solution must perform to observe the dynamics of each node, in order to detect a
suspicious movement.

Nevertheless, it is a fact that RPL, as part of many IoT and WSN routing protocols,
might have already written detection signatures for its ordinary adversarial patterns.
In [32], preliminary advances reported that identity and counterfeiting attacks can be less-
ened by extending IDS anomaly-based signatures on specific network segments, where
physical nodes establish a first authentication on the DODAG tree. In this stage, geograph-
ical information can be determined and suspicious nodes can be banned. Conversely,
in [36], the authors claimed that typical IDS, IPS, firewalls, and similar defensive systems
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are prone to producing a high rate of false positives. Due to this, similarity comparisons
are not effective for fully exploring the characteristics and taking intelligent actions on
stealthy attacks, such as the Clone ID attack. A host-based IDS equipped with a ML-driven
engine and a statistical learning model has been developed, in [37], in order to detect node
ranking attacks on RPL, which is a crucial innovation to reduce more sophisticated attacks
towards the DODAG organization. In any case, as with many newly identified IoT threats,
the Clone ID attack surfaces and countermeasures in RPL networks remain unexplored.

Table 3. Centralized and distributed techniques for corrective controls in the detection of Clone ID Attacks.

Category Description Taxonomies Memory Complexities Reported *

Centralized

Uses a powerful central Base Sta-
tion (BS) to track each node posi-
tion and its neighbours identity
when joining to the network

Key usage-based
Base station-based
Neighbourhood social signature-based
Cluster head-based
Zone-based
Neighbour ID-based

O(d), O(d
√

n), O(log(n)), O(1), O(N)
O(d) + min(Mwlog2M)
O(n)
O(t)

O(d)
O(nZ)
O(n)

Distributed

Clone replication is applied to all
network nodes with no central
Base Station (BS)

Node to network broadcasting
Witness node-based

Generation- or group-based
Neighbour-based
Clustered-based
Whiteness path-based
Cluster head-based

O(1)
O(g), O(d), O(

√
n), O(ω)O(tk + t′k

√
n), O(t + t′

√
n′)

O(
√

nlog(n)), O(12)2, O(h), O(1)2

O(1), O(m), O(d + 2m), O(2 + 2xm(1 + Dmax)), O(r,
√

n), O(r)
O(r)
O(k, e)
O( l

r )
O( 1

p )

* results expressed in BIG-O notation.

3. Related Work

Little is known about how perimeter defensive systems implement persuasive mit-
igation rules for a Clone ID attack, or which intelligent controls by ML algorithms can
classify, group, or potentially evaluate node impersonation threats [38,39] on the RPL pro-
tocol. Even so, in [40], a scheme to defeat the sybil, a closely related Clone ID attack, was
proposed, which relied on radio resource testing and verification of key sets for random
key pre-distribution, registration, and position verification.

In [41], various sybil attacks over large IoT networks were addressed by means
of Social Graph-based Sybil Detection (SGSD), Behavioural Classification-based sybil
Detection (BCSD), and Mobile Sybil Defenses (MSD). It is important to mention that such
proposals may rely on preventive controls, rather than detective controls, due to an absence
of analysis and monitoring at the core of RPL authentication stages.

In spite of the lack of countermeasures to detect Clone ID attacks, some authors
have focused on other RPL-related attacks, specifically those affecting the DODAG node
arrangement, using ML techniques. In [20], a DL-based security monitoring analysis
was implemented for IoT network flows at upper layers, where a DNN algorithm was
trained by means of data sets built over RPL messages with binary outcomes: Malicious
and regular. To construct the predictive model, feature extraction techniques based on
time windows were chosen, concluding that most ranking attacks can be substantially
decreased, but covert attacks, such as the Clone ID, were on the edge to be explored in
future works. Additionally, in [42], a Multi-level Perceptron (MLP) was trained with
different Internet packet traces, in order to detect Distributed DoS or DoS (DDoS/DoS)
attacks over RPL nodes. It is important to mention that the MLP algorithm only evaluates
one type of DoS/DDoS at a time on UDP, a non-common protocol for WSNs that may
not be feasible to track when counterfeited nodes propagate down the DODAG tree.
Furthermore, in [43], a Deep Autoencoder Neural Network (DANN) was proposed for
detecting DODAG intrusions; the algorithm was trained with remote-to-local (R2L), DoS,
and user-to-root (U2R) samples from a well-known IoT data set known as NSL-KDD [44].
Even though Autoencoders can maximize the way that a DANN projects network features,
the unbalanced nature of the NSL-KDD data set caused TCP/IP packets to compose the
majority of samples, overshadowing the minority of RPL packets adjacent to a DODAG;
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hence, the RPL protocol was out of scope of their paper. In a more conscientious work [45],
a DNN in consolidation with a Self-Taught Learning (STL) framework was developed,
with two main tasks to cluster different RPL attacks: Feature learning and dimensional
reduction, with different Autoencoder configurations. The results revealed that the STL
can group attacks into four categories with an improved feature analysis: DoS, Probe, R2L,
and U2R attacks. Notwithstanding its recommendation statuses, impersonation remained
undetected. Although former approaches have tackled some RPL attacks on various
DODAG fields using ML, the Clone ID attack has been noted as warranting subsequent
exploration. Table 4 summarizes the algorithms and data acquisition from the previously
discussed work.

Table 4. Related work using ML models on RPL and DODAG attacks.

Authors ML Algorithm Attack Data Set

Yavuz, F. Y. et al. [20] Deep Feed-Forward Network (DFFN) Decreased rank Custom WSN data
Hello flood
Version number

Hodo et al. [42] MLP UDP DDoS/DOS NSL-KDD

Al-Qatf et al. [45] SAE and SVM DoS, Probe, R2L, U2R Custom TCP/UDP traffic

4. Proposed Framework

The workflow of the proposed methodology is depicted in Figure 5. First, in a
pre-processing stage, the data set is subjected to class-balancing procedures, value transfor-
mations, and scaling. Afterwards, unsupervised learning is performed, in order to find
the most adequate features to represent a Clone ID Attack from RPL messages. Then,
supervised learning is used to classify samples into one of two main classes: Attack or
normal. Finally, the resulting model is evaluated in terms of the following performance
metrics: Accuracy, precision, and F1 score.

Figure 5. Workflow of the proposed methodology.

4.1. Data Collection

To extract Clone ID attacks on RPL network conversations, a virtual environment was
deployed using Cooja [46], a well-known WSN emulator, and tshark, a network packet
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analyzer [47]. It is important to mention that the capabilities of Cooja allow for emulating
traffic and working with real software for attack simulation. According to an exhaustive
comparison with other IoT simulators, presented in [48], this simulator allows for the
estimation of the effects of an attack, the consumption of hardware resources, and the
support for different operating systems. The only disadvantage is the high consumption
of resources in minimal environments. The scenario was configured on a 6LowPAN
network over RPL messages, involving o node built using a Zoleria Z1 device, 100 Z1-
based dummy sensors spread across a radius of 10 and 200 m, and ten malicious sensors
with Z1 embedded technology. Three types of topological structures were designed to
resemble real traffic, with impersonated nodes capable of being dumped from network
captures, to build the three final data sets. The first data set consisted of twenty nodes with
two malicious sensors; the second one was comprised of fifty nodes with five malicious
nodes; and, ultimately, the third data set contained one-hundred nodes, of which ten were
malicious. Each topology had a root node or sink, which was assumed to be exposed to
an external network. In Table 5, the topologies fashioned to mirror real Clone ID attacks
are listed.

Table 5. Data set sizes and corresponding topologies.

Data Set Name No. of Nodes Malicious Nodes Benign Nodes Samples

cloneid_20n 20 2 18 1,232,862
cloneid_50n 50 5 45 1,576,668
cloneid_100n 100 10 90 1,492,579

The IoT virtual environment to exploit the Clone ID attack, carried out using the Cooja
simulator, is depicted in Figure 6.

Figure 6. IoT virtual environment to simulate the Clone ID attack.

The topology, node distribution across established radius distances, and configuration
of each data set are illustrated in Figure 7a–c.
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(a) cloneid_20n data set topology.

(b) cloneid_50n data set topology.

(c) cloneid_100n data set topology.

Figure 7. Sensors employed to simulate a Clone ID attack, with different topologies and node
configurations.

As with any other raw network traffic examination, samples may contain many
headers whose values are optional or null, thus representing a missing data problem.
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For this reason, instead of fulfilling a high-dimensional data representation by statistical
means, incomplete headers were filtered and discarded. After replaying live network
captures, a total of 1207 headers were identified as candidate features, but only 19 field
headers were selected with full and complete information. Additionally, it should be
noted that some features were listed as categorical values—wpan.ack_request, wpan.pending,
icmpv6.code, wpan.dst_addr_mode, and 6lowpan.pattern—due to their ordinal behaviour. There-
fore, datatype casting was carried out to transform them into numerical types. To construct
a tabular data set, each row was a sample. Columns represent features, according to the
previously selected numerical field headers. The last column maps samples to one of two
class labels, where 0 corresponds to a Normal network conversation (i.e., packets sent from a
legitimate node to another legitimate node) and 1 corresponds to a cloned ID attack. Table 6
delineates the features selected after RPL network flows were monitored and recorded.

Table 6. Feature descriptions for the data set.

No. Field Name Description Type of Feature

1 frame.cap_len Frame length stored into the capture file Numerical
2 frame.len Frame length on the wire Numerical
3 frame.number Frame Number Numerical
4 frame.time_delta Time delta from previous captured frame Numerical
5 frame.time_epoch Epoch Time Numerical
6 frame.time_relative Time since reference or first frame Numerical
7 wpan.ack_request Acknowledge Request Categorical
8 wpan.dst_addr_mode Destination Addressing Mode Categorical
9 wpan.fcf Frame Control Field Numerical
10 wpan.fcs Frame Check Sequence Numerical
11 wpan.frame_length Frame Length Numerical
12 wpan.pending Frame Pending Categorical
13 wpan.seq_no Sequence Number Numerical
14 6lowpan.pattern Pattern Categorical
15 ipv6.dst Destination Categorical
16 ipv6.plen Payload Length Numerical
17 ipv6.src Source Categorical
18 icmpv6.checksum Checksum Numerical
19 icmpv6.code Code Categorical
20 class Normal or attack class Numerical

4.2. Data Pre-Processing

In this subsection, the pre-processing steps aimed at cleaning and preparing the data
set for posterior phases, such as training and model evaluation, are detailed. In a first
data exploration, categorical values were codified or transformed into discrete numerical
sequences. Secondly, characteristics that contained outliers that affect the statistical variance
and sparseness of the whole data set were scaled and standardized. Finally, due to the
unbalanced nature of class samples, a data compensation technique to undersample the
class distribution was applied. The sequence of steps used to process each data set is listed
in Algorithm 1, and described as follows:

• Data set balancing: As stated in [49], the samples within network captures are con-
siderably smaller than those from benign applications, leading to the possibility of
overfitting and classification downgrading. That being the case, algorithm estimations
may always generalize the majority class features, overlapping the minority ones [50];
for example, in [51] the importance of data set balancing regarding a cervical cancer
prediction model (CCPM) using risk factors as inputs was emphasized. In this case,
the authors balanced their data set by using a synthetic minority over-sampling tech-
nique (SMOTE), due to their use of a Random Forest classifier. Although SMOTE
performs better than other re-sampling techniques in traditional machine learning
scenarios, in accordance with [52], Random Over-Sampling methods are better, as,
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in a real network traffic detection and filtering scenario, the generation of SMOTE
samples could not be practical for high dimensional data. It would also not be ideal to
use under-sampling, as it has been shown that, by removing samples from a majority
class, key evidence that may be useful in feature engineering procedures could be
lost. Therefore in the pre-processing stage in this proposal, a Random Over-Sampling
(ROS) procedure was performed with no replacement.

• Value transformation: Features that contain nominal and categorical data, such as
IPv6 source and destination addresses (ipv6_src and ipv6_dst), were transformed
into discrete values (Label Encoding), in a range between 0 (the first IPv6 host)
and n (the last one). In the case that a feature was comprised of a categorical se-
quence (i.e., {ipv6_dst, ipv6_src, icmpv6_code, wpan_dst_addr_mode, wpan_ f c f , and
sixlowpan_pattern}), the transformation was a reduction to a sparse numerical array
using One-Hot Encoding (OHE). After the conversion, each series were replaced by
values between 0 (representing the absence of addresses) and 1 (active values).

• Scaling: Numerical features were standardized to guarantee equal weights during
the learning process [50]. Specifically, standard scaling was used on each numerical
feature, x ∈ X, to center its mean, µ = 0, and scale it with respect to the standard
deviation σ, as shown in Equation (1).

xstandardized =
x− µ

σ
. (1)

Algorithm 1: Preprocessing tasks over each data set.
Result: Processed data set
Input : X, A, N, L, C, U
while i <= m do

Data set balancing:
n = no. of samples in N
k = round

(
n
|X|

)
A −→ A′ = o1, o2, ..., ok, where oi
for each oi do

Di = {oi, N}, i = 1, 2, ..., k
end
Value transformation:
L′ ←− LabelEncoder(L)
C′ ←− OneHotEncoder(C)
Scaling:
Return the final data sets D ←− StandardScaler(C′ + U′)

end

To interpret the steps involved in the processing algorithm, the following definitions
are denoted:

• xm
i=1 ∈ X is the set of original samples, where x is a sample and X is the data set;

• A ⊂ X, N ⊂ X; ∀|A| < |N| are the subsets belonging to minority and majority classes,
respectively;

• L = {ipv6.src, ipv6.dst} represents the set of categorical features to encode to discrete values;
• C = L ∪ {icmpv6.code, wpan.dst_addr_mode, wpan.fcf, 6lowpan.pattern} represents the set

of categorical features to transform to real values;
• U = {frame.time_delta, frame.time_epoch, frame.time_relative, frame.cap_len, frame.len,

frame.number, wpan.fcs, wpan.frame_length, wpan.seq_no, ipv6.plen, icmpv6.checksum}
represents the set of numerical features;

• k is the number of minority samples A contained in X; and
• {cloneid_20n, cloneid_50n, cloneid_100n} ∈ D is the final balanced set, resulting from

Label Encoding, OHE, and random selection and sampling without replacement.
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In Table 7, the data sets after the pre-processing steps are detailed.

Table 7. Data set descriptions after the pre-processing steps.

Data Set Name No. of Features Samples

cloneid_20n 67 1,749,976
cloneid_50n 121 2,131,328
cloneid_100n 211 2,078,832

It is worth mentioning that, for the cloneid_50 and cloneid_100 data sets, the number of
features increased as a result of the encoding steps. While more nodes were transformed,
the sequences of IP addresses encoded by OHE required more characterization.

4.3. Unsupervised Pre-Training

The topologies contained in each data set D conformed to IoT network packets, which
can vary from different origins, devices, latency, and changing behaviours, that depend
directly on the environment that is being observed. Although data exploration, transforma-
tion, and scaling are mandatory steps to construct proper inputs for the learning algorithm,
feature engineering is a key step to select relevant information, reduce the computational
costs from high-dimensional samples, and filter noisy data; inherent factors from IoT–RPL
communications [53]. To reach adequate feature extraction and selection, in this work, we
propose the use of an unsupervised learning algorithm, known as Autoencoder [54,55], a
data representation method capable of tracking network packet variations by backpropa-
gation and reconstructing the output values as being equal to the initial inputs using an
identity function; in other words, with minimum reconstruction error. A simple Autoen-
coder is depicted in Figure 8.

Figure 8. Conceptual diagram of an Autoencoder.

The structure of an Autoencoder is composed of an input layer Layer L1 , a hidden
layer Layer L2 , and an output layer Layer L3 . For the most part, the hidden units in Layer
L2 learn from a lower-dimensional representation of the input, as this layer has fewer
units [56]. In the encoding phase, the hidden representation is compacted to a vector hd,
mapped with an input vector xd containing d features:

hd = fθ(xd)=σ(Wxd+b), (2)
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where fθ is the mapping function, W is the p× p weight matrix for the p hidden units,
b is the bias vector, θ is the mapping parameter set θ = W, b, and σ is the sigmoid
activation function.

At the same time, in the decoding phase, the reconstructed d−dimensional vector
yn is computed by mapping back the condensed hidden representation gθ of vector hn,
as follows:

yi = gθ(hn)=σ(Whn+b). (3)

Finally, to minimize the reconstruction error between input and output for m samples,
the following model is computed:

E(x, y) =
1
m

∥∥∥∥ m

∑
i=1

(xn − yn)

∥∥∥∥2

. (4)

To find the latent representation of each data set D, a vector hd was used as a feature
selector, through an `1 regularization task implementing a sparsity constraint (also called
Sparse Auto Encoding; SAE), for the hidden layer. This regularization shrinks noisy feature
weights towards zero and extracts the most relevant ones. The Autoencoder and SAE
configurations, activation functions, epochs, and batch sizes are depicted in Figure 9.

Figure 9. Autoencoder and SAE configurations.

The configuration employed two-thirds of the total number of input neurons over the
hidden layer; the Rectified Linear Unit (ReLU) activation function was used to simplify
training and improve performance [57]; Adam was utilized as an optimizer, with a gradient
descent algorithm to adapt the learning rate [49]; and `1 regularization with a coefficient of
0.0001 was established [58].

4.4. Supervised Classification

The growing popularity of AI-based solutions to identify and classify malicious behav-
iors in different IoT networks and protocols has led to a vast range of schemes supporting
supervised classification algorithms. To build a custom AI solution to detect a Clone ID
Attack, the IoT surface and the previously pre-processed features must be in accordance
with the natural capabilities of a chosen algorithm. In [59], counterfeiting attacks were
cataloged as Network Service Surface Threats, encompassing Network Layer defenses and
Effective IoT Security Controls, with dynamical and temporal features. With this pream-
ble, the scattered and noisy form of Clone ID attack network captures may be out of the
spectrum of well-known shallow algorithms, including Decision Trees (DT) [60], Support
Vector Machines (SVM) [61], Naive Bayes (NB) [62], K-Nearest Neighbours (KNN) [63],



Sensors 2021, 21, 3173 17 of 24

and Association Rules (AR) [64]. In Table 8, some flaws detected in classic algorithms
towards IoT attack and threat recognition are presented.

Table 8. Comparison of different shallow algorithms and detected flaws.

Algorithm Drawbacks for Detecting IoT Attacks and Threats

DT [60] Large data storage, computational complexity with high-dimensional network
features, prone to over-fitting

SVM [61] Overlapping of class samples with large data sets, such as IoT network samples

NB [62] Inaccurate for finding feature relationships in complex data representations,
comparable to impersonation and sybil attacks

KNN [63] Flawed and time-consuming processes for finding optimal neighbours over
raw data corresponding to IoT packets

AR [64] Ineffective to map efficient rules in large IoT network nodes

Nonetheless, DL algorithms [65] have an advantage over shallow algorithms when
dealing with more complex data representations of IoT network flows, by thoroughly in-
specting the features in various hidden layers. To deeply contextualize the Clone ID Attack,
a Dense Neural Network (DNN) architecture [66] was modeled to strengthen feature prop-
agation and maximize the recognition of network conversations with impersonated nodes.

In a DNN, each neuron receives a weighted sum of the outputs of the neurons con-
nected to them, making faster computations to learn estimations over the training sets of
D. The model was adapted with two hidden layers and an output layer consisting of one
unit, as shown in Figure 10.

Figure 10. Architecture of the DNN.

To minimize the classification error, a Binary Cross-Entropy Loss (BCEL) activation
function was added, as follows:

J(W, b; x, y) = −(y log(hW,b(x)) + (1− y) log(1− hW,b(x))), (5)

where (x(i), y(i)) are the samples of the training set Xtrain ∈ D, hW,b(x) is the hypothesis
equation with parameters W (weight) and b (bias), and y is the ground truth (the true
label). Moreover, the DNN configuration and hyper-parameters used in this architecture
are depicted in Figure 11.
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Figure 11. DNN configuration and hyper-parameters.

5. Results and Discussion

This section presents and discusses the experimental results obtained from the Unsu-
pervised pre-training and Supervised classification. To configure the learning steps, the sets
{cloneid_20n, cloneid_50n, cloneid_100n} ∈ D were split into a training subset Xtrain built
with 80% of random samples from each data set contained in D, a validation set Xval with
20% of random samples from Xtrain, and a test set Xtest containing 20% of random samples
of each data set in D. In total, three different approaches were proposed for the conjunction
of data pre-processing, Unsupervised pre-training, and Supervised classification stages,
as detailed in Table 9.

Table 9. Ensemble of Autoencoders and DNN architectures.

No. of Model Configuration

1 No Autoencoder + DNN

2 SAE + DNN

3 AE + DNN

To evaluate the performance of the proposed models, two metrics were calculated:
Accuracy and F1 score. The accuracy is an indicator of the total number of correct predictions
made by the resulting classification model:

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Equation (6) is based on the premise of True Positives (TP), True Negatives (TN),
False Positives (FP), and False Negatives (FN), where:

• TP is the number of attacks classified as attacks;



Sensors 2021, 21, 3173 19 of 24

• TN is the number of normal conversations classified as normal;
• FP is the number of normal conversations misclassified as attacks; and
• FN is the number of attacks misclassified as normal conversations.

The F1 score is determined as the harmonic mean of precision and recall (i.e., as a
compensation between FP and FN), thus describing whether the resulting classification
model performs as expected:

F1-score = 2× Precision× Recall
Precision + Recall

, (7)

where Precision is the mathematical baseline between the number of positive predictions
and the total number of positive class values predicted (i.e., how precise the positive
predictions are):

Precision =
TP

TP + FP
, (8)

and
Recall =

TP
TP + FN

(9)

In an independent manner, a test was conducted using k-fold cross-validation, taking
into account the time span since the training procedure started and finished. Tables 10–12
depict, in bold rows, the best Precision and F1-scores values for {cloneid_20n, cloneid_50n,
cloneid_100n} ∈ D sets, subjected to the proposed models configurations.

Table 10. Performance metrics for the cloneid_20n data set.

No. of Model Configuration Accuracy F1-Score Total Time Complexity *

1 SAE + DNN 96.72 96.70 3:29:44 Ω(2h)
2 AE + DNN 94.41 94.43 3:13:54 Ω(2h)
3 No Autoencoder + DNN 93.46 93.36 4:20:30 Ω(2h)

* Based on the proposition described in [67], where it was explained that the hidden units of deep networks can
grow exponentially, where h is the number of hidden units and Ω specifies that the algorithm will at least take a
certain amount of time to produce and operate, without exceeding a certain period of time.

Table 11. Performance metrics for the cloneid_50n node data set.

No. of Model Configuration Accuracy F1-Score Total Time Complexity *

1 SAE + DNN 99.65 99.65 2:56:20 Ω(2h)
2 AE + DNN 99.08 99.08 4:05:47 Ω(2h)
3 No Autoencoder + DNN 99.04 99.04 3:16:44 Ω(2h)

* Based on the proposition described in [67], where it was explained that the hidden units of deep networks can
grow exponentially, where h is the number of hidden units and Ω specifies that the algorithm will at least take a
certain amount of time to produce and operate, without exceeding a certain period of time.

Table 12. Performance metrics for the cloneid_100n node data set.

No. of Model Configuration Accuracy F1-Score Total Time Complexity *

1 SAE + DNN 99.25 99.26 1:40:48 Ω(2h)
2 AE + DNN 98.66 98.66 2:19:50 Ω(2h)
3 No Autoencoder + DNN 98.53 98.53 1:41:24 Ω(2h)

* Based on the proposition described in [67], where it was explained that the hidden units of deep networks can
grow exponentially, where h is the number of hidden units and Ω specifies that the algorithm will at least take a
certain amount of time to produce and operate, without exceeding a certain period of time.

As the results show, the most effective models were the DNN+SAE configurations for
the cloneid_50n and cloneid_100n data sets. Even though the cloneid_20n data set presented
the lowest performance metrics, the implementation of SAE and AE Autoencoders were
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capable of finding a latent representation for classification inputs, compared with non-
encoded data, and improved the classification results. The time spans monitored on
the training steps changed significantly when applying SAE + DNN on cloneid_50n and
cloneid_100n, proving that Autoencoders suit characterization tasks to further SL inputs.
As stated in Section 1, this is the first work to build a framework to detect Clone ID attacks
in the RPL protocol, aiming to enable comprehensive data exploration, a feature extraction
procedure, and a training configuration, with the proper representation of more than one
million samples from an IoT environment. Even though there exists little literature to
deliver a deeper comparison with other state-of-the-art approaches, the survey described
in Section 3, Table 4, was considered, in order to compare the proposed framework with
related works that classified/detected security threats in IoT environments using ML
techniques. Table 13 summarizes the works selected for comparison.

Table 13. Comparison with well-known works that presented ML approaches to classify security
threats in IoT environments.

Author Algorithm Accuracy

Yavuz, F. Y. [20] Deep Feed Forward Network (DFFN) 94.9%

Hodo et al. [42] Multi-level perceptron (MLP) 99.4%

Rezvy et al. [43] Autoencoder A-DNN (DNN) 99.3%

Al-Qatf et al. [45] SAE + SVM 99.4%

This proposal (cloneid_20n data set) SAE + DNN 96.72%

This proposal (cloneid_50n data set) SAE + DNN 99.65%

This proposal (cloneid_100n data set) SAE +DNN 99.25%

As observed in Table 13, the SAE + DNN classifier used to build the proposed frame-
work performed better, on average, than the DFFN, MLP, A-DNN, and SAE + SVM. Even
though Yavuz [20] employed additional features related to rates and packet counts, their
results showed that only 19 features were sufficient to train a DFFN, which can hardly
represent actual IoT network traffic; therefore, a Clone ID Attack may be undetectable.
Rezvy et al. [43] and Al-Qatf et al. [45] achieved similar results compared to this pro-
posal; however, the features were extracted from a pre-built data set which was limited
to TCP/UDP traffic, mostly from non-IoT messages. As a future work, deploying the
SAE+DNN as a whole framework on a IDS/IPS module is suggested; see the mechanism
illustrated in Figure 12.

Figure 12. Proposed module integration for an IDS/IPS using the proposed framework.
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As reported in [68], the integration of a real-time AI perimeter security for IoT threat
detection must contain the following workflow: 1. A physical or virtual network interface
must be listening for traffic coming from a WSN, where specific RPL protocol messages
must be filtered and sent to feed a detection agent; 2. The detection agent is responsible for
analysing, training, and predicting malicious traffic observations from filtered RPL data
packages. This block consists of two main modules: (a) A Baseline modelling, aimed to split
data into time windows, in order to accurately model complex traffic observations, as well
as a data pre-processing stage to balance, scale, and standardize the previously gathered
data and improve the data set that will be further subjected to feature extraction and train-
ing tasks using the SAE + DNN algorithms. (b) Prediction: With the final data set trained
by SAE + DNN, a predictive model can be compiled to classify the traffic as benign or
malicious. If the sample was classified as malicious, the response and mitigation rules shall
perform the corresponding actions, depending on the impact of the threat. Although the
implementation is useful, in comparison with corrective controls and shallow algorithms,
it is important to contrast that, for instance, DL approaches work with batch learning,
which is designed to perform only one training stage and produce one predictive model.
Still, as proposed in [69], one of the challenges in AI-based intrusion detection systems is
predictive model updating; therefore, online learning should be adapted, where new traffic
patterns can be analyzed in real-time by adapting the DNN weights as incremental training
is performed. This could be difficult to achieve by an IDS/IPS, due to its physical memory
and processing limitations, as AI optimization functions—specifically DL algorithms—are
not convex and require more resources to run their processes. An alternative solution is
cloud processing, where elastic resources could grow on demand and perform the training
tasks, returning an updated predictive model through an API request. In addition, a more
in-depth feature analysis techniques can be employed which, according to [70], can fuse
information from different sensors, extending the capabilities of the framework to other
protocols and structures, taking into account feature fusion, attribute selection, and feature
weighting tasks.

6. Conclusions

With the extensive use of IoT technology in critical infrastructures, it is crucial to
address an in-depth security approach, where a detective layer must be put in place. In
this paper, we presented one of the first frameworks that employs ML to tackle a critical
and stealthy threat; namely, the Clone ID Attack on the RPL protocol. Two solutions
can minimize the impact of a Clone ID attack: Corrective and device-based perimeter
defensive replication attacks. Centralized or distributed corrective controls in WSNs make
use of hardware changes, software directives, the use of base stations to monitor node
changes and authorizations, and cryptographic configurations; however, the cost of design
and implementation is quite expensive, considering the need for stability in minimal
environments such as IoT. Furthermore, the scalability of such systems is almost null, as
stealthy attacks can become more sophisticated, making previous corrections obsolete.
Perimeter defense systems (IDS/IPS) can generate a high false positive rate, as they require
behavioural signatures to make a similarity match, which is a high-cost technique and
faces a race over time in generating new signatures to address sophisticated threats such as
the Clone ID Attack. Therefore, it is imperative to have intelligent mechanisms that can
adapt the knowledge of new samples from different behavioral characteristics and detect
with different levels of performance any abnormal pattern. To construct the framework, an
IoT network emulator was employed to simulate counterfeiting attacks with three different
topologies: Twenty sensors with two malicious nodes, fifty sensors with five malicious
nodes, and one hundred sensors with ten malicious nodes. After capturing and labeling the
network traffic, a thorough data exploration was conducted, in order to transform, label,
and encode values to a proper numerical representation. Then, two types of Autoencoders
(SAE and AE) were proposed as feature selectors and extractors, in order to feed a Dense
Neural Network (DNN). Although there are no existing works that apply ML techniques
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to detect, classify or cluster Clone ID Attacks, the SAE+DDN architecture proved that, by
comparing with other ML and DL methods, the performance metrics can a can achieve an
accuracy of 99.65%. As future work, the affordable deployment of the AI-based module,
on IPD/IPS perimeter security systems with a detection agent, can be integrated with
filtering capabilities to work in conjunction with a compiled classification model. Further
exploration of other less widely researched RPL attacks, such as Sinkhole, Blackhole, or
Selective Forwarding, will be added, in order to test the proposed framework and compare
and analyze whether it is capable of detecting a wider range of stealthy menaces. Besides,
future research can be conducted in other standards and broadly used IoT protocols in the
application layer, such as MQTT and CoAP.
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