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Abstract: Presently modern technology makes a significant contribution to the transition from
traditional healthcare to smart healthcare systems. Mobile health (mHealth) uses advances in
wearable sensors, telecommunications and the Internet of Things (IoT) to propose a new healthcare
concept centered on the patient. Patients’ real-time remote continuous health monitoring, remote
diagnosis, treatment, and therapy is possible in an mHealth system. However, major limitations
include the transparency, security, and privacy of health data. One possible solution to this is the
use of blockchain technologies, which have found numerous applications in the healthcare domain
mainly due to theirs features such as decentralization (no central authority is needed), immutability,
traceability, and transparency. We propose an mHealth system that uses a private blockchain based on
the Ethereum platform, where wearable sensors can communicate with a smart device (a smartphone
or smart tablet) that uses a peer-to-peer hypermedia protocol, the InterPlanetary File System (IPFS),
for the distributed storage of health-related data. Smart contracts are used to create data queries, to
access patient data by healthcare providers, to record diagnostic, treatment, and therapy, and to send
alerts to patients and medical professionals.

Keywords: mHealth; blockchain; wearable sensors; IoT; smart contract; Ethereum; IPFS

1. Introduction

Mobile communication, mobile devices, and the Internet of Things (IoT) have changed
entire sectors, such as education, transportation, agriculture, etc. The use of IoT, through
which people, processes, data, and devices connect to each other over the Internet, is
experiencing considerable growth: mobile machine-to-machine (M2M) connections are
expected to grow from 1.2 billion in 2018 to 4.4 billion by 2023 [1]. Also, the number of
smartphones is forecast to grow from 4.9 billion in 2018 to 6.7 billion by 2023 [1].

Presently, mobile technology is reshaping the traditional healthcare model into the
so-called mobile health (mHealth) model, placing the patient at the center of the healthcare
system and motivating patients to assume responsibility for their own wellbeing [2]. A
complete mHealth system consists of interconnected wearable sensors, IoT services, mobile
devices, mobile applications, and cloud services. The interconnected wearable sensors form
a Wireless Body Area Network (WBAN) and facilitates acquisitions of biomedical signals
(e.g., electrocardiogram—ECG; phonocardiogram—PCG; photoplethysmogram—PPG) and
biomedical parameters (e.g., heart-rate, blood pressure, respiration rate, blood oxygen
saturation, energy expenditure, etc.) which are transmitted wirelessly to mobile devices.
Thus, mHealth systems enable remote patient monitoring, rehabilitation, therapy, diagnosis,
and treatment. The huge amount of data generated in mHealth systems can be used to
perform complex analysis of patients’ physical, cognitive, and physiological conditions,
thus facilitating predictive and preventative healthcare. Moreover, the health data collected
from groups of patients through mHealth systems can be used in medical research (clinical
trials, randomized control trials, etc.).
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In mHeatlh systems, because sensitive data is recorded, analyzed, shared, and stored,
the main challenges are data provenance, access control, data integrity, and identity man-
agement. However, a major limitation of mHealth systems is public trust, mainly due to
possible security vulnerabilities that would allow medical data alteration, unauthorized
sharing, data theft, data loss, etc.

In the present paper, a blockchain-based mHealth framework is proposed that ad-
dresses security, data integrity, and data provenance challenges. Blockchain technology has
important features, such as traceability, transparency, decentralization (no central authority
is needed), and immutability. At the time of writing, there is no dedicated framework
described in the literature based on blockchain for a complete mHealth system that also
allows medical experts to directly interact with medical signals collected by wearable
sensors to determine a diagnostic. As discussed in the next sections, medical applications
where blockchain technology is most used presently are electronic health records (EHR).
The core contributions of the proposed solution are:

• The design, implementation, and deployment of the blockchain network and the
smart contract;

• Data modeling and integration with the InterPlanetary File System (IPFS);
• The implementation of a bidirectional functionality that offers the possibility for

medical experts and patients to upload and monitor data in a continuous manner;
• The implementation of an interface that permits medical experts to extract diagnos-

tic information by interacting with physiological signals available on the proposed
mHealth system.

The paper is structured as follows: in Section 2, the concept of mHealth is intro-
duced, emphasizing the role of wearable sensors and the challenges of mHealth systems;
in Section 3, the blockchain technology is described; the proposed mHealth framework
is detailed in Section 4, and the results, discussion, and conclusions are described and
presented in Sections 5–7.

2. Evaluation of Mhealth Systems

Presently, traditional models for delivering healthcare to patients are shifting into
the digital health era, mainly thanks to advances in information and communication tech-
nologies such as Big Data (BD), Artificial Intelligence (AI), Deep Learning (DL), Machine
Learning (ML), 5G technology, the Internet of Things (IoT), etc. mHealth systems are part
of new digital health, and are transforming and revolutionizing the prevention, diagnosis,
treatment, recovery, or cure of disease, illness or injury, the interaction between medical staff
and patients, medical models (changing from disease-centered to patient-centered care [3]),
and medical management (changing from general to personalized management [3]), etc.
Through Internet-connected mHealth devices and sensors, medical staff have omnipresent
access to health data (enabling earlier disease detection and prevention), while patients
can access and share health information and receive health counseling. By offering the
possibility of home monitoring, mHealth has also had a significant impact on the expense
of healthcare.

As described in Figure 1, a complete mHealth service system comprises
different technologies:

• Wearable devices and sensor technology are used to monitor different biomedical
parameters and signals (e.g., heart-rate, respiration rate, blood pressure, oxygen
saturation levels, eye movement, gait, foot pressure distribution and bio-potentials
such as electrocardiogram (ECG), electromyogram (EMG), electroencephalogram
(EEG), etc.);

• IoT: Wearable devices are connected, usually in a wireless network, and can exchange
information between each other and with other devices and systems over the Internet;

• Cloud servers and services: the volume of data generated by an mHealth system is
usually stored in the cloud. Using BD, DL, or ML, the data can be analyzed, and deep
insights about the health of the patient can be derived. Data can be also archived and
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used to train DL or ML models to predict the development of different diseases and
to recommend possible care, treatment, and therapy [4];

• Mobile devices and applications: devices such as smart mobile phones and mobile
tablets, together with specially designed health mobile applications can be used to
visualize and interact with the patient data, to diagnose and offer health counseling
and treatment.

Figure 1. General architecture of an mHealth system.

mHealth systems can be used for a very wide range of healthcare applications, and
some of the most common categories are discussed below.

• Cardiopulmonary monitoring: signals such as phonocardiogram (PCG), electrocar-
diogram (ECG) [5], and photoplethysmogram (PPG) [6] are recorded, and vital
biomedical parameters are derived, including heart-rate (HR), heart-rate variabil-
ity (HRV), health of heart valves, blood pressure, respiration rate, blood oxygen
saturation, chest volume variation, etc. Analysis of these bio-potential signals and
biomedical parameters allows earlier detection and prevention of cardiovascular dis-
eases, and helps both medical experts and patients manage cardiovascular problems
better. mHealth systems are used to help manage cardiopulmonary diseases such as
hypertension, arrhythmia, coronary artery disease and heart failure, myocardial in-
farction, pulmonary hypertension, and chronic obstructive pulmonary disease [6–12].
In particular, the early detection of atrial fibrillation arrhythmia, most commonly,
using mHealth systems can prevent strokes and reduce hospitalizations [13–15]. In
a recent study, a Deep Neural Network (DNN) was developed to classify 12 heart-
rhythm classes using single-lead ECG signals recorded with an mHealth device. More
than 50,000 patients were included in the study and the DNN was trained on more
than 90,000 single-lead ECG signals. The results proved that the proposed DNN was
able to classify different types of arrhythmia from single-lead ECG signals with high
diagnostic performance similar to that of cardiologists [16];

• Fitness level tracking: regular physical exercise is the main way to prevent obesity
and to maintain a healthy lifestyle. However, due to lack of time and motivation,
high costs of monthly gym memberships and personal trainers, and sometimes due
to special circulation restrictions (e.g., lockdown during the COVID-19 pandemic),
many people choose to work out from home. In this case, mHealth systems can
be used to monitor and assess workout exercises. Based on the fitness level of the
user and on information collected by the sensors, the mHealth system can offer a
personalized workout plan, suggestions for correct and efficient physical exercises
execution, statistical feedback to help keep track of the fitness plan, etc. [17]. For such
mHealth applications, usually specific parameters and information are recorded, such
as heart-rate, energy expenditure, temperature, skin perspiration, plantar pressure,
speed and acceleration, position of the body or a specific part of the body (e.g., hand,
limb), number of repetitions, type of exercise, etc. In addition, the data collected can
be analyzed to predict possible injury [18].

• Cancer: mHealth approaches can be used to improve screening rates for different
types of cancer. In a recent review, 12 studies were analyzed, in which women were



Sensors 2021, 21, 2828 4 of 24

informed and reminded about their upcoming screening appointments for cervical
cancer, via text message and mobile application [19]. The results showed that mHealth
approaches may be an effective strategy to contact women for improving cervical
cancer screening rates. The main concern of the participants was related to privacy and
confidentiality aspects during the exchange of health information. In [20], the authors
proposed a new mHealth system for the early detection of oral cancer in a rural
population where no medical experts were available. Frontline health workers (FHP)
were trained to take images with smartphones and send them to medical experts, who
in turn analyzed the images and suggested a diagnostic or possible treatment. The
approach was evaluated and validated on more than 45,000 subjects, during a period of
eight years (2010–2018) [20,21]. Brown-Johnson et al. proposed a mHealth perspective
for patients with lung cancer to manage experiences of stigma. A health game is
developed that allows lung cancer patients to improve communication with their
clinicians, to decrease lung cancer stigma and to obtain optimal self-management [22].
In [23], a mHealth platform was designed and implemented for tumor treatment. The
wearable platform was controlled by a smartphone and targeted tumor therapy was
conducted. A significant prevention of tumor recurrence and tumor growth inhibition
was reported.

• Psychiatry: patients suffering from mental disorders such as bipolar disorder, schizoaf-
fective disorder, and schizophrenia have a high degree of cognitive and functional
impairment, which drastically reduces the quality of life. The main objectives of
mHealth approaches are to improve engagement with treatment and services. Thus,
with the help of mHealth technologies, the following benefits can be obtained: (i)
identifying patients who are at risk; (ii) encouraging exercise and behavior change;
(iii) reminding the patient of the next appointment or to take the medication; (iv)
self-management techniques; (v) monitoring symptoms in real time; (vi) developing
personalized interventions and caring plans; (vii) identifying warning signs based on
self-reports of wellbeing; and (viii) offering continuous professional counseling [24,25].
However, there are some barriers in the use of mHealth services that patients with
severe mental illness may experience, including low income, unstable housing that
can influence access to the Internet, cognitive impairment, and symptoms such as
apathy, depression, low motivation, and paranoia. Nevertheless, recent studies have
shown that people with psychosis, despite experiencing these barriers, can make use
of smart mobile technologies almost the same as the general population [24,26].

• Rehabilitation and therapy: there is a significant number of mHealth approaches for
rehabilitation and therapy described in the literature, which can be categorized as
the following, [27]: stroke rehabilitation (monitoring and feedback for, physical activity,
cognitive assessment, education to raise awareness, education on home exercises
for managing poststroke, assistive devices, cognitive assessment) [27–30]; traumatic
brain injury rehabilitation: improving cognitive memory using gamification, using
Global Positioning Systems (GPS) to make the use of transportation system easier,
providing a home-based rehabilitation plan that includes training with daily activities,
planning of appointments using reminders [31,32]; pulmonary rehabilitation (enabling
home-based rehabilitation for patients with obstructive pulmonary disease (OPD),
monitoring daily physical activity, offering motivational messages and/or feedback
(e.g., acoustic), analyzing daily symptoms and physiological variables, detecting
chronic OPD exacerbations and evaluating the clinical risk of chronic OPD) [33–35];
cardiac rehabilitation (monitoring symptoms and physical activity (via ECG recorded
signals, HR, HRV, energy expenditure, etc.), improving exercise and medication, mes-
saging with healthcare providers) [36–38]; Musculoskeletal rehabilitation: enabling wrist
and/or hand rehabilitation using a sensor glove and gamification, improving motion
with haptic feedback, prediction of rheumatoid arthritis activity by analyzing data
related to joint symptoms, walking ability, limitations of daily activity, determining
the osteoarthritis index) [39–42].
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2.1. Role of Wearable Sensors in mHealth Systems

Wearable sensors are a key component of a mHealth systems, and are used to ob-
tain reliable data regarding patient health, behavior, vital signs, activity, etc. They are
becoming popular in many health-related disciplines. The advances in sensor manufac-
turing technology have allowed the development of miniature sensors that are generally
non-invasive, and which are revolutionizing the entire global health system. A variety
of wearable sensors exist, depending on the target information to be recorded, processed,
and analyzed. When more sensors are used in an mHealth system, usually these are
interconnected via some medium and they form a network of wearable sensors named
an Wireless Body Area Network (WBAN) [43,43]. The sensors can exchange information
between each other, and send it to a cloud server (Figure 1). Technologies that are used to
interconnect wearable sensors are ZigBee (IEEE 802.15.4 standard; data rates—250–300 Kbps;
range—100 m; network topology—mesh, star, tree, and cluster; bandwidth—2.4 GHz); Blue-
tooth (IEEE 802.15.1 standard; data rates—1–3 Mbps; range—10 m; network topology—star;
bandwidth—2.4 GHz); Wi-Fi (IEEE 802.11 standard; data rates—1–40 Mbps; range—up
to 5 km; network topology—tree, star, and P2P; bandwidth—2.4, 3.7, and 5 GHz); WiMax
(IEEE 802.11 standard; data rates—75 Mbps; range—15 km; network topology—tree, star,
and P2P; bandwidth—2.3, 2.5, and 3.4 GHz) [44]. The use of a particular wireless protocol
for creating a WBAN is directly dependent on the data collected by the wearable sensors
and its intended medical application [45]. Wearable sensors used in mHealth systems can
be classified as follows:

• Bio-potential sensors: these sensors are called electrodes and they are used to acquire
electrical signals generated by different types of tissue. The surface electrodes consist
of a metallic part, usually made from Ag/AgCl, which comes into contact with the
skin. Electrodes can be integrated into patches that are applied to the skin or even
clothes, creating so-called smart clothes [46]. In mHealth systems, they are used to
record ECG, EMG, EEG, and electrooculogram (EOG) signals [47–49].

• Heart-rate sensors: the most common technology used for implementing these sen-
sors in mHealth systems is photoplethysmography [50–53]. A light beam (usually
with the wavelength of red/infra-red light) is transmitted into the body (e.g., writs,
finger, ear lobe, etc.) and usually the intensity of the light is reflected to the receiver
component of the sensor. The intensity of the reflected light varies with blood volume
variation at the location where the sensor is attached. A PPG signal is obtained that is
used to extract the HR. However, a heart-rate can also be extracted from other signals
(e.g., ECG) acquired with other types of sensor (e.g., textile electrodes).

• Blood pressure sensors: these are used to obtain indirect estimates of systolic pressure
(SP), diastolic pressure (DP), mean arterial pressure (MAP), and pulse pressure (PP).
Information about blood pressure can be derived from PPG signals [54,55]. Thus, using
a sensor for photoplethysmography, heart-rate and blood pressure can be obtained.
However, there are sensors for mHealth that are based on the classic oscillometric
measurement of blood pressure. A smartwatch can inflate a wrist cuff and, based on
the oscillometric method, the SP and DP can be estimated [56–58].

• Respiration rate sensor: usually, this type of sensor measures strains and is a piezo-
electric sensor. The piezoelectric elements are included in a band-aid-like strap that
can be put around the thorax, and with every inhalation and exhalation, the thorax
moves, deforming the strap, and mechanical stress is applied to piezoelectric elements,
generating an electrical voltage. From this electrical signal, the respiration rate can be
derived. These sensors can be also included in smart clothes. Other types of sensor
measure the difference in air temperature, humidity, or air flow during a breathing
cycle (e.g., warmer air during expiration than during inspiration), and the respiration
rate is estimated. These sensors can be integrated into face masks [59–62]. Also, more
information about respiration function can be obtained using sensors integrated into
smart face masks, such as respiratory minute volume, tidal volume, peak flow rate,
and unique respiration patterns [63].
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• Sweat-based wearable electrochemical sensors: these sensors are used to obtain
the following analytes: glucose, alcohol, lactate, pH, vitamin C, Na+, and K+, and
can be integrated in smart glasses, smart bracelets, and smart clothes (e.g., gloves
or socks) [64–67].

• Galvanic skin response sensors: these are usually used to estimate the degree of
cognitive and emotional arousal based on the electrodermal activity (EDA) or galvanic
skin response (GSR). The EDA signal is obtained by placing 2 or 3 electrodes on the
skin at hand level (wrist, palm, or fingers). An electrical signal is passed between
the electrodes and the resistance is measured. The sweat glands produce more sweat
when an emotionally arousing stimulus is experienced, which in turn changes the
resistance of the skin. In mHealth applications, GSR sensors can be integrated in smart
gloves or smart wristbands [68–71].

• Temperature sensors: these are used to measure human body temperature. Flexible
temperature sensors can be easily integrated into mHealth systems and are usually
made from temperature-sensitive conductors or inks based on metals, nanomaterials,
or conductive polymers [72].

• Body motion tracking sensors: these types of sensors are very widespread in mHealth
applications for monitoring daily physical activity by tracking step count or by identi-
fying the type of physical exercise performed. They can also be used to monitor body
position, identify falls and assess fall risk in older people, or in patients during walk-
ing rehabilitation [73–75]. Changes in velocity, acceleration, body position patterns,
which are used to map body movement, are determined from signals acquired with
different types of sensors, including barometers, magnetometers, accelerometers, and
gyroscopes. Also, a combination of two or more sensors are used to provide a more
precise record of body motion.

2.2. Challenges in mHealth Systems

mHealth is a growing domain that has already started to reshape the healthcare system
as we know it, and is entirely dependent on advances in wearable sensor, communication,
and cybersecurity technology. There are still barriers that must be overcome, including
energy consumption, system failure, patient security, data security, data accuracy, data
collection infrastructure to manage the high volume of patient data, etc.

Although mHealth approaches are starting to be used in almost all healthcare domains,
the evaluation of the clinical impact is still in its early stages [2]. There is evidence to
demonstrate that mHealth improves health outcomes, based on 234 clinical trials described
in the literature [2].

Presently, the traditional model of an mHealth system uses a centralized monitoring
unit (Figure 2). This can create critical vulnerabilities for mHealth systems. The foremost
challenges related to mHealth systems are system failure, security, and privacy of the
patient data. Thus, a vulnerability in security can easily lead to patient health information
alteration and theft [76]. Moreover, cybercriminals can achieve complete control of wear-
able devices and pose a threat to a patient’s life. A case is well known of the insulin pump
commercialized by Johnson and Johnson that presented a low security vulnerability permit-
ting hackers to change the insulin dose. For an mHealth system, where wearable devices
are interconnected and based on IoT, such a vulnerable device can pose a danger for the
entire network, which would lead to the gaining of access to and control of other devices
in the network, and ultimately access to the entire health record of the patient. Moreover, it
will make the entire mHealth system vulnerable against other types of cybercrimes, such as
impersonation, data theft, eavesdropping, etc. [4]. Device-sharing (sharing the device used
for mHealth with family and friends) and the lack of cyber-hygiene routines (not using
passcodes, encryption, or secure clouds in daily working practice) can also lead to data
breaches and unintended consequences [77].
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Figure 2. Common mHealth model.

Another important challenge is that wearable devices usually have their own data
formats and standards, making the integration of all the data into a mHealth system an
important challenge. Also, there is a lack of regulation and guidelines for implementing
mHealth approaches [12].

System failures are also highly relevant in the mHealth context, mainly due to the
increasing complexity and dynamics of such systems. Some examples of system failures
include device failure, overload software failures, and network component failure. These
can have impact on patient data availability, real-time collection of patient data, and
availability of a system or service, etc. Due to the centralized model of current mHealth
systems, all data can become inaccessible, corrupt, or lost.

3. Critical Analysis of Blockchain Technology

Blockchain technology was first introduced in 2008, and its best-known use-case is in the
cryptocurrency Bitcoin [78] with 516,981 million transactions (as of 1 April 2020) [79]. Apart
from this digital currency revolution, other research areas have been influenced by this
technology, such as supply chains, the automotive industry, healthcare, smart grids, etc.

Using blockchain technology, information can be shared between users, and every
transaction is recorded and stored locally by each user, thus eliminating the need for a
central authority. Because information is logged in a distributed manner, the blockchain
can be defined as a fully auditable, digital decentralized ledger of transactions. Each block
in the chain can have multiple transactions, and is linked to the previous one by means of
cryptographic hash functions (as depicted in Figure 3). The transactions of each block are
formed as a Merkle tree, where each leaf value (transaction) can be verified to the known
root [80]. Only the root of the tree is recorded in the block. Hence, a new block in the
chain will always include a reference to the hash of the previous block. The hash of the
new block is computed by the so-called miners or nodes (participants in the network) and
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must respect specific rules given by the consensus protocols. Once a valid hash is found, it
is broadcast to all participants over the network for validation. After all the nodes have
confirmed the validity of the found hash, the new block is added to the chain. At this point,
the transaction is immutable.

Figure 3. Basic blockchain structure with Merkle tree of transactions for block i

The miners (the nodes) of the blockchain can have different roles [81]:

• Lightweight miners: keep only the header of each block in its local storage;
• Full miners: store a complete and current replica of the canonical blockchain locally

and autonomously verify the transactions without external reference [81];
• Consensus miners: influence the state of the canonical blockchain by publishing

new blocks.

Blockchains can be classified into three categories, regarding who is allowed to access,
write, and read information:

• Permisionless or public: in a public blockchain, anyone can join the network, can
write, read, and access all the information in the chain. Moreover, anyone can con-
tribute to the consensus and to the core software [78]. An example of applications that
use permisionless blockchains are cryptocurrencies Bitcoin [78] and Ethereum [82].

• Public permissioned or consortium: in a consortium blockchain, the identities of all
participants are known, and it is open to only limited participants, i.e., only selected
groups have the permission to view and can take part in the consensus mechanism.
Hence, to validate a new block, it must contain approval from a minimum number
of members (the selected groups). A semi-private blockchain or a consortium can be
used, for example, by companies that need to interact and share information with
other companies and public entities.

• Permissioned or private: In a private blockchain, the selected participants, for which
the network is open, are usually managed by a central authority.

One of the critical components of the blockchain is the mechanism used to validate and
accept new data entries into the distributed ledger. This is usually solved using different
consensus protocols such as:

• Proof of work (PoW): when this protocol applies, to add and validate a new data
block, the miners compete in finding a hash (i.e., the target block header) of the
proposed transaction (block), which is lower than a target value [81]. The first miner
that finds the hash that validates the new block is rewarded. However, PoW requires
high computational resources, reflected in high economic costs (in particular electricity
consumption). It is used and integrated in Bitcoin and many other cryptocurrencies;

• Proof of Stake (PoS): this is a modified version of the PoW protocol that aims to
reduce energy draining due to extensive hash queries. When this protocol is applied,
each miner has an associated stake, which is measured with so-called coin age. A miner
basically must solve a PoW puzzle with a specific difficulty, but he can consume his
coin age to reduce the difficulty of the puzzle solution. However, so as not to give an
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unfair advantage to the miner with the highest coin age, different hybrid PoS versions
have been developed, where the stake is combined with some randomization [81];

• Practical Byzantine Fault Tolerance (PBFT): Byzantine Fault Tolerance (BFT) is the
characteristic of a distributed network to reach consensus even when some miners in
the network respond with incorrect information or fail to respond. Thus, a collective
decision is employed with the objective of reducing the influence of faulty miners.
The PBFT protocol is applied for permissioned blockchain networks, where a con-
sensus is reached among a small group of known miners. PBFT is currently used in
Hyperledger Fabric.

There are also blockchain implementations that support smart contracts (e.g., Ethereum).
A smart contract is a set of code lines (computer code) that is self-executing, containing a set
of pre-specified rules (contractual agreements) that must be satisfied during a blockchain
transaction. Hence, because through smart contracts all or parts of pre-agreed rules are
executed, the performance of credible transactions without third parties is allowed. To
summarize, the main characteristics and benefits of blockchain technology are:

• Decentralization: in the blockchain, all transactions are recorded in a shared and
decentralized ledger. Hence, a copy of the ledger is present in every node (user) of
the blockchain. Moreover, any new transaction is accepted in the chain using various
consensus mechanisms; thus, the content of the blockchain is not controlled by a
trusted central authority.

• Immutability and security: once a transaction is validated on the blockchain, it is
almost impossible to change it, mainly due to the decentralized manner in which
information is stored. This characteristic offers data integrity for the data saved in a
blockchain-based system. Thus, if a hacker wants to falsify the data, they will need to
make a change in the majority of the blockchain nodes, which is almost impossible, so
the blockchain has an inherent high degree of security.

• Transparency and privacy: it can offer different degrees of transparency, from public
blockchains, where any user is allowed to join the network and anyone can see the
data stored, to more private blockchains where a user needs permission to create
transactions with other users, and all users are authenticated and known. Privacy is
assured by powerful cryptography, making it very difficult to identify a user.

• Traceability and accountability: because the technology is based on a chain of blocks
where each block is linked to the previous one by including the hash of the latter [80],
it offers the possibility to everyone or to an authorized entity to audit the history of
all transactions.

Blockchain Applications in Healthcare

In the specialist literature, blockchain is used in healthcare processes/systems to
improve access control, interoperability, data integrity, and data provenance.

According to a recent literature review [80], blockchain technology is used in healthcare
mainly for improving processes such as: (a) health data recording, storing, and sharing [83];
(b) remote collection and storage of health data [84]; (c) sharing of healthcare information for
clinical, and/or research, and/or administrative (economic) purposes [85–90]; (d) managing
access to personal health data and EHR [91]; (e) collecting and sharing health-related
sensor data for clinical purposes [92]; (f) collection and storage of data for automated
diagnostics [93]; (g) automatic collection, storage, and patient-controlled sharing of per-
sonal health [94]; (h) sharing healthcare data between health institutions; (i) patient data
management and storage in a cloud environment [95]; (j) the recruitment of patients to
clinical trials [95]; (k) establishing a patient-controlled marketplace for the selling and
buying of healthcare information for research purposes; (l) monitoring the outbreak of
infectious diseases; (m) retrieving information in the EHR [96]; (n) patient-controlled col-
lection and sharing of sensor data [97]; (o) decision-making by presenting knowledge [98];
(p) exchange of medical images [99]; (q) finding a patient in the context of telemedicine
services [100].
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Some of the most popular existing blockchain platforms used in medical applications
are Ethereum, Hyperledger Fabric, and Exonum, while the most used blockchain type
is public permissioned (consortium), followed by permissioned (private) and public [80].
It seems that a consensus mechanism based on smart contracts is preferred when using
blockchain technology in healthcare [80,85,93,101,102].

As reported in [80], the most impacted healthcare information system by blockchain
technology is EHR (17 out of 39 papers analyzed), followed by personal health records (6 out
of 39 papers analyzed). In just 1 out of 39 papers analyzed, there are healthcare information
systems such as picture archiving and communication systems, an automated diagnostic
service for patients, population health management system, knowledge infrastructures,
pharma supply chain, and IoT data management/personal health data.

Another healthcare domain that is starting to benefit from blockchain technology is
mHealth, which also includes patient-controlled collection, and storage and sharing of
sensor data [84,94,102–104]. With advances in biomedical sensor technology and telemoni-
toring, and with the need for the remote monitoring of patient health due to safety concerns
in recent years (e.g., during the COVID-19 pandemic) and economic reasons, the mHealth
field has developed rapidly. However, regulations to health data manipulation resulting
from mHealth applications are not yet defined. Blockchain technology is a promising
solution for solving different aspects related to data manipulation in the mHealth field
such as immutability, security, and privacy.

4. Secured and Distributed Mhealth System—Proposed Framework.
4.1. Data Description

To test the proposed framework, a collection of multi-parameter physiological signals
recorded with wearable sensors is used. The wearable system described in [105] consisted
of sensors placed on the body of car drivers to record the physiological signals ECG, HR,
EMG, respiration, and foot and hand GSR while they were driving on a predetermined
route [105]. Table 1 presents the acquisition parameters for the physiological signals
recorded with the wearable sensors.

Table 1. Acquisition parameters for the physiological signals.

Signals Gain Resolution Samples/Frame Sampling Frequency

ECG 4000 16 32 15.5

EMG 4000 16 1 15.5

HR 1 16 1 15.5

Resp 100 16 2 15.5

Foot GSR 1000 16 2 15.5

Hand GSR 1000 16 2 15.5

For hand and foot GSR, two pairs of electrodes are placed on the palm of the hand and
the sole of the foot and a small electrical current is passed across the two electrodes to record
changes in skin resistance. To record the ECG signal, three electrodes are used to obtain a
modified lead II. The respiration signal is derived from measuring thoracic movement due
to breathing. For this, a Hall effect sensor is used, which consists of two magnets embedded
inside an elastic tube. The EMG signal is acquired using three electrodes, two of which are
placed on the axis of the trapezius muscle and the third one is used as a reference [105].

Sixteen data sets are used to test the proposed framework. Each of the data sets has
a duration that varies between 65 and 93 min, and contains the 6 physiological signals
previously described. In Table 2 the total number of samples and the size of each dataset
is presented.
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Table 2. Data sets.

Dataset Number of
Samples Size (MB) Dataset Number of

Samples Size (MB)

Drive01 10,208,834 195.74 Drive09 2,702,392 49.98

Drive02 2,966,128 56.17 Drive10 3,099,272 57.34

Drive03 3,276,493 61.2 Drive11 3,096,853 57.46

Drive04 3,050,640 56.61 Drive12 2,472,224 46.03

Drive05 3,213,047 59.32 Drive13 2,918,604 54.30

Drive06 3,080,043 57.20 Drive14 2,993,440 55.76

Drive07 3,380,122 62.8 Drive15 2,888,360 53.5

Drive08 3,095,869 57.48 Drive16 2,477,138 45.9

4.2. Proposed Framework
4.2.1. Proposed Framework Overview

The goal of the proposed framework is to create a distributed, immutable, and secure
environment for patient–doctor interaction through bidirectional medical data exchange.
In this section, a proof-of-concept implementation is presented, which allows patients
and healthcare professionals to register and share medical information from various data
sources, such as wearable devices or professional medical equipment. The main features of
the proposed mHealth framework are:

• Patient/doctor identity: patients and doctors must register on the framework and
their identity and privacy is managed by a blockchain smart contract.

• Patient/doctor association: each patient can be attended to by multiple doctors (of
various specialties). Patient management is ensured by a blockchain smart contract,
and patients retain control over their medical data.

• Data immutability/integrity: both patients and doctors can add medical data from
various sources, such as wearable devices. The framework is designed to be data-
agnostic, allowing for a wide variety of data sources. Data immutability and integrity
is ensured by hashing and by the properties of the blockchain network.

• Data interaction and accountability: healthcare providers associated with patients
can interact with the data through visualization, annotation, and diagnosis. All
authorized participants can trace and audit the data origin and history.

The proposed framework is presented in Figure 4. It consists of a decentralized
mHealth application that monitors patient parameters via wearable sensors. For this
purpose, a private Ethereum blockchain is implemented and deployed, to avoid costs
associated with transactions on the public blockchain, as well as to ensure user privacy.

Patient information is transmitted directly to the blockchain network and received
by a smart contract that implements the necessary functions. In the diagram presented
in Figure 4, the healthcare providers, medical experts, and researchers, who should be
able to access patient records, act as active (mining) nodes. Patients can connect directly
to the blockchain network without a central server or database, thus eliminating single
points of failure. Since the amount of raw data that is collected is very high (Table 2),
it is inefficient to store all the measurements on the blockchain network. Instead, in the
proposed framework, raw data is stored as JSON files on the IPFS, which is a decentralized
hypermedia protocol for file storage and remote access. On IPFS, each file receives a unique
hash, and the file content is distributed across the network. The file hash is stored on the
blockchain and associated with each patient. The structure of the raw JSON dataset is
presented below:
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{
"ECG": {

"adc_gain": 1000.0,
"adc_resolution": 16,
"baseline": 0,
"data": [...] ,
"initial_value": 0,
"samples_per_frame": 32,
"sampling_frequency": 15.5,
"unit": "mV"

},
"EMG": {...} ,
"HR": {...},
"Resp": {...} ,
"Foot GSR": {...},
"Hand GSR": {...}

}

Figure 4. Proposed framework architecture.

The functionality of the proposed mHealth application is ensured by a smart contract
designed, implemented, and deployed on the private Ethereum blockchain network. The
architecture of the contract is presented in Figure 5.

Figure 5. Smart-contract architecture.
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4.2.2. Data Model

Patient and doctor information is stored in two separate structures defined in the
smart contract and presented below:

struct Patient {
string firstName; // patient first name
string lastName; // patient last name
uint256 dateOfBirth; // patient date of birth (stored as a UNIX

// timestamp)
bool sex; // patient sex
uint32 numDoctors; // number of associated doctors
uint32 numData; // number of data sets
bool set; // differentiate between unset and zero

// struct values
}

struct Doctor {
string firstName; // doctor first name
string lastName; // doctor last name
uint32 numPatients; // number of associated patients
bool set; // differentiate between unset and zero

// struct values
}

In a traditional database design, there would be a many-to-many (M:M) association
between doctors and patients. Doctors or healthcare providers have access only to the
records of their associated patients. In the proposed smart contract, the associations
between the Ethereum address and the users, as well as the association between doctors
and patients, are implemented using mapping.

mapping (address => Patient) patients; // address - patient
address [] public patientsList;

mapping (address => Doctor) doctors; // address - doctor
address [] public doctorsList;

// doctor - patients
mapping (address => address []) public doctorPatients;

// patient - doctors
mapping (address => address []) public patientDoctors;

It can be seen that the Patient and Doctor structures contain the properties numDoctors
and numPatients. These properties are necessary to iterate through the list of patients
associated with a doctor or vice versa, since the Solidity mapping is not iterable.

The data structure and mapping are presented below:

struct PatientData {
string hash; // IPFS file hash
uint256 timestamp; // data timestamp
uint32 numAnnotations; // number of data annotations
bool set; // differentiate between unset and zero

// struct values
}

// hash - patient data
mapping (string => PatientData) data;
// patient - data
mapping (address => PatientData []) public patientDataSet;
string [] public dataList;

The hash property represents the IPFS file hash. To obtain this, the proposed mHealth
application sends the raw JSON data to the IPFS. Once the data is stored, the file hash is
returned, which is then stored in the smart contract. The data sets are uniquely identified
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by their hash. The timestamp of the data measurements is also stored, and the data is
associated with the patient using the patientDataSet mapping.

4.2.3. Proposed Framework Implementation

For a patient or healthcare provider to use the proposed mHealth application, they will
register on the network (newUser function), according to the user type (patient or doctor).
After registration, each user will have a blockchain address generated and associated with
their account. The address acts as their identification on the network, as well as their wallet,
which could be used for medical service payments in the future. All interactions between
users and the proposed framework are done through a web interface that interacts with
the private Ethereum blockchain and the IPFS distributed storage protocol through the
Web3.py and ipfshttpclient Python libraries. The newUser function emits an event upon
completion that will be described further in this section (Algorithm 1).

Algorithm 1 New user registration
Input: Patient/Doctor personal information: first name, last name, date of birth, sex, user
type
Output: Patient/Doctor address
Require: User address not already registered

1: Generate a new address/private key using the user defined password
2: if new address does not exist then
3: if user is patient then
4: Store patient information
5: else
6: Store doctor information
7: Emit new user event
8: return address

After the users are registered, the patients and doctors must be associated. A pa-
tient may have multiple physicians and a doctor can attend to multiple patients. These
associations are created through the newAssignment function (Algorithm 2).

Algorithm 2 New assignment function
Input: Patient address, doctor address
Require: Patient and doctor are registered

1: Update the patient-doctor mappings with the new association
2: Emit new assignment event

Once patients/doctors are registered, they can transmit data from various sources,
using a mobile or web application that interacts directly with the proposed framework. In
this context, the application will act as an oracle (a trusted source of information) for the
blockchain network. New data is added using the newData function (Algorithm 3). Since
the data is loosely represented as JSON-encoded strings, various data sources can be easily
integrated without modifying the blockchain smart-contract logic (only front-end changes
may be required to support new devices or data sources).

The physician can add annotations, diagnoses, or treatment recommendations to the
data (newDiagnosis function) (Figure 6), which can be received and viewed by the patient
or other healthcare providers (viewData function), according to Figure 5 (Algorithm 4).

The events emitted by each smart-contract-writing function are an integral part of
distributed application development. They allow communication between smart contracts
and user interfaces, acting as data triggers, so they can be considered to be an API for the
smart contract. The associated applications can subscribe to one or more smart-contract
events, and the necessary logic can be implemented (e.g., patient/doctor notification,
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problem highlighting, etc.). Although it is not required that the smart-contract functions
emit these events, they greatly improve the process of blockchain application development.

Algorithm 3 New data function
Input: Patient address, IPFS file hash, timestamp
Require: Patient is registered
Require: Data file is not already saved

1: Store JSON file to IPFS and retrieve file hash
2: Store file hash and timestamp on the blockchain
3: Update the patient - data mapping
4: Emit new data event
5: return IPFS file hash

Figure 6. Example of annotations that can be made by the healthcare providers.

Algorithm 4 New diagnosis function
Input: Patient address, doctor address, dataset hash, diagnosis file hash, timestamp
Require: Patient and doctor are registered
Require: Doctor is associated with the patient
Require: The patient dataset hash exists

1: Store diagnosis file to IPFS and retrieve file hash
2: Store diagnosis file hash and timestamp on the blockchain
3: Update the dataset—diagnosis and doctor—diagnosis mappings
4: Emit new diagnosis event
5: return Diagnosis file hash

The proposed framework was deployed on three nodes with the following configurations
(Table 3):

Table 3. Proposed framework node configurations

Component Node 1 Node 2 Node 3

CPU Quad core AMD Athlon X4 860K
@ 3.7 GHz

Quad core Intel i5-4400 @
3.1 GHz

Triple core AMD Phenom X3
8750 @ 2.4 GHz

Memory 16 GB 4 GB 4 GB

Operating system Ubuntu Linux 18.04 LTS Ubuntu Linux 18.04 LTS Ubuntu Linux 18.04 LTS

Geth version 1.9.25 1.9.25 1.9.25

Python version 3.9.2 3.6.9 3.6.9
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In the proposed implementation, all three nodes are configured as mining nodes
on the private Ethereum blockchain. In the context of the proposed framework, it is
not necessary for the patients to run the blockchain nodes and sync with the blockchain
network. Only physicians and healthcare providers must synchronize with the blockchain
ledger and reach consensus, while the patients interact with the mHealth network through
desktop or mobile applications which transmit information to the blockchain smart contract
and interact with the data through events and logs. For the proposed proof-of-concept
implementation, a Python web application is developed, but this can be bundled as a
standalone application. It is important to note that this application does not require any
server-side components (a centralized server is not required), so the proposed mHealth
framework is a fully decentralized application.

To benchmark the proposed mHealth application performance, the saving times for
the datasets in Table 2 are evaluated and compared to a classical centralized database
approach, using a relational MySQL database (Figure 7).

Figure 7. MySQL database used for performance evaluation.

5. Results

Each operation depicted in Figure 5 represents a transaction on the Ethereum blockchain.
Once a transaction is mined and confirmed on the network, it will be included in a new
block, as described in Section 3. The structure of a new patient registration transaction is
shown in Figure 8.

The registration transaction executes the newPatient smart-contract function. The Input

represents the byte-encoded function name and parameter values for the function call,
which is decoded in the Decoded input field. The gas required for this transaction is 149,721,
which corresponds to 0.018565404 ETH (considering the gas price of 1 gas unit = 124 GWei).
If the smart-contract function were executed on the public Ethereum blockchain, the trans-
action fee would have resulted in the equivalent of 33.60 USD, considering the Ethereum
value of 1810 USD (as of 13.02.2021). Using a private blockchain, the token values and
transaction fees can be either ignored or they can be used to implement an in-app payment
system in the future, where the token and fee values can be fixed and not be influenced by
existing cryptocurrency fluctuations.

The write and read results of the data using the proposed implementation and the
MySQL database (Figure 7) are presented in Figures 9 and 10. It can be observed that the
write time required for a relational database approach, using optimized batch INSERT
queries for data insertion, is between 4 and 16 times higher than the times obtained with
the proposed IPFS JSON storage solution, while the read times necessary to create the
same JSON structure presented in Section 4.2 are between 28 and 45 times slower than the
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times obtained with the proposed solution. For both tests, all the samples in each dataset
presented in Table 2 were included in the measurement.

Status true Transaction mined and execution succeed

Transaction hash 0xfe6cb1cddfc30ac298e30426e337d45c0e44c87e19c2061630bb12d3ac705ec7

From 0x622b20d337a3533405Ba6a03a52fbC4eAC99dc84

To Medical.newPatient(address,string,string,uint256,bool)
0x920E2D704eA82e87D8Cc7cbd0C6470653b970718

Gas 149721

Input 0x4cdaacfc. . . 00000000

Decoded input {
"address _address": "0x622b20d337a3533405Ba6a03a52fbC4eAC99dc84",
"string _firstName": "Jane",
"string _lastName": "Doe",
"uint256 _dob": "516880800",
"bool _sex": 1

}

Value 0 wei

Figure 8. New patient transaction on the Ethereum blockchain.

Figure 9. Blockchain and MySQL write times.

Figure 10. Blockchain and MySQL read times.

An example of the physiological signals recorded for one driver is depicted in
Figure 11 and the signals are represented as they appear in the web interface created
for the proposed framework, where the physicians can interact with the signals by means
of measurements and annotations.
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(a) (b)

(c) (d)

(e) (f)
Figure 11. Physiological signals recorded with wearable sensors: (a) ECG; (b) HR; (c) EMG; (d) Respiration; (e) foot GSR; (f)
hand GSR.

6. Discussion

Table 4 compares the proposed blockchain framework with the existing ones described
in the literature. Griggs et al. [102] introduced a system based on a private Ethereum
blockchain with smart contracts. A sensor, such as a heart-rate monitor, records and sends
data to a smart device, such as smartphone or tablet, which in turns send the data to the
smart contract. The smart contract is executed and evaluates the data and in turn can
send alerts to the patient, hospital, or medical expert, or can send a command to activate
medical devices such as insulin pumps. In [103], the authors proposed a decentralized
privacy-preserving healthcare blockchain for IoT. The logical flow execution is similar to
the one introduced in [102]. It uses symmetric and asymmetric encryption schemes and
lightweight digital signatures for authentication purposes [103].

Zhang et al. imagined a model for sharing medical data through social network nodes.
In this model, the data is generated by a WBAN. Using an improved version of the IEEE
802.15.6 standard, the nodes in the network can set up secure connections using sensor
and mobile device addresses that are stored on the blockchain. All the data is stored in the
smart devices and body sensors [84].
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Table 4. A comparative analysis of the proposed framework vs the state-of-the-art systems

Blockchain Platform
for mHealth System

Patient
Identity Immutability Data Audit Authentication Accountability Data

Integrity
Interactive Data

Evaluation

Proposed framework X X X X X X
X

Griggs et al. [102] X partial X X X partial
Dwivedi et al. [103] X X X X X

Zhang et al. [84] X X X X X
Wang et al. [95] X X X X

In [95] Wang et al. proposes an Ethereum-based framework with attribute-based
encryption (ABE) technology to obtain access control over EHR data that is stored in the
decentralized system. No private key generator (PKG) is used and the encryption key of
the file with medical data is stored on the blockchain using the Advanced Encryption (AES)
algorithm [95].

Some of the main limitations of the frameworks discussed include (a) no experiments
or simulations, just conceptual analysis; (b) storage of the medical data directly in the
blockchain which is not feasible for a complete mHealth system with a WBAN, or the
medical data is stored in a centralized database or directly on the smart devices/sensors,
which makes the medical data vulnerable to data loss, alteration, and theft; (c) no interface
implemented for the medical experts, not only to visualize medical data but also to directly
interact with it to obtain diagnostic information. Although there are algorithms for the
deployment of blockchain that can improve healthcare processes, there is a need to improve
medical diagnosis, i.e., to use the conceptual knowledge of blockchain applications for
specific issues, such as diagnostics [106].

The proposed framework overcomes these limitations. The medical data that comes
from the WBAN is not stored directly on the blockchain, but instead is stored in a decen-
tralized data-storage system, assuring protection to data alteration, theft, or loss. Only
the hash key for each dataset is stored on the blockchain. Using the smart contract, the
association between the patient, the dataset, and the medical expert is realized. Moreover,
the proposed framework is not a conceptual analysis; instead, the blockchain and smart
contracts are implemented, deployed, and tested using real signals collected by wearable
sensors. In addition, the framework also offers an interface for both patient and medical
experts. The latter provides capabilities for direct interaction with the medical data. Thus,
the medical expert can visualize and manipulate the signals recorded by sensors to make
a precise diagnosis. It has also the possibility to transmit alerts, treatment and therapy
recommendations to the patient. All are stored in the electronic record of the patient.

Another advantage of the proposed approach is that blockchain network nodes are
represented only by healthcare professionals, thus effectively replacing a centralized EHR
database with a distributed ledger. The first benefit of this approach is that patients do not
need to synchronize the blockchain ledger and have a full node connected to the blockchain
network. Due to the way the smart contract is developed, authorized applications (oracles)
can be integrated into the mHealth environment. The second benefit of the proposed
approach is that the consensus mechanism can be changed from the current proof-of-
work method to a proof-of-stake or proof-of-authority consensus mechanism, since only
medical professionals actively participate in data validation and consensus. This would
require fewer resources than the current proof-of-work consensus implemented in the
Ethereum blockchain. A detailed analysis of the performance impact of the three consensus
mechanisms will be addressed in a future study, since Ethereum already supports proof-
of-authority consensus (on the Rinkeby test network and on private networks using the
Clique consensus protocol) and will soon support the proof-of-stake consensus as well.

It is well known that blockchain smart-contract changes require a lot of operations
under the hood, since as with every other transaction on the blockchain, the smart con-
tract is immutable once it is deployed. Any change to the smart-contract logic implies
the redeployment of a new contract instance. However, the data must be referenced or
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transferred from the previous instance. Due to the data-agnostic approach of the proposed
framework, no contract changes are necessary when the data format is modified. Using
IPFS as a decentralized solution for the storage and hashing of the data by content achieves
two important performance improvements: (a) data duplication is avoided, since the same
content will produce the same hash on the IPFS network, thus eliminating unwanted
redundancy and optimizing the amount of transferred data; and (b) the data format is not
coupled with the blockchain smart-contract logic, so new data sources and formats can
easily be added, by updating the front-end application to support the new JSON format.
Updating a client-side application is much more convenient, through various distribution
channels available for desktop, mobile, or web applications.

7. Conclusions

In this paper, an mHealth application for remote patient monitoring is presented using
blockchain technology to create a decentralized and distributed network of healthcare
providers and patients that can share and interpret medical data. Using a privately de-
ployed Ethereum blockchain, both patients and healthcare providers can join the mHealth
network, through a web interface, which allows the sharing, viewing, and interpretation
of medical records. A smart contract deployed on the Ethereum blockchain is responsible
for data management and proper association between doctors, patients, and monitored
data. Since blockchain operations are expensive in terms of storage and processing, the
medical data is distributively stored using the IPFS protocol, creating additional redun-
dancy and data availability. Traditionally, a remote, web-based monitoring system would
be implemented using a client–server model, where the data would be stored in a cen-
tralized database (most likely a SQL variant, such as MySQL). This centralized approach
is susceptible to data loss due to server failure or third-party attack. Due to the large
number of collected samples, the centralized database approach is much slower than the
proposed solution in this paper, as shown in Figures 9 and 10. Although some optimization
could be made to the data model and the querying techniques, a database-driven approach
would still be susceptible to a single point of failure. Using blockchain, the information
is distributed across all nodes in the network, thus improving the data availability and
transfer times.

A future version of the proposed framework could also allow payment options for
medical services or for accessing patient health data (e.g., for clinical studies, etc.). Since
most blockchain platforms allow the transfer of value, in the form of network tokens, a
privately deployed blockchain network can use this mechanism to implement payment
options, without requiring additional components, while the JSON storage approach can
allow for different devices (professional or recreational wearable devices) to be used and
integrated with ease.
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