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Abstract: Metamaterial antennas consisting of periodical units are suitable for achieving tunable
properties by employing active elements to each unit. However, for compact metamaterials with
a very limited number of periodical units, resonance blindness exists. In this paper, we introduce
a method to achieve continuous tuning without resonance blindness by exploring hence, taking
advantage of nonlinear properties of PIN diodes. First, we obtain the equivalent impedance of the
PIN diode through measurements, then fit these nonlinear curves with mathematical expressions.
Afterwards, we build the PIN diode model with these mathematical equations, making it compatible
with implementing co-simulation between the passive electromagnetic model and the active element
of PIN diodes and, particularly, the nonlinear effects can be considered. Next, we design a compact
two-unit metamaterial antenna as an example to illustrate the electromagnetic co-simulation. Finally,
we implement the experiments with a micro-control unit to validate this method. In addition, the
nonlinear stability and the supplying voltage tolerance of nonlinear states for both two kinds of PIN
diodes are investigated as well. This method of obtaining smooth tuning with nonlinear properties
of PIN diodes can be applied to other active devices, if only PIN diodes are utilized.

Keywords: active metamaterial antenna; continuous tuning; resonance blindness; EM co-simulation;
nonlinear property

1. Introduction

Electromagnetic metamaterials (EM MTMs) [1] employ periodical units, that are
derived from split-ring resonators (SRRs) [2], composite right–left-handed (CRLH) struc-
tures [3], and high-impedance structures (HISs) [4], to obtain a negative refractive index,
negative phase constant, and high surface impedance, thereby achieving the unique prop-
erties of super-lens [5], back–forward radiation [6], and field enhancement [7]. Thanks
to EM MTMs that are characterized by periodical configuration, it is possible to realize
multiple tunable states either in spectrum resonances [8] or spatial radiation patterns [9]
by applying active components to each periodical unit. This kind of tuning mechanism
benefits from a periodical array with n unit cells, while each unit can be tuned individually
with m states utilizing active elements such as PIN diodes [8,10–12], varactors [13–20], or
MEMS [21], thus, ideally speaking, we can possess in total as many as mn tunable states.
This means that extremely large MTMs with an infinite (n→∞) number of units have
an infinite number of tunable states, leading to continuous tuning. Conversely, compact
MTMs with a very limited number of units have only several discrete tunable states. The
absence of continuous tunability in an active MTM design is called tuning blindness, and it
is has two causes: the MTM design has very limited periodical units, such as two, three, or
five cells; RF switches as the active component in the MTM only have two tunable states
(ON/OFF). For instance, as demonstrated in Figure 1a, we simulate an MTM antenna con-
taining two-unit (n = 2, m = 2) HIS structures, and it indeed demonstrates several tunable
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resonances, but they are discrete with unavoidably induced resonance blindness (as shown
in the shadow area). Similarly, in [9], where programmable radiations are realized with PIN
diodes, and in [21], where programmable spectrum resonances are achieved with MEMS,
there exists tuning blindness as well. More specifically, in [9], though scanning beams
from roughly −60◦ to +60◦ are obtained, as the shadow area demonstrates in Figure 1b,
scanning blindness occurs from −15◦ to +15◦. In this paper, we explore another method
to achieve continuous tuning with PIN diodes: investigating the equivalent impedance
in the transition zone between completed ON and OFF, and exploring the nonlinear zone
in between. Thanks to the PIN diodes possessing this nonlinear zone, we can achieve a
continuous spectrum tuning without blindness and, meanwhile, with low actuated volt-
ages less than 1.5 V, which is suitable for NB-IoT scenery that requires many tunable but
narrow-band spectrum channels and with low power consumption.
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First, we measure the PIN diode by employing a microstrip line in a 5 GHz band. As 
shown in Figure 2a, we make a slot in the middle of the standard 50 Ω microstrip line and 
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LQW18AN22NG00, Mutrata, Nagaokakyo, , Kyoto, Japan) with a large value (22 nH) to 
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Figure 1. Tuning blindness exists in (a) a compact MTM antenna with two periodical units and in (b) programmable spatial
radiation patterns [9].

In practice, MTMs with a limited number of periodical units are quite common, and
in some cases, they are even preferred due to their compact size. In addition to the method
proposed in this paper, another common method for avoiding blindness is to increase the
tunable states m possessed by the individual cell, while unit number n is kept to a small
value for a compact size. For instance, [13–20] introduce the tunable antenna using varactor
diodes, or variable capacitors, to obtain multiple tunable states m = 9, 7, 6, respectively.
These good works with multi-state tuning indeed increase the tuning continuity with
discrete structures, but usually require variable voltage to even as high as 20 V, which
might not be compatible with low-power applications such as narrow bandwidth Internet
of Things (NB-IoT) [22–24].

This paper is arranged as follows: Section 2 investigates the nonlinear property of PIN
diodes; Section 3 introduces the electromagnetic (EM) co-simulation; Section 4 presents
experiments; Sections 5 and 6 provide the discussion and conclusion.

2. Nonlinear Properties

PIN diodes are conventionally utilized as RF switches with two states (ON/OFF).
However, there exists a transition zone in between. In order to investigate this nonlinear
property, we study the relationship between the equivalent impedance and the actuated
voltage using the PIN diode A (MACOM MA4AGBLP912, MACOM, Lowell, MA, USA).
First, we measure the PIN diode by employing a microstrip line in a 5 GHz band. As
shown in Figure 2a, we make a slot in the middle of the standard 50 Ω microstrip line
and integrate the surface-mounted PIN diode A there, then apply two inductors (Murata
LQW18AN22NG00, Mutrata, Nagaokakyo, Kyoto, Japan) with a large value (22 nH) to
block the interference from the DC supplier. Second, we apply transmission line (TL)
theory to analyze this equivalent circuit model, as shown in Figure 2b. The equivalent
model includes Zc = 50 Ω that represents the characteristic impedance of the standard
transmission line with length l0, the equivalent impedance Zpin of the PIN diodes, and the
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port impedance Zport = 50 Ω. According to TL theory, the equivalent impedance of PIN
diodes Zpin can be retrieved from input impedance Zin as [25]

Zpin =
ZC·(Z in − ZL) + j· tan(βl 0)·(Z in·ZL − Z2

C
)

ZC − j·Zin· tan(βl 0)
(1)

where β is the phase constant, and the input impedance Zin is measured in experiments.
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(MACOM MA4AGBLP912); (c) extracted equivalent impedance including resistance and reactance according to different
voltages actuated to the PIN diode.

As shown in Figure 2c, since actuated voltages are varied from 0 V to 1.5 V, the
equivalent impedance of the PIN diodes Zpin is changed accordingly; the resistance ranges
from 225 Ω to a very small value close to 0 Ω, and the reactance varies from −200 Ω to a
very small value as well. Particularly, we can observe that there exists a transition zone
(as marked by the shadow area in Figure 2c) between the PIN diodes’ OFF zone where
impedance is around 200–200 j, and the ON zone where the impedance is a very small
value close to zero. In this transition zone, the actuated voltage is around 1–1.2 V and,
accordingly, the impedance varies nonlinearly and smoothly from the OFF state to the
ON state.

In order to accommodate the EM co-simulation including passive EM models and
nonlinear active components, we build a PIN diode model with respect to the nonlinear
properties and considering parameters of actuated voltages and frequencies. Referring to
impedance curves as shown in Figure 2c, curves in the transition zone are nonlinear in
an S shape, which is close to the Boltzmann function [26]. Thus, we select the Boltzmann
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function to fit them. Based on Boltzmann’s mathematical model, the real part ZRe and
imaginary part ZIm are

ZRe = ZRe_on +
ZRe_off − ZRe_on

1 + e
V−VRe_0

dRe

(2)

ZIm = ZIm_on +
ZIm_off − ZIm_on

1 + e
V−VIm_0

dIm

(3)

in which V is the actuated voltage for PIN diode A, ZRe_off and ZRe_on are the measured ZRe
when the diode is in the OFF state with V = 0 V and the ON state with V = 1.5 V. Similarly,
ZIm_off and ZIm_on are ZIm when V = 0 V (OFF state) and 1.5 V (ON state). VRe_0 is defined
as the voltage when ZRe equals the mean of ZRe_off and ZRe_on, while VIm_0 is the voltage
when ZIm equals the mean of ZIm_off and ZIm_on. Parameters dRe and dIm are the slope of
curves ZRe and ZIm when V = VRe_0 and V = VIm_0.

Until now, the above equations have concerned only one frequency point, but we
need to consider the whole frequency band. This means all the parameters in (2) and (3),
ZRe_off, ZRe_on, VRe_0, dRe and ZIm_off, ZIm_on, VIm_0, dIm, need to be related to frequencies. We
select several frequency points located at the relatively low, moderate, and high frequency
sections of the band, and fit them to the equations, thereby involving the whole frequency
band when describing the nonlinear properties. Particularly, according to these curves’
shapes concerning frequencies, the mean function and Gaussian function are applied to fit
the real part ZRe and the imaginary part ZIm, respectively. For ZRe, the relative parameters
in respect to frequencies can be described as

ZRe_on =
1
3 ∑

f= f 0, f 1, f 2

ZRe( f ) (4)

ZRe_off = ZRe_off ( f 2) + d1 · ( f − f2)/109 (5)

VRe_0 = VRe_0( f 2) + d2 · ( f − f2)/109 (6)

dRe = dRe( f 2) + d3 · ( f − f 2)/109 (7)

where three typical frequency points are f 0 = 4.7 GHz, f 1 = 5 GHz, and f 2 = 5.3 GHz. Other
parameters are ZRe_on = 11.18 Ω, ZRe_off (f 2) = 223.8 Ω, VRe_0 (f 2) = 1.08 V, dRe (f 2) = 0.04751,
d1 = 126.57, d2 =−0.05024, and d3 = 7.45× 10−3. Similarly, we use (8)–(11) for the imaginary
part ZIm:

ZIm_on = ZIm_on( f 2) + d4 · ( f − f2)/109 (8)

ZIm_off = ZIm_off ( f 2) + d5 · e
−0.5·( f /109− f3

d6
)

2

(9)

VIm_0 = VIm_0( f 2) + d7 · ( f − f2)/109 (10)

dIm = dIm( f 2) + d8 · ( f − f2)/109 (11)

where the relative parameters ZIm_on (f 2) = 18.63 Ω, ZIm_off (f 2) = −171.38 Ω, VIm_0 (f 2) =
1.023 V, and dIm (f 2) = 0.04902. Other parameters d4 = 22.59, d5 = −27.24, d6 = 0.23727,
d7 = −0.03697, and d8 = 7.966·10−4. Especially, the parameter f 3 = 4.922 is derived from the
peak position of the Gaussian function. Finally, we achieve the completed equations to
express the nonlinear property of the PIN diode as follows

ZRe =
1
3 ∑

f= f 0, f 1, f 2

ZRe( f )+
ZRe_off ( f 2) + d1 · ( f − f 2)/109 − 1

3 ∑ f= f 0, f 1, f 2
ZRe( f )

1 + e
V−(VRe_0( f 2)+d2 ·( f− f2)/109)

dRe( f 2)+d3 ·( f− f 2)/109

(12)
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ZIm = ZIm_on( f 2) + d4 · ( f − f 2)/109 +

ZIm_off ( f 2) + d5 · e
−0.5·( f /109− f3

d6
)

2

− (Z Im_on( f 2) + d4 · ( f − f2)/109

)

1 + e
V−(VIm_0( f 2)+d7 ·( f− f2)/109)

dIm( f 2)+d8 ·( f− f 2)/109

(13)

Note that we fit the measured impedance curves of the PIN diode with these above-
mentioned equations through several typical frequency points f 0, f 1, and f 2, thus, we
need to double check if they can represent the whole frequency band. We randomly select
the frequencies 4.75 GHz, 4.9 GHz, and 5.13 GHz in the band, and compare the fitting
curves with the measured results. As shown in Figure 3a, ZRe and ZIm match well with
the measured ones, implying the equivalent effectiveness of the nonlinear property in
the whole frequency band. In this way, we obtain the mathematical expressions to de-
scribe the nonlinear properties of the PIN diode, and accordingly model this PIN diode
in ANSYS Electronics Desktop, ensuring the nonlinear property is considered in the EM
co-simulation.
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contains parallel LC and PIN diode A (MACOM MA4AGBLP912) model, thereby implementing the proof-of-concept
simulation to prove (c) continuous and smooth resonance tuning without blindness.

To demonstrate that the nonlinear properties can be exploited for achieving smooth
and uniform resonance tuning, we implement a proof-of-concept level simulation with
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the PIN diode A (MACOM MA4AGBLP912). As shown in Figure 3b, it is a parallel L1C1
circuit model with the parameters L1 = 1 nH and C1 = 1 pF. IN particular, we put another
capacitance C2 in the shunt direction with the same value C2 = 1 pF, but it can be connected
or disconnected parallel to the L1C1 circuit via the PIN diode, which can be controlled by
the supplying voltages from the OFF state, nonlinear states to ON state. An inductance of L2
= 1 H is used to block the interference from the DC suppliers. Theoretically speaking, there
should be a continuous resonance tuning between the resonance 1/

(
2π
√

L1C1
)
= 5.03 GHz

when the PIN diode is ideally open, and 1/
(
2π
√

2L1C1
)
= 3.56 GHz when the diode is

ideally short, through middle states while actuating the diode in the nonlinear zone. As
shown in Figure 3c, with controlling the actuated voltages to make the PIN diode work
in OFF, ON, and transition states, the resonances are tuned from 3.43 GHz to 4.78 GHz
via nonlinear states 3.78 GHz, 4.11 GHz, and 4.44 GHz, respectively. This continuous and
smooth resonance tuning verifies the concept of eliminating the resonance blindness with
nonlinear properties by PIN diodes.

In a brief summary, PIN diodes have the advantages of nonlinear properties while
the actuated voltages fall in the transition zone, providing the potential capability of
continuous tuning in MTM antenna even with a very limited number of units. That is
either different from varactors that rely on a large dynamic voltage range, or different from
MEMS that have a noncontinuous equivalent capacitance value variation due to the beam
membrane pulled in the 1/3 length position [27].

3. Layout, Design, and EM Co-Simulation

We design a compact MTM antenna using PIN diodes to introduce the EM co-
simulation, and take advantage of its nonlinear properties to realize the smooth tuning and
eliminate the resonance blindness. As in Figure 4a, the active MTM structure comprises
two periodical cells which produce a compact size, a PIN diode that plays the role of the
active element in each unit, and inductance chips for blocking the interference from DC
suppliers. Via holes are made between the top and bottom layers (Figure 4b) to connect
the micro-control unit (MCU) for DC supply. As seen in the side view in Figure 4c,d, PIN
diodes placed in the two slots of each unit electrically connect/disconnect these slots, thus
manipulating zeroth-order resonances (ZORs) of the MTM antenna. Thanks to the MTM
configuration separating units from each other, voltages for actuating each PIN diode can
be controlled independently. FR4 material with permittivity εr = 4.3, tanδ = 0.02, and thick-
ness h = 2.5 mm is used as the substrate. The unit cell is designed according to CRLH-TL
theory [11], in which the equivalent circuit model has inductances and capacitances in
both series and shunt directions, thereby producing the zeroth-order resonance (ZOR)
resonating at the frequency β = 0. The mechanism can be qualitatively demonstrated
by the equivalent circuit model, as shown in Figure 4e. The left-handed capacitance is
equivalently considered as CL = 2CL1 + CL, where capacitance CL1 is formed by the gaps
between adjacent units and CL2 is produced by the two symmetric J-shaped patches. Left-
handed inductance LL is generated by a strip patch in the x-direction, and is regarded as
being connected to the ground through another capacitance Cg induced between the edge
patch and the ground. Series inductance LR and shunt capacitance CR are formed from
the conventional microstrip line. According to CRLH theory, the ZOR ωzor is related to
shunt-directed resonances ωsh [11]:

ωzor = ωsh =

√
1

LLCg
+

1
LLCR

(14)

which implies what the active element PIN diodes are particularly utilized to tune: short-
ing/opening PIN diodes alter the effective area of the edge patch, leading to equivalently
varying the capacitance Cg, hence, tuning the ZORs. Moreover, we design the unit op-
erating in the ZOR mode, because at this resonance, the phase constant β = 0, and its
guided wavelength, is infinite, leading to the favorable characteristic that its resonance
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is independent of the physical length [11]. Therefore, we have the freedom to employ
arbitrary numbers of periodical units. For a compact MTM antenna to demonstrate ZOR
tuning without blindness, we utilize two periodical units as an example.
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with dimensions (mm): Wx = 26, Ly = 34.5, l1 = 3.5, w1 = 9, l2 = 6.5, w2 = 4, l3 = 2, w3 = 2.7, w = 9.1, l = 5.2, g1 = 0.2, g2 = 0.3,
d = 7.85, j1x = 4.7, j1y = 0.9, j2x = 0.8, j2y = 2.5, j3x = 5.2, j3y = 0.4, j4x = 2.7, j4y = 0.8, j5x = 3.1, j5y = 1.4, g4 = 0.4, lind = 1.4,
Φ = 0.2, w4 = 0.8, w5 = 1.4; (e) the equivalent CRLH circuit model of unit cell.

We use ANSYS Electronics Desktop to simulate the whole design including the passive
EM model and the active element PIN diodes, as illustrated in Figure 5a. First, we design
the antenna with passive simulation in HFSS without any diodes. That means in the
passive full-wave simulation, with/without rectangular patches are utilized to imitate
ON/OFF states of PIN diodes, thus considering a preliminary simulation with electric field
distributions and radiation patterns. Afterward, in the EM model, lumped ports are set
up where the active elements are placed, so we have chances to insert the active element
model there. Then, we build the SPICE model for PIN diode A MACOM MA4AGBLP912
with the mathematical equations shown above, thereby involving its nonlinear property.
In addition, the S2P file of the inductor (Murata LQW18AN22NG00, Mutrata, Nagaokakyo,
Kyoto, Japan) is employed in the EM co-simulation as well. As shown in Figure 5b, a
simulation is conducted with the S2P file of the inductor, and it exhibits good isolation of
less than −20 dB between the DC supplier and RF signals. As the active elements are ready,
finally, we can implement the EM co-simulation by considering the S2P file of the inductor
and the SPICE model of PIN diode A for the lumped ports. Particularly, four DC voltage
sources are connected to the lumped ports as well to supply PIN diodes accordingly. In
such a method, we can achieve the results of co-simulation easily within a few minutes.
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With the co-simulation method, we obtain the active MTM antenna simulations as
plotted in Figure 6, in which both the linear and nonlinear cases are illustrated. In the
linear case, as shown in Figure 6a, there are OFF and ON states, and we code PIN diodes
in the OFF state as state 0 when 0V is applied, and code the ON state as state 1.5 when
1.5 V is applied. For example, 0-1.5-0-1.5 means the second and fourth PIN diodes are
actuated to the ON state while other two diodes are in the OFF state. In a nonlinear case,
as shown in Figure 6b, however, more nonlinear states where actuated voltages fall in the
transition zone are shown. We code these nonlinear states exactly as the voltages actuated
to PIN diodes. For instance, 0-1.1-1.23-1.09 indicates the four PIN diodes are actuated with
0 V, 1.1 V, 1.23 V, and 1.09 V, respectively. In Figure 6b, the ZORs of the nonlinear case
are tuned from 4.71 GHz to 5.31 GHz via 4.82 GHz, 4.96 GHz, 5.11 GHz, and 5.19 GHz,
while in the linear case, as shown in Figure 6a, the resonances are tuned from 4.71 GHz
to 5.31 GHz but the tuning is not smooth and continuous, and there is blindness in the
band from 4.83 GHz to 5.07 GHz. Since each unit can provide four coding sequences, 0-0,
0-1.5, 1.5-0, and 1.5-1.5, an MTM antenna consisting of two units has all 16 coding states to
cover 4.71 GHz to 5.31 GHz, while for the nonlinear case, it has more middle states. As
shown in Figure 6c, by comparing the 16 states of the linear case and 30 selected states of
the nonlinear case, we find that nonlinear advantages allow the ZOR tuning to be smooth,
continuous, and uniform, without resonance blindness.

In summary, we apply the S2P file of the inductor, the SPICE model of PIN diode A,
and the DC voltage model to the EM co-simulation. These kinds of two-port models have
the advantages of not needing to consider the complicated equivalent circuit model with
all detailed parameters of R, L, and C, because all of these circuit parameters are included
in the S2P model or SPICE model. Thanks to the EM co-simulation considering nonlinear
properties of PIN diodes, we can simulate an active MTM antenna with continuous and
uniform resonance tuning, and eliminate the resonance blindness. The nonlinearity of PIN
diodes not only prevents frequency tuning blindness due to the compact MTM design with
limited discrete states, but also makes frequency tuning uniform.



Sensors 2021, 21, 2816 9 of 16

Sensors 2021, 21, x FOR PEER REVIEW 8 of 17 
 

 

  
(a) (b) 

Figure 5. (a) EM co-simulation model including passive EM model, active element PIN diodes, and inductance chip; (b) 
simulated S-parameters from the SNP file of inductor (Murata LQW18AN22NG00). 

With the co-simulation method, we obtain the active MTM antenna simulations as 
plotted in Figure 6, in which both the linear and nonlinear cases are illustrated. In the 
linear case, as shown in Figure 6a, there are OFF and ON states, and we code PIN diodes 
in the OFF state as state 0 when 0V is applied, and code the ON state as state 1.5 when 1.5 
V is applied. For example, 0-1.5-0-1.5 means the second and fourth PIN diodes are actu-
ated to the ON state while other two diodes are in the OFF state. In a nonlinear case, as 
shown in Figure 6b, however, more nonlinear states where actuated voltages fall in the 
transition zone are shown. We code these nonlinear states exactly as the voltages actuated 
to PIN diodes. For instance, 0-1.1-1.23-1.09 indicates the four PIN diodes are actuated with 
0 V, 1.1 V, 1.23 V, and 1.09 V, respectively. In Figure 6b, the ZORs of the nonlinear case 
are tuned from 4.71 GHz to 5.31 GHz via 4.82 GHz, 4.96 GHz, 5.11 GHz, and 5.19 GHz, 
while in the linear case, as shown in Figure 6a, the resonances are tuned from 4.71 GHz to 
5.31 GHz but the tuning is not smooth and continuous, and there is blindness in the band 
from 4.83 GHz to 5.07 GHz. Since each unit can provide four coding sequences, 0-0, 0-1.5, 
1.5-0, and 1.5-1.5, an MTM antenna consisting of two units has all 16 coding states to cover 
4.71 GHz to 5.31 GHz, while for the nonlinear case, it has more middle states. As shown 
in Figure 6c, by comparing the 16 states of the linear case and 30 selected states of the 
nonlinear case, we find that nonlinear advantages allow the ZOR tuning to be smooth, 
continuous, and uniform, without resonance blindness. 

  
(a) (b) 

Sensors 2021, 21, x FOR PEER REVIEW 9 of 17 
 

 

 
(c) 

Figure 6. Simulation results of S11 with co-simulation method using PIN diode model as RF switch: (a) 6 linear states; (b) 
6 nonlinear states with uniform tuning; and (c) ZOR comparisons of all 16 linear states with 30 nonlinear states. 

In summary, we apply the S2P file of the inductor, the SPICE model of PIN diode A, 
and the DC voltage model to the EM co-simulation. These kinds of two-port models have 
the advantages of not needing to consider the complicated equivalent circuit model with 
all detailed parameters of R, L, and C, because all of these circuit parameters are included 
in the S2P model or SPICE model. Thanks to the EM co-simulation considering nonlinear 
properties of PIN diodes, we can simulate an active MTM antenna with continuous and 
uniform resonance tuning, and eliminate the resonance blindness. The nonlinearity of PIN 
diodes not only prevents frequency tuning blindness due to the compact MTM design 
with limited discrete states, but also makes frequency tuning uniform. 

4. Experimental Implementation 
According to the previous design, the compact MTM antenna consisting of two cells 

is fabricated as shown in Figure 7a. The configuration and layout are exactly that in Figure 
4: the FR4 substrate has the parameters of εr = 4.3, tanδ = 0.02, and PIN diode A and the 
inductance chip are MACOM MA4AGBLP912 and Murata LQW18AN22NG00, respec-
tively. As demonstrated in Figure 7b, via holes go through the substrate to connect four 
pairs of wires, so as to supply these PIN diodes through the micro-control unit (MCU). In 
this design, four channels of the DC supply can be manipulated independently because 
of the isolated and periodical configuration of the MTM. Figure 7c shows the setup for 
anechoic chamber measurements, in which a laptop is utilized to output C language for 
controlling the MCU for voltage manipulations. 

 
(a) (b) 

Figure 6. Simulation results of S11 with co-simulation method using PIN diode model as RF switch: (a) 6 linear states; (b) 6
nonlinear states with uniform tuning; and (c) ZOR comparisons of all 16 linear states with 30 nonlinear states.

4. Experimental Implementation

According to the previous design, the compact MTM antenna consisting of two cells
is fabricated as shown in Figure 7a. The configuration and layout are exactly that in
Figure 4: the FR4 substrate has the parameters of εr = 4.3, tanδ = 0.02, and PIN diode A
and the inductance chip are MACOM MA4AGBLP912 and Murata LQW18AN22NG00,
respectively. As demonstrated in Figure 7b, via holes go through the substrate to connect
four pairs of wires, so as to supply these PIN diodes through the micro-control unit (MCU).
In this design, four channels of the DC supply can be manipulated independently because
of the isolated and periodical configuration of the MTM. Figure 7c shows the setup for
anechoic chamber measurements, in which a laptop is utilized to output C language for
controlling the MCU for voltage manipulations.

We measure both the linear case, which includes OFF (actuated voltage 0 V, indicated
as 0) and ON states (actuated voltage 1.5 V, indicated as 1.5), and the nonlinear case (state
coded as the actuated voltage) which considers applying voltages in the transition zone.
In Figure 8a,b, several ZORs of the linear and nonlinear cases are demonstrated, and it
is seen that as resonances are tuned from 4.7 GHz to 5.3 GHz via many tuning states,
the resonance tuning of the linear case is not uniform, while that of the nonlinear case is
uniform and smooth. More specifically, as shown in Figure 8c, more tunable states are
compared. For the linear case, which considers all the completed mn = 42 = 16 tuning states
(m = 4 represents the four PIN diodes, and n = 2 indicates PIN diodes’ ON/OFF states) for
the compact two-cell MTM antenna, we can clearly observe that its tuning is nonuniform
and blindness clearly exists in the frequency band of 4.9~5.1 GHz and 5.1~5.25 GHz. For
instance, states 0-0-1.5-1.5 and 1.5-0-0-0 have almost the same resonant point and overlap at
5.12 GHz, while states 1.5-1.5-0-0 and 0-1.5-0-1.5 are separated by roughly 0.2 GHz and are
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recognized as tuning blindness. For the nonlinear case with manipulated supply voltages
in the transition zone of 1 V to 1.2 V, however, the tuning is very uniform, leading to
continuous resonance tuning without blindness. In this case, we code the supplied voltage
of the PIN diode working in the nonlinear zone. For example, state 1.05-1.5-1.5-0 means the
four PIN diodes from left to right are actuated with 1.05 V, 1.5 V, 1.5 V, and 0 V, respectively.
Thanks to the PIN diode possessing the nonlinear property, we can obtain many tunable
states. Thirty tunable states are illustrated in Figure 8c, and it is seen that ZORs are tuned
uniformly with a step around 0.02 GHz in the range from 4.7 GHz to 5.3 GHz, eliminating
the resonance blindness and indicating the nonlinear advantages of PIN diodes. In addition,
as shown in Figure 8c, in both linear and nonlinear cases, simulated ZORs agree well with
measured ones, validating the effectiveness of the nonlinear model and EM co-simulation.
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Note that, as shown in Figure 8b, the bandwidth is varied when resonances are tuned
in different states. This can be explained by the fact that when the active element PIN
diodes are used to tune the effective area of the edge patch, they vary circuit parameter
Cg, as shown in Figure 4e. Meanwhile, the PIN diode itself induces resistance as well,
which varies the conductance G. Hence, the Q factor and bandwidth are changed. More
specifically, according to the CRLH theory, the resonance ωzor is dominated by the shunt-
directed resonances ωsh, as indicated in Equation (14). Thus, the Q factor and bandwidth
are investigated and discussed in terms of the shunt-directed circuit part. As shown in
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Figure 4e, which illustrates the equivalent circuit model, the shunt admittance can be
written as

Y = jωCR −
jωCg

ω2LLCg − 1
+ G (15)

The quality factor Q is

Q =
1
2

ω

G

(
C2

R + ω2C2
RLCg + CRCg

Cg

)
(16)

Consequently, the bandwidth can be expressed as

BW =
ω

2πQ
=

GCg

2πCR
(
Cg + CR

) (17)

This equation can qualitatively explain the relationship between the bandwidth and
different tunable states. Employing PIN diodes in an active MTM antenna electrically
opens/shorts the gaps in the edge patch, resulting in varying the parameter Cg. On the
other hand, the resistance variations in the PIN diodes in the shunt direction affect the
conductance G. That indicates that tunable states vary both the Cg and G. According to
Equation (17), these two variables change the bandwidth. Therefore, as seen in Figure 8b,
the bandwidth is changed according to different tunable states.
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We study the gains, efficiency, and radiation patterns of the active MTM antenna with
PIN diode A (MACOM MA4AGBLP912). In particular, two extreme states of completed
ON and OFF states and four nonlinear states are investigated, while in other states, gains
and the radiation efficiency are on the same level, and radiation patterns are quite similar.
As shown in Figure 9, two extreme states, 0-0-0-0 and 1.5-1.5-1.5-1.5, that indicate PIN
diodes are completely OFF/ON, have gains of 3.73 dBi and 2.27 dBi, respectively. For
another four nonlinear states, 0-0-1.02-0, 0-1.01-1.5-0, 1.05-1.5-1.5-0, and 1.5-1.5-1.09-1.5,
the measured gains are 3.41 dBi, 2.77 dBi, 2.51 dBi, and 2.4 dBi, which are between the
gains of the two extreme cases. The corresponding radiation efficiencies of the nonlinear
states are 49%, 43.5%, 37.7%, and 36.4%, which are between the two extreme states of
54% (OFF state) and 36% (ON state). In terms of radiation patterns, as illustrated in
Figure 10a–f, all the states, including completed ON/OFF states and four nonlinear states,
demonstrate similar radiation patterns, and the measured radiation patterns agree well
with the simulated patterns.
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Figure 9. Measured gain and efficiency of the active antenna in two extreme states and four nonlinear
states with PIN diode A (MACOM MA4AGBLP912).
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In this part, based on the EM co-simulation, we implement experiments with PIN
diodes, which demonstrate nonlinear advantages over the linear case in eliminating reso-
nance blindness, and in realizing uniform and continuous ZOR tuning.

5. Discussion

In this section, several interesting items associated with the nonlinearity of PIN diodes
are discussed. First, we keep the same MTM antenna design but change it to employ
PIN diode B (MACOM MA4FCP300), to study the generality of this kind of nonlinear
property. As shown in Figure 11a, it demonstrates similar nonlinear properties: there exists
a nonlinear zone where the actuated voltages fall in the transition zone 0.6–0.7 V, and by
taking advantage of the nonlinear property, we can achieve similar nonlinear advantages
over the linear case in achieving uniform and continuous ZOR tuning without blindness
in the range 4.7 GHz to 5.3 GHz. Relative radiation patterns are quite similar to that of
PIN diode A, and gains and the radiation efficiency are illustrated in Figure 11b; gains and
radiation efficiency for the two extreme cases are 1.34 dBi and 3.46 dBi, and 38.41% (ON
state) and 51.4% (OFF state), respectively, while for other nonlinear states of 0-0-0.66-0,
0-0.69-1-0, 0.64-1-1-0, and 1-1-0.61-1, the relative values are on the same level but between
that of the completed ON and OFF states. That means, whether for PIN diode A or B, the
nonlinear property is not a special case and can exist similarly and generally in other kinds
of PIN diodes.
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Second, we study the stability of the nonlinear property, namely, how stable the PIN
diodes are while they work in the nonlinear zone. As shown in Figure 12a, we measure the
four nonlinear states of 1.01-0-1.5-0, 1.05-1.5-1.5-0, 1.11-1.5-1.5-0, and 1.5-1.5-1.09-1.5 when
using PIN diode A (MACOM MA4AGBLP912) and another four nonlinear states of 0-0-0.66-
0, 0.61-0-1-0, 1-1-0.64-0, and 1-1-0.61-1 when using PIN diode B (MACOM MA4FCP300,
MACOM, Lowell, MA, USA), four times on different dates. In the measurements for the
two different PIN diodes, the ZORs are kept the same with a slight variation, indicating
good stability of the nonlinear property. For example, for PIN diode A, state 1.01-0-1.5-
0 provides the same resonance at 5.18 GHz at different measurement times, and other
nonlinear states have variations less than 0.005 GH.

Third, voltage tolerance needs to be investigated because ZORs seem very sensitive
to voltage variation when PIN diodes operate in the nonlinear transition zone. Figure 13a
shows the supplying voltage has good tolerance and gets rid of the risk of excessive
sensitive voltage variations regardless of the type of PIN diode. For instance, considering
state 1.01-0-1.5-0 for PIN diode A, we can achieve a stable resonant frequency at 5.18 GHz
despite varying the supplying voltage from 1.005 V to 1.015 V, meaning that we have a
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voltage tolerance of 0.01V. In terms of PIN diode B with the state 0.61-0-1-0, as shown in
Figure 13b, similarly, we achieve a stable resonant frequency of 5.18 GHz despite varying
the supplying voltage from 0.605 V to 0.621 V, which indicates that we have a voltage
tolerance of 0.016 V.
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Finally, for the proposed active MTM antenna, we investigate the influence of the
active components, including inductance, MCU, and PIN diodes on radiation gains and the
efficiency. Looking at Figure 14a, several states for both active and passive cases are shown,
and it is seen that the gains with active components decrease by 1 or 2 dBi compared to
those without active components, while the radiation efficiency of the active case, as shown
in Figure 14b, is lower than that of the passive case but no more than 10%.

Employing active components, as compared in Table 1, indeed shows the nonlinear
advantages in eliminating resonance blindness over the passive case or the case only
applying the RF switches with only OFF/ON states. Meanwhile, this proposed active
MTM antenna requires actuated voltages lower than 1.5 V, which can be applied to 5G
narrow bandwidth Internet of Things (NB-IoT) with low power capacities.
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Table 1. Comparison of different types of tuning.

References Active Devices Number Tuning Style Tuning Stated Bias Voltage
(V)

Resonance
Blindness

[8] PIN diode 15 discrete 1.97 GHz and 2.37 GHz 0–0.7 yes

[10] PIN diode and
varactor diode 2 and 2 continuous 3.04 GHz to 5.89 GHz 0–30 no

[12] PIN diode 6 discrete 5.95 GHz and 7.2 GHz / yes
[14] Varactor diode 1 continuous 1.6 GHz to 2.23 GHz 2–20 no
[17] Varactor diode 2 continuous 1.94 GHz to 2.44 GHz 0–20 no

This work PIN diode 4 continuous 4.7 GHz to 5.3 GHz 0–1.5 no

6. Conclusions

In this paper, we study the nonlinear property of PIN diodes, fit it to an EM co-
simulation, and, particularly, apply it to an active MTM antenna to eliminate resonance
tuning blindness. We conclude that the nonlinear property indeed possesses the advantages
to help achieve smooth resonance tuning with low actuated voltages, and it can be generally
extended to other PIN diodes with good stability and voltage tolerance. The active MTM
antenna with uniform and smooth frequency tuning slices the frequency spectrum into
many narrow-band channels, which can be applied to 5G narrow bandwidth Internet
of Things (NB-IoT), which requires spectrum channels of narrow bandwidth and low
power capacities.
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