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Abstract: Yield prediction is crucial for the management of harvest and scheduling wine production
operations. Traditional yield prediction methods rely on manual sampling and are time-consuming,
making it difficult to handle the intrinsic spatial variability of vineyards. There have been significant
advances in automatic yield estimation in vineyards from on-ground imagery, but terrestrial platforms
have some limitations since they can cause soil compaction and have problems on sloping and
ploughed land. The analysis of photogrammetric point clouds generated with unmanned aerial
vehicles (UAV) imagery has shown its potential in the characterization of woody crops, and the point
color analysis has been used for the detection of flowers in almond trees. For these reasons, the
main objective of this work was to develop an unsupervised and automated workflow for detection
of grape clusters in red grapevine varieties using UAV photogrammetric point clouds and color
indices. As leaf occlusion is recognized as a major challenge in fruit detection, the influence of partial
leaf removal in the accuracy of the workflow was assessed. UAV flights were performed over two
commercial vineyards with different grape varieties in 2019 and 2020, and the photogrammetric point
clouds generated from these flights were analyzed using an automatic and unsupervised algorithm
developed using free software. The proposed methodology achieved R2 values higher than 0.75
between the harvest weight and the projected area of the points classified as grapes in vines when
partial two-sided removal treatment, and an R2 of 0.82 was achieved in one of the datasets for vines
with untouched full canopy. The accuracy achieved in grape detection opens the door to yield
prediction in red grape vineyards. This would allow the creation of yield estimation maps that will
ease the implementation of precision viticulture practices. To the authors’ knowledge, this is the first
time that UAV photogrammetric point clouds have been used for grape clusters detection.

Keywords: fruit detection; remote sensing; precision viticulture; color thresholding; unsupervised
and automated analysis

1. Introduction

In the last few years, grape growers have made substantial investments for optimizing
grape production and wine quality—e.g., vertical-shoot positioned trellised vines, me-
chanical harvest, drip-irrigation, or even fertigation—and often cropped under no-tillage
techniques or with natural or sown cover crops in inter-rows for overcoming soil erosion
problems. Accurate yield estimation is essential for grape growers, viticulturists, and
winemakers interested on digitizing applications and precision viticulture, since they can
plan harvest operations in advance, or apply a variety of site-specific management practices
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such as leaf removal or cluster thinning to improve fruit ripening process [1]. Additionally,
from the winery logistic point of view, a sufficiently accurate yield forecast can be crucial
to anticipate grape purchase to external suppliers in order to meet the winery needs if
forecast production is below them, or to intensify sale operations of the wine stock if
yield predictions overcome the demand. In this regard, the key point is that a profitable
and accurate yield forecasting requires timely, detailed, individual, and georeferenced
information of every vine acquired at the lowest possible cost. In addition, the procedure
must be easily repeated on demand annually. Since yield can significantly vary locally and
globally from year to year due to soil/climatic/management conditions, and eventually
due to sanitary problems caused by pests, weeds, and diseases, among others [2,3].

All these economic and agronomic factors make yield estimation challenging and,
due to its relevance, is has been addressed from several different approaches. Traditional
methods trust on-ground measurements, performed usually with a small sample of se-
lected vines, where bunches are weighed and counted providing the average number of
clusters per vine and the average weight per cluster. This information was extrapolated
to the whole vineyard knowing the number of vines per hectare. This methodology is
destructive and time-consuming, and often inaccurate and inefficient due to poor sampling
representativeness [4].

One of the alternative approaches could be imaging-based developments focusing
on the use of proximal or remote imagery. The first of these approaches generally uses
a manual acquisition of images, a frame equipped with a sensor, or on-the-go human-
driven or robotic vehicles. The second strategy needs imagery from satellite, piloted, or
unmanned aerial platforms. Considering proximal sensing, visible spectrum cameras
have been employed for grape berry recognition and grape bunch detection by shape and
texture information [5]. That work also evaluated the existing methods and comparative
analysis of different feature vectors and support vector classifiers. The application of on-
ground digital image analyses for grape detection covering the key challenges for ground
level image capture and processing has been reviewed [3]. Kinect RGB-D sensor and
cameras incorporated on a vehicle driving through the vineyard have been used for in-situ
vineyard yield estimation [6,7]. These works discussed the relevance of both, imaging and
algorithmic robustness for maintaining consistent performance of image analysis methods,
suggesting that image acquisition at night was the most reliable way to control the imaging.
That night condition has been employed [8] taking images ‘on-the-go’ of the vine segments
in a set of varieties using a RGB sensor-equipped all-terrain vehicle with a white-light
LED panel. All these works have some limitations for reliable yield estimation related to a
possible slope, a plowed or wet soil, or presence of cover crops in the vineyard that can
cause measurement difficulties and the possibility to generate efficient and robust results
at a parcel scale.

In case of remotely sensed imagery, the UAV (unmanned aerial vehicle) is being in-
creasingly used for accurately monitoring of crops [9–11] due to its very high spatial and
temporal resolution, low cost, easy access to difficult zones and absence of soil compaction.
All these characteristics make UAV technology an adequate tool for mapping perennial
crops such as almond [12,13], olive [14,15], or vineyards at the field scale for different
proposes related with—e.g., 3D canopy characterization, water stress, or site-specific weed
control [16–22]. As happens with on-ground images, one of the most challenging objectives
for UAV image analysis is to develop cost-effective, robust and straightforward repeat-
able procedures for vineyard yield estimation at field scale. An automated estimation of
yield has been obtained [23] by determining cluster number and size from individual non-
mosaicked UAV-high resolution RGB images according to vigor variability and considering
partially leaf removal and level of ripeness at the time of image acquisition. An assessment
of the spatial variability of vegetative, productive, and berry composition using a set of
derived spectral indices from multispectral-UAV imagery showed no significant corre-
lations between yield and the studied spectral indices [24]. Other authors have applied
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artificial neural networks to multispectral UAV imagery to model the relationship between
vegetation indices, vegetated fraction cover, and yield referring RMSE = 0.5 kg·vine−1 [25].

The use of photogrammetric techniques applied to RGB-UAV-images for generating
point clouds has been reported as a very efficient method to geometrically and accurately
characterize a vineyard for supervising leaf removal and other canopy management opera-
tions [20]. Point clouds representing vine rows include a huge amount of information that
must be processed together to advanced and automated image analysis procedures. Since
together to the geometry, each point also collects information from the RGB color model,
point clouds can be accurately classified into non-vegetation (trunks and branches of vines)
and vegetation classes using a set of spectral indices for discrimination of vegetation points
for further assessment of the height of vines [26].

However, to the best of our knowledge, photogrammetric point clouds generated
from UAV imagery have not been applied to grape cluster detection for vineyard yield
forecasting. Taking into account that one of the strategies for classifying clusters in proximal
sensing has been to extract the color features using manual thresholds and tolerances for
the segmentation [27], conversely an automatic imaging-based development for UAV
imagery taking advantage of the color from the points could be also studied. This is the
differential and innovative aspect of the present work, aimed to show a new method for
classifying 3D-UAV photogrammetric point clouds using RGB information through a color
filtering process for cluster detection. This procedure was evaluated in two vineyards over
two years using low-cost tools such as an UAV equipped with a RGB inexpensive sensor
and free software for image analysis. Our specific objectives included (1) determining
the relationship between the points classified as grapes and the harvest weight, and (2)
assessing the influence of leaf occlusion in this relationship.

2. Materials and Methods
2.1. Study Sites and Experiment Description

The experiment was carried out in years 2019 and 2020 in a wine farm located in
Traibuenas (Navarra, Northern Spain, 42.379◦ N, 1.621◦ W, altitude: 335 m), in a region
characterized by a semiarid climate (Bs type in Koppen’s classification; p < 400 mm;
ETPPenman > 1150 mm). Two vineyards were selected for (Figure 1), one belonging to
Graciano variety, with a 1.37 ha area, whereas the other had an area of 0.91 ha and belonged
to Garnacha tinta (syn. Grenache Noir) variety. The vineyard planted with Graciano was
21-year-old at the beginning of the research, whereas the Garnacha tinta vineyard was one
year younger. Both fields had a planting distance of 3 × 1 m with N-S oriented vine rows,
and their vines were trellised as a vertical-shoot positioned Cordon de Royat. Both fields
locate in ancient terraces of Aragon and Cidacos rivers, and can be classified in the Typic
Calcixerept group [28,29]. The variability within each field is moderate, and it is associated
to changes in gravel content in Graciano vineyard, and to a moderate slope in Garnacha
noir vineyard. In 2019, mean temperature and precipitation were 13.8 ◦C and 420 mm
(18.8 ◦C and 230 mm in the Apr-Sep period), while in 2020 they were 13.9 ◦C and 441 mm
(19.1 ◦C and 218 mm between April and September). Drip irrigation was available in
both fields, and water was applied according to winery technical staff criteria considering
a deficit irrigation strategy. As an average, irrigation accounting for 12 mm wk−1 was
provided between mid-June (fruit set) and early September.

In order to assess the influence of the occlusion by leaves on cluster detection, a set of
harvest sampling zones were selected where leaf removal was done in two different modes
(Figure 2): leaf removal in the east side of the row, and leaf removal in both sides of the row.
The leaves from the basal 40 cm of all the shoots were removed in both treatments, without
considering if they belonged to the main shoot or to laterals. In each of the established
sampling zones, two sides leaf removal was applied to six vines, followed by six vines
that remained untouched as control, and by other six vines where one side leaf removal
was applied.
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Figure 1. Maps of the study sites and the sampling points: (a) field with Garnacha variety; (b) field
with Graciano variety. Coordinate system: WGS84 UTM30N.

Each one of the sets of 6 vines were manually harvested (harvest dates were 25
September 2019 and 21 September 2020 for Graciano and 14 September 2020 for Garnacha),
and their harvest weight was used as validation data for the cluster detection algorithm. A
total of 18 sampling sites were established in the Graciano field in 2019 and 2020, while
the data from the Garnacha field were collected in 16 sampling sites in 2020. From here on,
data from Graciano and Garnacha fields will be abbreviated as Gr-19 and Gr-20, and as
Ga-20, respectively.
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Figure 2. Field photos representing the different leaf removal treatments: (a) one side; (b) two sides; (c) control.

2.2. UAV Flights and Point Cloud Generation

Aerial imagery from the Graciano and Garnacha fields was collected on 8 September
2020, and a previous flight campaign was also executed in the Graciano field on 17 Septem-
ber 2019. Both years, grapes were ripe, and the flights were carried out in sunny days with
low wind conditions and around noon.

The aerial imagery from Graciano field in 2019 was collected using a Sony ILCE-6000
(Sony Corporation, Tokyo, Japan) camera equipped with 24 MP sensor and a 20 mm fixed
focal length lens. The camera was installed on board a quadcopter model MD4-1000
(microdrones GmbH, Siegen, Germany). The aerial images were acquired using two types
of flights: one with flight lines parallel to the vine rows where the camera was facing
downward; and other flight with flight lines perpendicular to the vine rows and with a
camera angle of 45◦. In both types of flights, the UAV flew at 10 m height at a speed of
2 m/s−1, and images were acquired with an interval of 1 s and a side lap of 60%. This flight
configuration resulted in a grid of flight lines as can be seen in Figure 3.

Flights in 2020 were carried out in Graciano and Garnacha fields using a quadcopter
DJI Mavic 2 Pro (DJI Inc., Shenzhen, China) equipped with a Hasselblad L1D-20c camera
with a 20 MP sensor. Flight configuration concerning flight lines and sensor orientation
was equal to the one used in 2019. However, and according to the preliminary analysis of
2019 imagery detailed in the results section, flight height was 15 m height, at a speed of
1.5 m/s−1, and images acquired with an interval of 2 s and a side lap of 75%. Image spatial
resolution in nadir images was 0.20 cm and 0.38 cm for 2019 and 2020 flights, respectively.

The aerial imagery acquisition in both vineyards and years was carried out in different
flights due to UAVs’ autonomy limitations. In the case of the MD4-1000 platform, the
flight plan was designed using different missions that were planned taking into account
the autonomy of this UAV. In 2020, one flight mission was planned for each flight type
(nadir and oblique), and the Mavic platform was able of pausing the flight mission and
going back to the take-off point when the battery was low, and resuming the flight after the
battery replacement.
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Figure 3. Map of the Garnacha field showing the coordinates of the image acquisition points and the UAV flight lines with
the different sensor orientations. Coordinate system: WGS84 UTM30N.

Photogrammetric processing of the aerial images was the same irrespective of whether
they were collected with the Sony or the Hasselblad sensor. The 3D point clouds were
generated using Agisoft Metashape Professional Edition (Agisoft LLC, St. Petersburg,
Russia) version 1.7.0. The nadir and oblique images were fed together in the software, and
the photogrammetric processing only required user intervention for the localization of six
ground control points, georeferenced in each field the day of aerial campaign with a real
time kinematic (RTK) GPS linked to a reference station from the GNSS network from the
National Geographic Institute, Spain. The estimated accuracy of the GNSS-RTK system
was 0.02 m in planimetry and 0.03 m in altimetry. The point clouds were stored in LASer
file format (las).

2.3. Algorithm for Grape Cluster Detection

The algorithm for grape cluster detection was created using R software 3.5.3 (R Core
Team, R Foundation for Statistical Computing, Vienna, Austria, 2019) with the packages
“sf” [30] and “lidR” [31]. The purpose of the algorithm is to detect the points corresponding
to the grapes following two basic steps: (1) removal of the points not belonging to the area
where the grape clusters grow; (2) application of a color filter to remove the points not
corresponding to the grapes. In a more detailed way, the algorithm can be divided in the
following steps that are automatically executed without user intervention:

1. Point cloud decimation: since the methodology has been applied to point clouds with
different point densities (as a consequence of not using the same sensor and flight
height configuration in 2019 and 2020), the first step was to decimate the point clouds
to the average point density of the point cloud with lower resolution. The average
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density was calculated dividing the cloud in a square grid of 5 m side, and calculating
the average of the point densities of all the squares of the grid. Point cloud decimation
was performed using the homogenize function from lidR package, which produces a
point cloud with a uniform density throughout the coverage area.

2. Digital elevation model (DEM) creation: the DEM of the study field was created using
the cloth simulation filter (CSF) [32] as implemented in lidR package. Within this
methodology for DEM creation, the point cloud is inverted, and a rigid simulated cloth
is used to cover the inverted surface. By analyzing the interaction of the simulated
cloth with the points of the 3D model, the location of the cloth nodes is used to
generate a model of the terrain surface. The values of the parameters used to configure
this function were: 0.5 m as threshold to consider a point belongs to the ground, as
recommended by the authors of the CSF [32], 1 m as resolution of the simulated
cloth, and the soil was considered almost flat in the selection of the rigidness of the
simulated cloth. To speed up the DEM generation, the CSF function was applied to a
voxelized version of the point cloud created with the function voxelize_points of lidR
package using a resolution of 0.1 m.

3. Removal of points outside the grape clusters area: the height of the points over the
terrain was calculated once the DEM was created. Because of the characteristics of
the vertical shoot positioning method used to train the vines, the grape clusters were
known to grow between 0.5 m and 1 m over the soil. Consequently, the points with
a height below 0.5 m and over 1 m were removed from the decimated point cloud
created in the first step. After the application of these height thresholds, the points
corresponding to the soil, trunks, and most of the vine canopy were excluded from
the next processing steps (Figure 4b).

4. Color filtering: at this step, the methodology takes advantage of the color from the
points. As the mature grapes from the vine varieties growing in the studied fields are
known to have a blueish color, a simple color filtering process was applied in this
step. All the points having a blue value higher than their red and green values were
classified as ‘grape points’. Using a mathematic expression, the points classified as
grapes met the following requirements:

B/G > 1, (1)

B/R > 1, (2)

5. Noise removal: as the grapes grow in clusters, the purpose of this step was to remove
isolated points not corresponding to the grape clusters. The function used for noise
removal was the isolated voxels filter (IVF) from lidR package. It finds and classifies
as noise points having a low amount of neighboring points in their surrounding
3 × 3 × 3 (27) voxels. The IVF was configured to classify as noise the points having
less than 10 points in their surrounding 27 voxels with a side length of 0.1 m. The
size of the voxels was the same used by the authors in previous works about woody
crop characterization with photogrammetric point clouds [13,33], and the amount of
neighboring points was fixed after some internal tests (data not published). After the
execution of this step and the removal of the points classified as noise, the remaining
point cloud is supposed to store only the points corresponding to the grape clusters
(Figure 4c).

6. Projected area calculation: the area of the grape points projected over a vertical plane
parallel to the vine rows was calculated to assess if this parameter could have a better
correlation with harvest weight than the number of points classified as grapes. A
radio of 1 cm, similar to the radio of a grape berry, was used to calculate a buffer
around the points. These buffers were merged to avoid an overestimation of the area
caused by the overlapping of the point areas (Figure 4d). The calculation of the point
buffer and the resulting area were carried out with the sf package.
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Figure 4. Graphical description of the main steps of the grape detection workflow (a segment of a vinerow with two sides
leaf removal is used for visualization purposes): (a) original point cloud; (b) point cloud after the removal of the points with
a height below 0.5 m and over 1 m; (c) points classified as grapes after the color filtering and the noise removal; (d) buffer
area of the points classified as grapes.

2.4. Data Analysis

Validation of the grape cluster detection workflow was carried out using as reference
data the harvest weight registered in the harvest sampling zones described in Section 2.1.
Regression analysis between the harvest weight with the number of points classified as
grapes and the buffer area of these points were done in R software 3.5.3 (R Core Team, 2019)
for the different fields and leaf removal treatments. These regressions were also studied for
different combinations of fields to assess the transferability of the proposed methodologies
among different grape varieties and flight configurations.

3. Results and Discussion
3.1. Point Cloud Generation

The combination of nadir and oblique aerial images with high overlap led to a com-
plete reconstruction of the vines in the studied fields. Canopy, gaps in the canopy, main
shoots, trunk, and grape clusters can be visually detected in the point clouds as can be seen
in Figure 3. The advantages of using oblique imagery for the photogrammetric reconstruc-
tion of vertical elements such as apple tree hedgerows [34], or quarry walls [35] has been
previously demonstrated. In our case, it was crucial to the reconstruction of elements that
cannot be detected in nadir imagery, such as the grape clusters or the gaps in the canopy.

The Ga-20 field point cloud had an average density of 30,902 points·m−2 and accu-
rately represented the whole study area delineated in this vineyard. Gr-20 field presented
a similar point density, with 35,093 points·m−2, but the four sampling areas located in the
easternmost part of the vineyard were not accurately reconstructed due to the flight plan
was excessively adjusted to the study area limits and led to a poor overlap in this area.
Consequently, these four sampling areas were excluded from the data analysis. The flight
execution in Gr-19 presented some problems because this field had a zone with a slight
slope area and the UAV was not able of maintaining a fixed height over the soil, which
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caused changes in the overlap between images and led to problems in the reconstruction of
some sampling areas. These problems were the reason for the change of UAV platform and
flight configuration regarding flight height and side overlap in 2020. The localization and
amount of the sampling areas correctly reconstructed in Gr-19 can be seen in Figure 1 and
Table 1, respectively. These areas had an average point density of 320,411 points·m−2. The
high difference in point density between 2019 and 2020 flights was related to the higher
resolution of the sensor used in 2019 and to the lower flight height programmed in the
flight plans.

Table 1. Correlation coefficients between harvest weight and the studied variables for the different
leaf removal treatments and fields.

Treatment Field Sampling
Areas

R2 for Detected
Points

R2 for Projected Area
of Detected Points

One side leaf
removal

Gr-19 8 0.09 ns 0.11 ns
Gr-20 14 0.02 ns 0.31 *
Ga-20 16 0.05 ns 0.11 ns

Gr-19 + Ga-20 24 0.05 ns 0.01 ns
All 38 0.00 ns 0.06 ns

Two sides leaf
removal

Gr-19 7 0.57 ns 0.81 ***
Gr-20 14 0.55 ** 0.56 **
Ga-20 16 0.48 ** 0.63 ***

Gr-19 + Ga-20 23 0.59 *** 0.77 ***
All 37 0.35 *** 0.52 ***

Control

Gr-19 8 0.66 * 0.82 **
Gr-20 14 0.01 ns 0.00 ns
Ga-20 16 0.18 ns 0.17 ns

Gr-19 + Ga-20 24 0.11 ns 0.22 *
All 38 0.05 ns 0.13 *

ns not significant; * p < 0.05; ** p < 0.01; *** p < 0.001.

As commented in the first step of the algorithm description, the point clouds were
decimated to homogenize their densities and make the results comparable among point
clouds from different sensor and flight configurations. As Ga-20 had the point cloud with
the lowest density, the point density of Gr-19 and Gr-20 were reduced to match the density
of Ga-20 (30,902 points·m−2).

3.2. Cluster Detection

Figure 5 shows an example of the results of the cluster detection algorithm in a vine
row segment of Garnacha field where leaf removal had been applied at both sides. The
correspondence between the points detected as grapes using UAV photogrammetric point
clouds (red points in Figure 5c) and the position of the grape clusters in a field photo of the
same vines (Figure 5a) can be visually appreciated. From the analysis of Figure 5, it could
seem that the number of points classified as grapes could be a good estimator of harvest
weight. However, a study of the correlation of harvest weight with the number of points
and with their projected area revealed that the last one is a better estimator. It can be seen
in Table 1 that the regression coefficients are higher and more statistically significant for
projected area than for the number of points. R2 for projected area reached values higher
than 0.75 with p < 0.01 in three cases, while the highest R2 value for the number of points
was 0.66, and with a higher p-value. Some studies [2,36] about grape detection in field
images have demonstrated the existence of a high level of correlation amount the harvest
weight and the number of pixels classified as grapes in the images. That is in line with the
results presented in this work, since the number of pixels in a 2D image is an equivalent of
the projected area of the grapes in a 3D point cloud.
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Figure 5. Example of the cluster detection in a vine row segment of Garnacha field with two sides leaf removal: (a) image
of the vines in field; (b) segment of the point cloud showing the same vines; (c) same than (b) with cluster detected
points highlighted in red color; (d), (e), and (f) are close ups of the areas marked by a yellow rectangle in (a), (b), and (c),
respectively.

Since the projected area of the points classified as grapes has proved to be more
suitable as indicator of harvest weight, the analysis and discussion of the results will focus
on this metric along the rest of the paper. The coefficients of regression between projected
area and harvest weight were significant for all the fields and field combinations in the two
sides leaf removal treatment. The highest R2 value for this treatment was 0.81 in Gr-19,
followed by 0.77 in Gr-19+Ga-20 combination, and 0.63 for Ga-20. Gr-20 presented a lower
R2 value; however, and as can be seen in Figure 6, there is a clear linear trend in the relation
between projected area and harvest weight. Maybe the low R2 achieved could be related
with the homogeneity of harvest weight along the field since the absence of extreme values
uses to harden the adjustment of a linear regression. Our results are more accurate that
the ones reported in [6], where an R2 value of 0.59 was reached applying to point clouds
created with a Kinect sensor in the field and an approach similar to the one proposed in
this paper to vines with a leaf removal treatment. A R2 of 0.93 has been reported [2], but
based on an approach using field photos and requiring of a previous training for grape
detection. A coefficient of regression of 0.82 between predicted and estimated yield in vines
under leaf removal treatment had been reported using UAV imagery [23]. However, the
cluster detection methodology used in that work is based on taking isolated photos of some
sampling areas along the vineyard, while our workflow analyzes the whole point cloud
representing the whole vineyard, making it possible to map yield along the entire field.

It is remarkable that the combination Gr-19+Ga-20—i.e., two fields with different
grape varieties, and prospected with different sensors and flight configurations—reached a
high R2 value (0.77). This is indicative of the robustness and transferability of the presented
methodology, that have proved its accuracy in datasets with different characteristics with-
out need of user intervention nor creation of sophisticated machine learning algorithms
that require exhaustive training of the models. The combination of all datasets presented
a lower R2 than the combination of Gr-19+Ga-20, and the regression line from Gr-20 is
parallel but below the other regression lines (Figure 6). The different relation between
the area of the point buffers and the harvest weight in Gr-20 could be explained by the
time elapsed from the UAV flight to harvest. In Gr-19 and Ga-20 there were 8 and 6 days,
respectively, between the flight and the harvest, but in Gr-20 13 days passed between these
moments. Perhaps the longer time to harvest in Gr-20 caused changes in grape berries
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density or grape cluster compactness that altered the relation between the area of the point
buffers and the harvest weight.

Figure 6. Scatter plots representing the relationship between the detected points projected area and the harvest weight for
the different treatments and fields. Lines indicate the regression lines for each field.

The regression coefficients between points of projected area and harvest weight were
low and in some cases not statistically significant for the control treatment (Table 1). This
is in agreement with other works where the influence of leaf occlusion has been reported
as a major challenge in fruit detection in general [37], and also on grape detection in both
on-ground images [6] and UAV images [23]. The only exception for this general rule was
Gr-19 in the vines with no leaf removal, which registered the highest R2 value (0.82) among
all the fields and treatments. This exception could be related to the fact that, although the
point cloud was decimated, the original point cloud was created with images with very
high spatial resolution (images from Gr-19 had a spatial resolution of 0.2 cm), and this
could have facilitated a more detailed reconstruction of small parts of the grape clusters.

In the one side leaf removal treatment, only the leaves from the east side of the vines
were removed, which caused the grape clusters growing in the west side to be occluded or
only partially visible. Consequently, vines with most of the grapes growing in the west side
would present a low value of projected area of grape points, while vines with more grape
clusters in the east side would have higher values of projected areas. This fact led to the
lack of a linear relationship between points projected area and harvest weight (Figure 6),
causing the lowest R2 values and the absence of statistical significance reached in the one
side leaf removal treatment (Table 1).

3.3. Applicability of Presented Methodology and Future Research

The methodology presented in this paper can be applied in one working day with the
following time distribution: less than 2 h for the UAV flights, around 16 h for point cloud
generation, and almost 1 h for point cloud analysis. From this time, the user intervention
is only needed for executing the UAV flights, and for the localization of the GCPs in the
point cloud generation step, which requires about 20 min. Apart from the efficiency, the
methodology has other important advantages that make it suitable for the detection of
grape clusters and yield prediction in vines under two sides leaf removal treatment:
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1. The grape clusters detection algorithm has been developed by using inexpensive
UAV (flights in 2020 were carried out with an UAV about 1500 USD) and sensor, and
R free software, all of them are considered low-cost technology. These accessible tools
constitute an affordable, cost-effective, and easily repeatable technology for a wide
range of grape growers.

2. It works with point clouds representing the entire vineyard. This fact makes pos-
sible the estimation of harvest weight from all the vines in the parcel at the right
moment using a nondestructive method without limiting the yield forecasting to
some sampling points, which would hinder the detection of the spatial variability of
the vineyard production.

3. Since the points classified as grapes have coordinates, the methodology presented
allows the generation of yield maps if it is combined with procedures for individual
vine detection or division of vine rows in segments like the ones developed by [38]
and [39], respectively. The harvest estimation maps generated near the harvest time
allow the zoning of harvest operations, reserving the most adequate yield levels, e.g.,
for premium wine production, as suggested by Ballesteros et al. [25].

4. It does not need the creation of a training dataset for grape cluster detection, un-
like most of the previously reported methodologies for fruit detection in field im-
ages [40–42].

5. It overcomes the problem of the on-ground image analysis related to the need of
driving the image acquisition platform through the entire vineyard acquiring images
from both sides of the vinerows, which in some cases is hard to achieve due to
challenging conditions (e.g., slope, wet soil).

Although the workflow presented in this paper has showed high potential for yield
estimation in vineyards with ripe red wine grapes, it has some limitations. It works
sufficiently well only in vines with two-sides leaf removal, a canopy management practice
that, although common in some wine-growing regions, is not feasible in other areas
due to possible adverse effects, such as sunburn or overripening of grapes. Another
limitation could be the low flight altitude used in the flights. This would imply more UAV
flights per day to apply the workflow to large vineyards because the current batteries
for UAV’s autonomy not for lack of computational requirements. In any case, the use of
UAV-imagery would be more profitable than the traditional yield forecasting by using
on-ground measurements in some sampling points spending more time and personnel
resources. For these reasons, future research will focus on determining the optimal canopy
coverage and sensor resolution for grape detection, trying to emulate the results achieved
in the control treatment in Gr-19. Further research will also try to confirm the robustness of
the presented workflow by including more red grape varieties apart from Graciano and
Garnacha, and to study the influence on yield prediction of the time elapsed between the
UAV flight and the harvest. Since white grapes cannot be detected using the proposed
methodology due to the similar reflectance of grapes and leaves when working with RGB
conventional cameras, future research will also address the detection of white grapes
using a hyperspectral sensor to search for wavelengths allowing an accurate and robust
discrimination of grapes and leaves.

4. Conclusions

An unsupervised and automatic method for grape cluster detection by the classifica-
tion of UAV-3D-photogrammetric point clouds by color indices has been developed using
data from two locations and years, and two red grape varieties. It has been evaluated under
different leaf removal treatments to assess the influence of leaf occlusion, and it has proved
to be robust and accurate at the whole vineyard scale in vines with two sides leaf removal
treatments, although promising results have also been achieved in vines with untouched
full canopies. Furthermore, to the best of authors’ knowledge, this is the first time that UAV
photogrammetric point clouds have been used for grape cluster detection. These results
demonstrate the potential for linking low-cost UAVs and sensors, and free software for
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developing a methodology for yield estimation in red grape vineyards, opening the door
to the creation of yield forecasting maps that will have an important and positive impact in
the management of harvest and wine production operations, easing the implementation of
precision viticulture and digitizing-related strategies.

Author Contributions: Conceptualization, J.T.-S., L.-G.S. and F.L.-G.; Funding acquisition, L.-G.S.
and F.L.-G.; Methodology, J.T.-S., F.J.M.-C. and F.M.J.-B.; Project administration, L.-G.S. and F.L.-G.;
Validation, F.M.J.-B., O.O., A.V.-L. and M.L.; Writing—original draft, J.T.-S. and F.L.-G.; Writing—
review and editing, J.T.-S., F.J.M.-C., L.-G.S. and F.L.-G. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was partly financed by the PID2020-113229RB-C44 (Spanish Ministry of
Science and Innovation AEI/EU-FEDER funds), VINO ROSADO (funds from the Government
of Navarra, grant no. 0011-1365-2019-000111), and Technical Support Contract (funds from CSIC
and Universidad Pública de Navarra, ref. 20203299, acronym: Racimo-UAV). Oihane Oneka was
beneficiary of a Youth Guarantee grant for R+D (Ministry of Science and Universities, 17 May 2018).

Data Availability Statement: The datasets generated during the current study are available from the
corresponding author on reasonable request.

Acknowledgments: The authors would like to thank the staff in Bodegas Ochoa for their cooperation
with the set-up and maintenance of the vineyards.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jackson, D.I.; Lombard, P.B. Environmental and Management Practices Affecting Grape Composition and Wine Quality-A Review.

Am. J. Enol. Vitic. 1993, 44, 409–430.
2. Liu, S.; Marden, S.; Whitty, M. Towards Automated Yield Estimation in Viticulture. In Proceedings of the Australasian Conference

on Robotics and Automation, Sydney, Australia, 2–4 December 2013; Volume 24, pp. 2–6.
3. Whalley, J.; Shanmuganathan, S. Applications of Image Processing in Viticulture: A Review. In Proceedings of the MODSIM2013,

20th International Congress on Modelling and Simulation, Adelaide, Australia, 1–6 December 2013; pp. 531–538.
4. Pothen, Z.; Nuske, S. Automated Assessment and Mapping of Grape Quality through Image-Based Color Analysis. IFAC Pap.

2016, 49, 72–78. [CrossRef]
5. Pérez-Zavala, R.; Torres-Torriti, M.; Cheein, F.A.; Troni, G. A Pattern Recognition Strategy for Visual Grape Bunch Detection in

Vineyards. Comput. Electron. Agric. 2018, 151, 136–149. [CrossRef]
6. Hacking, C.; Poona, N.; Manzan, N.; Poblete-Echeverría, C. Investigating 2-D and 3-D Proximal Remote Sensing Techniques for

Vineyard Yield Estimation. Sensors 2019, 19, 3652. [CrossRef]
7. Nuske, S.; Wilshusen, K.; Achar, S.; Yoder, L.; Narasimhan, S.; Singh, S. Automated Visual Yield Estimation in Vineyards. J. Field

Robot. 2014, 31, 837–860. [CrossRef]
8. Aquino, A.; Millan, B.; Diago, M.-P.; Tardaguila, J. Automated Early Yield Prediction in Vineyards from On-the-Go Image

Acquisition. Comput. Electron. Agric. 2018, 144, 26–36. [CrossRef]
9. Hassler, S.C.; Baysal-Gurel, F. Unmanned Aircraft System (UAS) Technology and Applications in Agriculture. Agronomy 2019, 9,

618. [CrossRef]
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