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Abstract: The emergence of biometric-based authentication using modern sensors on electronic
devices has led to an escalated use of face recognition technologies. While these technologies may
seem intriguing, they are accompanied by numerous implicit drawbacks. In this paper, we look into
the problem of face anti-spoofing (FAS) on a frame level in an attempt to ameliorate the risks of face-
spoofed attacks in biometric authentication processes. We employed a bi-directional feature pyramid
network (BiFPN) that is used for convolutional multi-scaled feature extraction on the EfficientDet
detection architecture, which is novel to the task of FAS. We further use these convolutional multi-
scaled features in order to perform deep pixel-wise supervision. For all of our experiments, we
performed evaluations across all major datasets and attained competitive results for the majority
of the cases. Additionally, we showed that introducing an auxiliary self-supervision branch tasked
with reconstructing the inputs in the frequency domain demonstrates an average classification error
rate (ACER) of 2.92% on Protocol IV of the OULU-NPU dataset, which is significantly better than
the currently available published works on pixel-wise face anti-spoofing. Moreover, following
the procedures of prior works, we performed inter-dataset testing, which further consolidated the
generalizability of the proposed models, as they showed optimum results across various sensors
without any fine-tuning procedures.

Keywords: liveness sensing; counter-spoofing detection; biometric sensors; biometric authentication;
face anti-spoof; Fourier spectra; neural networks; bidirectional feature pyramid networks

1. Introduction

The advent of popular face recognition technologies [1–3] in recent years has been
accompanied by a greater scope of their applications. The dominant usage of these applica-
tions is based on biometric authentication, which is commonly found as the face-unlocking
of smartphones or websites [4,5]. The extensive usage of this technology has exhibited
vulnerabilities and proneness to various forms of attacks, such as adversarial face attacks,
face manipulation attacks, and face-spoofing attacks [6,7]. Face-spoofing attacks are a
physical modality of presentation attacks (PAs), which include paper, video replay, 3D
mask, and makeup attacks. To elaborate, mere printouts of faces or video clips of faces
performing various actions would be sufficient to fool a face recognition model, as shown
in Figure 1. Hence, the need for face anti-spoofing technology has emerged in order to
make face recognition models resistant to PAs.

Earlier approaches to face anti-spoofing (FAS) included the usage of hand-crafted
features [8–12]; however, these models often failed to be generalized for images with the
slightest variance in environmental settings (light, orientation, etc.). Another variant of FAS
models requires users to continuously send feedbacks [13] to the system with specific cues,
such as eye blinking, head movements, smiling, etc. However, this approach is flawed, as
these cues can be easily reproduced with video replay attacks.
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Figure 1. Samples of bonafide and spoofed images from the OULU-NPU [14] dataset, which illumi-
nate the difficulty of visually discerning the two classes. The two images on the first row represent
the bonafide samples, and the second row represents two spoofed samples.

Recent approaches to FAS have made use of deep features that are often extracted from
a convolutional neural network (CNN) [15] in an attempt to overcome the earlier problems.
Furthermore, the usage of pixel-wise supervision over the complete convolutional feature
on the euclidean space, as well as the angular space [16,17], has shown competitive results
as well. The solution proposed by Yu et al. [18] built upon the idea of pixel-wise supervision
on multiple scales of a Resnet [19] backbone. However, though this idea used a multi-scaled
form of supervision, it did not leverage a feature pyramid network (FPN) [20], which can
be used as a feature extractor to produce a number of multi-scaled feature maps from
an input image, thus adding further contextual information to the prediction model and
making it semantically robust.

In this paper, we aim to fill this gap by using a multi-scaled feature extractor, the bi-
directional feature pyramid network (BiFPN)—primarily for the FAS problem—in an
effort to extract multi-scaled features while also coupled with the EfficientNet [21] feature
extractor. While prior works have shown the significance of texture-based features [22]
for FAS, we hypothesize that due to the working principle of BiFPN, we could potentially
extract features that would contain textural information that is imperative for this task. We
assume that the introduction of BiFPN embodies specific cues for spoofed features resulting
from receiving accurate responses when using similar samples of different sizes. This would
confirm the subsistence of our initial assumption. In addition to the prior motivation of
leveraging texture-based features, following [23], we also find that using Fourier-based
features is intuitive for FAS, as we observed a higher number of high-frequency components
for bonafide samples, but the opposite for attack samples.

We propose two variants of our FAS pipeline. Firstly, we show a baseline architecture
that performs pixel-wise supervision by leveraging the BiFPN. We further extend this idea
by combining an auxiliary branch that performs self-supervision on the frequency domain.
Using the ideas mentioned above, we performed evaluations on multiple benchmark
datasets and achieved competitive results for several protocols compared with other
pixel-wise classification papers [16,17]. To summarize, the contributions of this paper are
as follows:

• We propose a multi-scaled approach to face anti-spoofing, Bi-FAS, which uses a
bi-directional feature pyramid network.

• We find that among the five different pyramid features, the inclusion of two larger
pyramids containing high-level information demonstrates negligible improvements.
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• We extend our previous approach based on BiFPN by introducing a self-supervised
branch optimized on the frequency domain using a reconstruction loss. We refer to
this model as Bi-FAS-S throughout the rest of this paper.

The remainder of the paper is structured as follows. The following section outlines a
brief literature review of the past and present approaches used to combat face anti-spoofing.
Next, we give an overview of the datasets and the metrics in the Materials section. We then
discuss our methodology and explain our proposed architectures in the Methods section.
Next, we use the Experiments and Results section to describe and present all the aspects of
our experiments. In the Discussion section, we show an in-depth analysis of the results of
our experiments. Finally, we give our concluding remarks and describe our future ideas in
the closing section.

2. Related Works

This section outlines all of the literature relevant to this paper. We describe multiple
approaches to FAS, from those that leverage handcrafted features to the newer CNN-based
state-of-the-art (SOTA) models based on various forms of supervision. Although prior
literature shows that FAS relies heavily on handcrafted features, we also describe our
multi-scaled feature extractors that we use in this paper, as well as the literature relevant to
Fourier-based FAS.

2.1. Face Anti-Spoofing

FAS can be incorporated into two different categories. One requires a single frame,
and the other uses multiple frames containing temporal information for performing the
task. Classical approaches to face anti-spoofing include the usage of traditional algorithms,
such as Local Binary Pattern (LBP) [8,24], Histogram of Oriented Gradients (HOG) [9,24,25],
Difference of Gaussian (DoG) [26,27], and Gabor Wavelets [28]. These algorithms are used
to extract various features, which are passed on to a feature learner, possibly a support
vector machine (SVM) [29], for the classification task. While these algorithms tend to work
under a frame-level condition, there are several approaches where visual cues, such as eye
blinking [30,31] and dynamic texture [32], can be used to detect spoofing at a video level.
However, the caveat for these features is that they are susceptible to a lack of generalization,
as evidenced by their testing metrics, and they eventually make high volumes of data a
necessity for this task. Still, research on FAS has come a long way, and the CNN-based
approaches have turned out to be the current norm. The authors of the Central Difference
Convolutional Network (CDCN) paper [33] proposed a novel approach for frame-level
FAS based on central difference convolution (CDC). The CDC is claimed to be sensitive
to intricate patterns through depth, gradients, and intensity. The authors also showed an
improved version of their proposed model by performing the Neural Architecture Search
operation. The CDCN model has outperformed all of the mentioned approaches and
holds the current SOTA scores on all major benchmark datasets. Yu et al. [18] improved
upon the idea of pixel-wise supervision and proposed a novel pyramid-like model in
the form of the extraction of multi-scaled features from a deep backbone. They further
coupled this idea with the depth-based features from the CDCN paper to propose a second
approach. They reported a competitive mean average classification error rate (ACER) of
4.8 on Protocol IV of the OULU-NPU dataset. In the following sub-section, we discuss
CNN-based approaches that utilize a form of pixel-wise supervision for FAS.

2.2. Pixel-Wise Supervision for FAS

In the realm of FAS, the term pixel-wise supervision can be referred to as a model
focusing on a synthesized feature map that is a bi-product of a feature extractor [16]. This
method has led the FAS model in order to learn shared representations of various patch-
level cues that are significant for this task [16]. DeepPixBis [16] proposes an FAS framework
that aims to mitigate the need for temporal information by using a DenseNet [34] backbone
to extract deep features embedded in a 14 × 14 convolution map. This feature map is later
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used to perform a pixel-wise loss calculation. The flattened 14 × 14 map is further fed to
a fully connected layer sequenced with a sigmoid layer, which outputs a probability for
the spoof class. The A-DeepPixBis [17] paper was built upon the DeepPixBis idea, which
supervised based on two branches (one pixel-wise branch); however, they performed the
computations on the angular space by proposing a new angular binary cross-entropy loss
function, as shown in Equation (1).

LAM-BCE = − 1
N

N

∑
i=1

pi log(σ(cos(θi + m))) + (1− pi)log(1− σ(cos θi)) (1)

In Equation (1), pi refers to the ground truth, and θ, for a sample i, is a feature map
after applying convolution on the angular space over the 14× 14 feature extracted from the
DenseNet [34] feature extractor. The term m is an added margin to enforce the separation
of decision boundaries in the angular space. The A-DeepPixBis paper achieved competitive
scores on the hardest protocol of the OULU-NPU dataset [14].

2.3. Fourier-Spectra-Based FAS

Li et al. [23] proposed a high-frequency descriptor (HFD) that leveraged the idea
of Fourier transformation on a face. It was based on the hypothesis that the median of
HFDs for a sequence of images, if lower than a specific threshold, should be classified as
a spoofed sample. If not, it used the standard deviation of the energy values (frequency
dynamic descriptor) that were predefined over the sequence of images. The frequency
dynamic descriptor quantity was used to finally classify the image. We took inspiration
from this paper for our hypothesis with the use of a self-supervised branch based on the
Fourier spectra.

2.4. Multi-Scaled Feature Representation

The representation of an image projected into features of multiple scales has been a
trend in recent CNN-based object detectors [35,36]. These features are generally extracted
from a deep backbone network, which outputs the features from each of their consecutive
layers in a pyramid-like approach. The feature pyramid network [20] was proposed as
a top-down multi-scale feature extractor for extracting semantically rich features, which
are used in object detectors, such as Faster R-CNN [35]. This solves the fundamental
problem of recognizing images on multiple scales, thus enabling a detector to predict
minuscule objects as well as objects of significant size. The PANet [37] added a bottom-up
information flow to the original top-down pyramid approach of the FPN. NAS-FPN [38]
is one of the recently proposed feature pyramid networks. Although it is very effective,
this model comes with operations such as Neural Architecture Search, which requires very
high computational power and results in inconsistent architectures.

2.5. EfficientDet

EfficientDet [39] is a new family of efficient and scalable object detection modules that
were built using EfficientNets [21]. Tan et al. [39] incorporated a novel feature extractor
network, BiFPN, and EfficientNet to achieve SOTA performance on object detection tasks
while being up to 9 times smaller than current SOTA models.

A typical object detection pipeline consists of three parts: a backbone network that is
responsible for extracting features from the input image, an FPN [20] that takes features
from different layers of the backbone network, and a classification/box network for the
final output. EfficientDet [39] uses a BiFPN to fuse features coming from a different level
of the backbone network and a variant of EfficientNet as the backbone.
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In their paper, the authors of [39] showed that previously used backbone networks,
such as ResNets [19], ResNexts [40], DenseNets [34], or MobileNets [41], are generally not
powerful enough or not efficient enough. For instance, they compared EfficientNet-B3
with ResNet-50 and showed that it is more accurate and almost 20% more efficient than
ResNet-50. They also showed one flaw of FPN: that it works in a top-down fashion, and
is therefore limited by one-way information flow. Although there is an alternative in the
form of PANet [37], which considers both top-down and bottom-up feature fusion, it adds
more cost to the network.

In order to address this issue, the authors of [39] proposed a novel FPN network
called BiFPN, which fuses multi-level features from the backbone in both a top-down and
bottom-up manner. To further reduce the computation, the authors of [39] used separable
convolutions instead of plain convolutions. With these optimizations in place, the Efficient-
Det model further improved the accuracy by 4% while increasing the efficiency by up to
50%. For the two architectures proposed in this paper, we utilized the aforementioned
BiFPN module as part of the multi-scaled feature extractor of the input sample.

Our work in this paper heavily leverages the idea of using deep pixel-wise features
from the DeepPixBis and A-DeepPixBis papers, for which we use the EfficientNet model
as the feature extractor and BiFPN for multi-scaled features; furthermore, we take in-
fluence from the features based on Fourier spectra—as mentioned earlier—to design a
self-supervised auxiliary branch. We discuss the techniques elaborately in the Methodol-
ogy section.

3. Materials

This section elaborates on the materials we used to perform all of the experiments. We
begin with the descriptions of the OULU-NPU [14] and the Replay-Mobile [6] datasets. We
also provide details about the metrics used in the evaluation processes.

3.1. Datasets

For all of the experiments conducted in this paper, we used two popular benchmark
datasets for FAS and provide a brief description of them below.

OULU-NPU: This dataset [14] consists of 55 subjects; the videos were recorded with
six different phone devices in three distinct environments in an attempt to replicate a
real-world scenario. The attack samples are comprised of display attacks and print attacks,
each with two variants. The total of 1980 bonafide videos and 3960 attack videos make this
one of the most diverse and challenging datasets for this task. For better evaluation of the
generalization of the FAS model, the creators of this dataset provided us with four different
protocols, each serving a specific criterion. An overview of all the protocol configurations
can be found in Table 1, and a description of the four protocols is as follows:

1. Protocol I evaluates the model’s invariance to different environments; the environ-
ments of the training and validation sets are different from the ones in the testing set.

2. Protocol II tests if the model is robust to various devices, with dissimilar devices in
the training and the testing partitions.

3. Protocol III uses tests that consist of phones with various camera resolutions that are
different from the resolutions present in the training and testing sets.

4. Protocol IV is a composition of all preceding constraints, but also with a smaller
training set. This is undoubtedly the most challenging protocol [16] among the four.

Replay-Mobile: The Replay-Mobile dataset [6] consists of 1200 videos with 40 subjects.
Two different illumination conditions are used in this dataset, ranging from well-lit to
dimmed samples. Each subject was recorded in five background conditions with two
different recording devices, an iPad Mini 2 and an LG-G4 phone. The attack samples are of
two types—mattescreen, where a printed sample is presented on a high-resolution phone,
and print attacks, where the digital photos are presented on an A4-sized paper. We used
the grandtest protocol of the dataset to perform the global performance evaluation. This
protocol uses 1040 videos with a train, dev, and test split with a 3:4:3 ratio.



Sensors 2021, 21, 2799 6 of 22

Table 1. OULU-NPU datasets [14,17].

Protocol Subset Session Phones User # Attacks Created Using # Real Videos # Attack Videos # All Videos

I
Train Session 1,2 6 Phones 1–20 Printer 1,2; Display 1,2 240 960 1200
Dev Session 1,2 6 Phones 21–35 Printer 1,2; Display 1,2 180 720 900
Test Session 3 6 Phones 36–55 Printer 1,2; Display 1,2 120 480 600

II
Train Session 1,2.3 6 Phones 1–20 Printer 1; Display 1 360 720 1080
Dev Session 1,2.3 6 Phones 21–35 Printer 1; Display 1 270 540 810
Test Session 1,2.3 6 Phones 36–55 Printer 2; Display 2 360 720 1080

III
Train Session 1,2.3 5 Phones 1–20 Printer 1,2; Display 1,2 300 1200 1500
Dev Session 1,2.3 5 Phones 21–35 Printer 1,2; Display 1,2 225 900 1125
Test Session 1,2.3 1 Phones 36–55 Printer 1,2; Display 1,2 60 240 300

IV
Train Session 1,2 5 Phones 1–20 Printer 1; Display 1 200 400 600
Dev Session 1,2 5 Phones 21–35 Printer 1; Display 1 150 300 450
Test Session 3 1 Phones 36–55 Printer 2; Display 2 20 40 60

3.2. Metrics

For the evaluation of our models, we used the ISO/IEC 30107-3 [42] certified metrics,
which are the current standard for FAS and are used by popular FAS papers [16,33]. We
used the attack presentation classification error rate (APCER) to measure the performance
of the models on presentation attack instances (PAIs) and used the bonafide presentation
classification error rate (BPCER) to measure the performance of the model on the bonafide
images. We further calculated the average classification error rate (ACER), which is the
mean of the APCER and BPCER. Moreover, for the experiments in this paper, APCER refers
to the false-negative rate, where the negative class denotes an attack sample, as shown in
Equation (2), where FN is the number of misclassified attack samples and TP is the number
of correctly classified bonafide samples. The BPCER refers to the false-positive rate, where
the positive class denotes a bonafide sample, as shown in Equation (3), where FP is the
number of misclassified bonafide samples and TN is the number of correctly classified
attack samples. The mathematical definition of the ACER is shown in Equation (4). We
also used the generalized accuracy metric to prevent the model from overfitting.

APCER =
FN

FN + TP
(2)

BPCER =
FP

FP + TN
(3)

ACER =
APCER + BPCER

2
(4)

The inter-dataset results are reported by using the half-total error rate (HTER), where
the HTER is the average of the false rejection rate (FRR) and the false acceptance rate
(FAR), as shown in Equation (5). We also used the equal error rate (ERR) as per the
implementation described by [43] to evaluate the Replay-Mobile dataset; as described
by [43], in theory, the EER is defined as the point of intersection between the FAR and FRR.
However, in practice, while performing experiments, it may not always be possible to find
the “perfect” point of intersection due to numerical inconsistencies. Thus, we computed the
absolute difference between the FRR and FAR to find the index, m, that denotes the closest
pair of points between FAR and FRR (for multiple thresholds), and we further calculated
the mean of the FRR and FAR at index m to find the EER. The calculation process is shown
in Equation (6).

HTER =
FRR + FAR

2
(5)

m = argmin
i

(|FRRi − FARi|); EER =
FRRm + FARm

2
(6)
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4. Methods

In this section, we discuss our proposed approach for the FAS task. Firstly, we discuss
the overall pipeline, which elaborates on the preprocessing steps used to prepare the input
samples for the FAS detection pipeline. Next, we elaborate on the two variants of our
BiFPN model, which is designed for the classification of a spoofed or bonafide image.

4.1. Pipeline

Our FAS pipeline, as shown in Figure 2, shows a high-level visualization of the overall
process. From the figure, we can observe that our FAS pipeline is a composition of a face
detection model that is used to extract the face crop of the video frame, which is a standard
pre-processing step [14,16] for any architecture performing a downstream task relevant
to facial information. Additionally, this process restricts the model from learning any
background artifacts that may exist in the image. Therefore, for extraction, we use the
RetinaFace [44] detection framework for the face crop extraction task. The red–green–blue
(RGB) face crops are further resized to a resolution of 512 × 512, as we use a pre-trained
feature extractor, EfficientNet [21], trained on this resolution over the ImageNet [45] dataset.
This image is then passed on to our FAS model, which gives a probability score of the
input being a real image. However, due to observations and extended experimentation, we
found that rather than extracting a tight bounding box, if we selected a squared bounding
box, our models showed noteworthy improvements during testing.

Figure 2. The overview of the proposed framework.

To further elaborate, any cropping that we perform on the full-frame of an image
needs to be reshaped to 512 × 512, as per our model specifications. Hence, we used two
forms of cropped faces for our experiments. Initially, we used the face crop bounding
boxes returned by RetinaFace [44], as shown on Figure 3a, and further transformed them to
512 × 512, as shown in Figure 3b, for the model. However, we found that this transfor-
mation of resizing the image tended to be unnatural, as it modified the aspect ratio of
the tightly cropped image and possibly aggravated textural features by introducing new
artifacts in the image. On the other hand, if we used a squared bounding box of the face
from the face detector, as shown in Figure 3c, and transformed it into 512 × 512, as shown
in Figure 3d, we would not encounter any major changes in the aspect ratio of the image,
thus potentially preserving any significant features of the image.
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(a) A tightly cropped image (b) Image (a) resized to 512 × 512

(c) A square-cropped image (d) Image (c) resized to 512 × 512

Figure 3. Representations of images using the two methods of cropping and their respective trans-
formed image after resizing for model input. Image (a) demonstrates a tightly cropped image using
the bounding boxes of RetinaFace [44], and (b) shows a sample where the bounding boxes of (a) were
expanded to make a squared shape.

4.2. Feature Extractor—EfficientNet

EfficientNet [21] proposes a family of models that are efficient and accurate. While
conventional architectures choose arbitrary scale factors for width, depth, and resolution, it
proposes a compound coefficient to scale all three factors in a structured manner. With their
uniform scaling method for each dimension, EfficientNet outperforms the SOTA models
while maintaining up to 10 × efficiency for ImageNet [45].

In their study, they found that though scaling different dimensions of a model did
improve performance with respect to the baseline counterpart (e.g., ResNet-18 and ResNet-
100 [19]), scaling all of the dimensions in a balanced manner against available resources
would provide the best overall performance. The EfficientNet model performed a grid
search to determine the relationship between different scaling factors for all dimensions of
the baseline network and the enforced resource constraint (e.g., 3 × more floating point
operations per second). After that, they scaled the baseline network with the determined
coefficient to get the targeted model.

The EfficientNet paper [21] shows that this scaling factor can be transferred to other
network architectures as well. In their study, they observed a 1.4% ImageNet [45] accuracy
improvement for the MobileNet model [41] and a 0.7% ImageNet accuracy improvement
for the ResNet model [19]. The compound scaling method uses a compound coefficient
φ, which uniformly scales the network’s width, depth, and resolution in a structured way.
Following Equation (7), we show how this coefficient is used to scale all the dimensions.

depth : d = αφ

width : w = βφ

resolution : r = γφ

(7)

The α, β, γ in Equation (7) are constants that can be determined by a grid search. In
addition, α ≥ 1, β ≥ 1, and γ ≥ 1.

4.3. Baseline Model

In this paper, we propose two disparate approaches to FAS, but with similar assump-
tions. We hypothesized that leveraging weighted multi-scaled features and the aggregation
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of those features at different resolutions contribute to the intricate information required
for this task. Due to the consistent results using similar images with different resolutions,
we hypothesized that the features of the BiFPN contain texture-based cues, which may be
essential for FAS. We first discuss our baseline BiFPN model (Bi-FAS), which is presented
in Figure 4. We used the EfficientNet [21] architecture as our backbone feature extractor,
particularly the b0 variant, which was the smallest model in terms of the number of train-
able parameters. We mainly employed this backbone to extract features that would be
uniformly scaled to multiple depths, widths, or resolutions for better fine-grained patterns.
As depicted in Figure 4, we passed an RGB image to our EfficientNet feature extractor,
which computed the features in multiple levels through convolutional layers. Outputs
from the different levels of the backbone were used as an input to the BiFPN for the feature
fusion process [39]. From the backbone, we used outputs from levels 3, 4, and 5 consisting
of the shapes (40 × 64 × 64), (112 × 32 × 32), and (20 × 16 × 16), respectively. Throughout
all of our experiments, we initialized the backbone with the pre-trained ImageNet [45]
weights to restrict the model from making random predictions during the initial training
phase. Additionally, during testing, our experiments showed that initializing the models
with random weights led to inferior performance. We utilized the outputs of the feature
extractor to feed it to the BiFPN, a weighted multi-scaled feature extractor, as shown
in Equation (8).

Pn+1 = Pn + Θ(Pn) : ∀n (n ∈ Υ) (8)

Figure 4. The architecture of our baseline bi-directional feature pyramid network (BiFPN) model, Bi-FAS.

The BiFPN outputs the features on five different scales ranging from P1 to P5, as
presented in Table 2, where Θ refers to the convolutional layer of the nth pyramid and
set Υ denotes the indexes of the pyramids used in the BiFPN model. However, our
initial experiments demonstrated no utility of including the pyramids P1 and P2, which
are two high-level feature pyramids. Thus, we left out pyramids P1 and P2 for all further
experiments conducted in this paper. We computed the pixel-wise probabilities by applying
the sigmoid operator, computed the mean probability score from all three pyramids using
Equation (9), and obtained pi ε R. We used the three probability scores, pi, to calculate the
final probability score, z, in Equation (10), similarly to the first branch in the DeepPix and
A-DeepPix papers [16,17].

Table 2. Resolutions of the five convolutional feature pyramids.

Pyramid Resolution

P1 64 × 64 × 64
P2 64 × 32 × 32
P3 64 × 16 × 16
P4 64 × 8 × 8
P5 64 × 4 × 4

pi =
1
T

64

∑
w=1

T

∑
x=1

T

∑
y=1

1
1 + e−Pw,x,y

: ∀i (i ∈ {3, 4, 5}) ; T = {16, 8, 4} (9)
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z =
1
3

5

∑
i=3

pi (10)

This probability score determines the “realness” classification of this task. Subse-
quently, we optimized the model based on the probability scores using the binary cross-
entropy loss function during the training phase.

l = − 1
N

N

∑
i=1

ti . log(si) + (1− ti) . log(1− si) (11)

For the binary cross-entropy loss defined on Equation (11), N denotes the total number
of samples in the batch, t refers to the ground truth, and s refers to the z value of the
ith sample.

4.4. Self Supervision–Fourier Branch

We further hypothesized that, particularly in the problem of FAS, unlike a bonafide
sample, the 2D Fourier spectra of an attack sample would incorporate a lower number of
high-frequency components, as shown in Figure 5. The paper proposed by [23] developed
on the hypothesis that the number of high-frequency components of an attack sample must
be very small. This is particularly true because for the sensor, when recording subjects
in motion, the poses and expressions by those subjects become invariant or smoothened
after being captured. Consequently, we leveraged the properties of 2D Fourier spectra by
adding an auxiliary branch in our baseline BiFPN-based spoof detection model (Bi-FAS-S).
Following the claims of [23], we further assumed that leveraging Fourier spectra would
essentially inherit texture-based information from the input sample, which is crucial to the
FAS task.

(a) A bonafide sample (b) Fourier spectra of (a)

(c) An attack sample (d) Fourier spectra of (c)

Figure 5. Visualizations of the 2D Fourier spectra for the attack and bonafide classes. Figure (a)
represents a bonafide sample and (b) illustrates its Fourier spectra; Figure (c) portrays an attack
sample captured through a video replay from a monitor screen, and (d) represents its Fourier spectra.

F(x, y) =
N−1

∑
i=0

M−1

∑
j=0

f (i, j) e−ι(ωx i + ωy j) (12)

ωxi =
2πx

N
; ωyi =

2πy
M

(13)
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Firstly, we used the discrete Fourier transform (DFT) defined in Equation (12) to
compute a sampled Fourier transform of the 2D input image. Although sampled, the fre-
quency components embodied the bare minimum of components to distinguish among
a variety of images. In Equation (12), f (i, j) represents the image in the spatial domain,
and the basis functions ωxi and ωy j are defined in Equation (13). As the Fourier coefficients
were relatively large, we used the logarithmic operator defined in Equation (14) for the
zero-frequency component to shift towards the center of the spectrum.

F̂(x, y) = log(abs(ϕ(F(x, y))) + 1) : ∀x∀y (14)

The F̂(x, y) represents the center-shifted Fourier coefficients of the image depicted on
the frequency domain, where ϕ is the shift operator. From Figure 5, we can compare the
spectrum distribution of a spoofed sample and a bonafide sample to better understand
their distinctions.

Upon close inspection of Figure 5, we can observe a clear distinction between the
Fourier spectra of the bonafide sample and the attack sample. Figure 5b is visually brighter
than Figure 5d, which aligns with our hypotheses that the Fourier spectra of a bonafide
sample should comprise a higher number of high-frequency components than the Fourier
spectra of an attack sample, which should lead to a higher standard deviation in the
bonafide class.

We modified the Bi-FAS model devised in the previous section to add another branch,
with the objective of training the model with semantic information derived from the
frequency domain of the image alongside textural cues generated from the BiFPN pyramids.
We employed a generator based on a convolutional neural network Λ, which reconstructed
the Fourier spectra of the input sample S and performed batch normalization [46] (BN), as
shown in Equation (15), and further optimized the network in a self-supervised approach
by using the loss functions defined in Equations (16) and (17).

Gi = ReLU(BN(Λ(S))) : ∀i (i ∈ {3, 4, 5}) (15)

With regards to the architecture presented in Figure 6, we generated the 2D Fourier
spectra of the 512 × 512 dimensional gray-scaled input sample as our ground truth. Thus,
we used the convolutional generator in Figure 6 for the output pyramids, P3, P4, and
P5, each reconstructed for the ground-truth Fourier spectra S, presented as G3, G4, and
G5, assuming that they would contain multi-scaled information with textural cues in the
frequency domain, as previously demonstrated by [23]. During training, the goal of the
generator was to provide texture-based information in the form of the Fourier spectra as
an added cue for supervision. Due to this, the effectiveness of this branch was limited only
during the training phase, and the generator was made inactive during inference.

RL =
1

3 ∗ N
{

N

∑
i=1

(S− G3)
2 + (S− G4)

2 + (S− G5)
2} (16)

l = {− 1
N

N

∑
i=1

ti . log(si) + (1− ti) . log(1− si)}+ RL (17)

We used a reconstruction loss (RL), as defined in Equation (16), to optimize the
reconstructions of the Fourier spectra generated from the three pyramids. The RL is a mean
squared error loss function of the three generated Fourier spectra and uses the mean of the
three terms on the binary cross-entropy loss defined in Equation (17).

Finally, we trained each of our models for two epochs, as the prior study showed
that spoof detection models suffer due to over-parameterization, which eventually leads
to overfitting [18], resulting in increased error rates and reducing the generalizability of
the models; from our experiments, we also found that proceeding with further training
resulted in deteriorated ACER scores.
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Figure 6. Extension of our baseline BiFPN architecture with a convolutional generator and reconstruction loss terms for the
BiFPN-based spoof detection model (Bi-FAS-S).

5. Experiments and Results

In this section, we outline the experimental setup used to conduct our experiments;
then, we describe the results of the two proposed methods on the OULU-NPU and Replay-
Mobile datasets. In accordance with previous works [16,17,33], we present the results of the
intra-dataset evaluation and subsequently compare the results of the inter-dataset testing.
We compare our models primarily with the currently published pixel-wise architectures
and also compare with other approaches based on popular algorithms.

5.1. Experimental Setup

First of all, we used the RetinaFace [44] face detection model to extract the face
crop from the images. Due to the improved results, we extended the bounding boxes of
RetinaFace to make the face crops square in shape. During training, we applied horizontal
flip transformation randomly to 50% of the samples. We also applied color jitter randomly
to augment the samples in the training set. We initialized our EfficientNet backbone feature
extractor with the pre-trained ImageNet weights, and all other weights in the network were
initialized using the Xavier Initialization [47]. For optimization, we employed the Adam
optimizer, used a learning rate of 1× e−4, and set the weight decay to 1× e−5. We set a
mini-batch size of 64 on eight Tesla K80 GPUs and selected the model based on the best
ACER metric on the validation set. For both of our proposed architectures, we followed
the same training, testing, and validation strategies as per the protocols specified in the
dataset papers [6,14].

5.2. Intra-Dataset Testing

In this section, we present the results of our evaluation on the respective testing sets of
the OULU-NPU and the Replay-Mobile datasets. We carefully followed the model training
procedures of [6,14,16,17] for all the results that we present in this section and compare
these results primarily with the pixel-wise supervised approaches [16,17]. Furthermore,
during intra-dataset testing, for each protocol of the OULU-NPU dataset and the grandtest
protocol of the Replay-Mobile dataset, we trained independent models for each of our
two proposed architectures. Table 3 gives a comparison of the results of the two models
on the OULU-NPU dataset. Other than Protocol I, on all other protocols, we found that
the pyramid-based approach significantly outperformed the prior pixel-wise techniques.
From Table 3, we can further observe that the addition of a self-supervised auxiliary branch
that reconstructed the pyramid features for the original image in the frequency domain
provided salient information and even outperformed the base model.
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Table 3. Metrics of our proposed models compared with other algorithms on OULU-NPU [14] for
intra-dataset testing.

Protocol Model APCER (%) BPCER (%) ACER (%)

CPqD [48] 2.9 10.8 6.9
GRADIANT [48] 1.3 12.5 6.9

FAS-BAS [49] 1.6 1.6 1.6
IQM-SVM [50] 19.17 30.83 25.0

1 LBP-SVM [16] 12.92 51.67 32.29
DeepPixBiS [16] 0.83 0.0 0.42

A-DeepPixBis [17] 1.19 0.31 0.75
Bi-FAS (ours) 2.92 3.33 3.12

Bi-FAS-S (ours) 3.13 0.83 1.97

MixedFASNet [48] 9.7 2.5 6.1
FAS-BAS [49] 2.7 2.7 2.7

GRADIANT [48] 3.1 1.9 2.5
IQM-SVM [50] 12.5 16.94 14.72

2 LBP-SVM [16] 30 20.28 25.14
DeepPixBiS [16] 11.39 0.56 5.97

A-DeepPixBis [17] 4.35 1.29 2.82
Bi-FAS (ours) 2.36 1.11 1.73

Bi-FAS-S (ours) 1.67 1.11 1.39

MixedFASNet [48] 5.3± 6.7 7.8± 5.5 6.5± 4.6
GRADIANT [48] 2.6± 3.9 5.0± 5.3 3.8± 2.4

FAS-BAS [49] 2.7± 1.3 3.1± 1.7 2.9± 1.5
IQM-SVM [50] 21.94± 9.99 21.95± 16.79 21.95± 8.09

3 LBP-SVM [16] 28.5± 23.05 23.33± 17.98 25.92± 11.25
DeepPixBiS [16] 11.67± 19.57 10.56± 14.06 11.11± 9.4

A-DeepPixBis [17] 2.78± 3.47 11.16± 16.45 6.97± 7.57
Bi-FAS (ours) 2.92± 2.30 1.11± 1.72 2.01± 1.70

Bi-FAS-S (ours) 0.69 ± 0.68 0.28 ± 0.68 0.49 ± 0.63

MassyHNU [48] 35.8± 35.3 8.3± 4.1 22.1± 17.6
GRADIANT [48] 5.0± 4.5 15.0± 7.1 10.0± 5.0

FAS-BAS [49] 9.3± 5.6 10.4± 6.0 9.5± 6.0
IQM-SVM [50] 34.17± 25.89 39.17± 23.35 36.67± 12.13

4 LBP-SVM [16] 41.67± 27.03 55.0± 21.21 48.33± 6.07
DeepPixBiS [16] 36.67± 29.67 13.33± 16.75 25.0± 12.

A-DeepPixBis [17] 3.86 ± 4.04 6.56± 7.88 5.22± 2.96
Bi-FAS (ours) 8.75± 8.12 5.00± 6.32 6.88± 2.82

Bi-FAS-S (ours) 2.50 ± 3.16 3.33 ± 4.08 2.92 ± 3.41

From Table 3, although we obtained an ACER of 0.49 on Protocol III, which is, by itself,
extremely competitive, as the hardest protocol of the OULU-NPU dataset, we particularly
took note of Protocol IV, on which we obtained a mean ACER of 2.92, which is the “lowest”
in the currently available published research using pixel-wise supervision and 58% lower
than our Bi-FAS approach.

Moreover, the ACER of our Bi-FAS-S model on Protocol IV is very similar to the ACER
score of the NAS-FAS [51] model on the same testing set. However, the NAS-FAS model ac-
complished this task using a Neural Architecture Search, which tends to be computationally
expensive, hence accumulating difficulty in deployment in low-powered devices.

From Table 4, we also find competitive results on the Replay-Mobile grandtest protocol,
which are similar to the metrics achieved by other pixel-wise approaches, achieving an
HTER of 0. Next, we used the Replay-Mobile grandtest protocol to perform the inter-
dataset evaluations, as shown in the following section in Table 5.
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Table 4. Performance comparison of our proposed approach with other popular methodologies on
the Replay-Mobile grandtest protocol [6].

Model EER (%) HTER (%)

IQM-SVM [50] 1.2 3.9
LBP-SVM [16] 6.2 12.1

DeepPixBiS [16] 0.0 0.0
A-DeepPixBis(binary output) [17] 0.0 0.0
A-DeepPixBis(feature map) [17] 0.0 0.0

Bi-FAS (ours) 0.0 0.0
Bi-FAS-S (ours) 0.0 0.0

Table 5. Inter-dataset comparison of our proposed models on Protocol I of the OULU-NPU dataset and the Replay-Mobile
grandtest protocol represented using half-total error rate (HTER) values in percentages (%).

Trained on OULU Trained on Replay-Mobile

Model Tested on OULU Tested on Replay-Mobile Tested on OULU Tested on Replay-Mobile

IQM-SVM [50] 24.6 31.6 3.9 42.3
LBP-SVM [16] 32.2 35.0 12.1 43.6

DeepPixBiS [16] 0.4 12.4 22.7 0.0
A-DeepPixBis [17] 0.7 9.35 25.57 0.0

Bi-FAS (ours) 3.12 18.91 18.33 0.0
Bi-FAS-S (ours) 1.97 11.97 21.24 0.0

5.3. Inter-Dataset Testing

In order to assess the generalizability of our models, we performed an inter-dataset
evaluation over the combination of Protocol I of the OULU-NPU dataset with the grandtest
protocol of the Replay-Mobile dataset. To elaborate, we conducted training on Protocol I
of the OULU-NPU dataset and tested it on the grandtest protocol of the Replay-Mobile
dataset, and vice-versa, as done in previous works [16–18,33]. For the OULU-NPU inter-
dataset evaluation, we particularly chose Protocol I due to the size of the dataset and
because this protocol has been used by most papers [16,17,33] for this evaluation task.

To this end, as seen in Table 5, we can see that our Bi-FAS and Bi-FAS-S models
performed slightly better than the DeepPixBis and the A-DeepPixBis models when they
were trained on Replay-Mobile and tested on OULU-NPU. However, when trained on
Protocol I of OULU-NPU, we also found that the performance of the Bi-FAS model was
inferior to those of the DeepPixBiS and A-DeepPixBis models, and the Bi-FAS-S model
outperformed the DeepPixBis model. The Bi-FAS-S model performed better when trained
on OULU-NPU (Protocol I) and tested on Replay-Mobile, mainly due to the presence
of a wide variation of data present in the protocol, which further reinforces our claim
of generalizability.

5.4. Result Analysis

Here, we provide an additional analysis of the results presented earlier in
Tables 3–5. We first investigated cases where our Bi-FAS-S improved when compared
with our baseline Bi-FAS model. We also analyzed some incorrect samples produced by
the better-performing Bi-FAS-S model. Next, we discuss samples comprised of bonafide
and attack samples and look into the differences in the pyramids and generated Fourier
spectra of the Bi-FAS-S model, thus illuminating clear differences between the two classes.

In order to perform a qualitative analysis of the two Bi-FAS and Bi-FAS-S models, we
took the logits of the three pyramids into account. For this analysis, we picked the largest
pyramid P3 from the two models and detected the samples on which the Bi-FAS-S operated
correctly, but the Bi-FAS model was incorrect.
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To perform the analysis shown in Figure 7, we started by determining all of the
incorrect samples generated by the Bi-FAS model on Protocol I of the OULU-NPU dataset.
We passed these incorrect samples over to our better-performing Bi-FAS-S model and found
that it generated correct outputs on all of the samples provided. We then used the t-SNE
algorithm [52] to make lower-dimensional points of the feature in P3 of these samples,
and they are presented in Figure 7a,b. Essentially, we used the high-dimensional feature
of P3, reduced it to a two-dimensional point [52], and plotted this on a two-dimensional
plane, as shown in Figure 7, where the two axes represent the y and x coordinates of the
low-dimensional P3 pyramid. In Figure 7a, we can observe an intersection of the samples;
however, in Figure 7b, we can notice a clear decision boundary between the two classes,
which effectively leads to the premise that the Bi-FAS-S model performs better than its
preceding form.

(a) Incorrect samples from the Bi-FAS model
(b) The Bi-FAS-S model generated correct out-
puts for the samples in (a)

Figure 7. Visualizations of the P3 outputs of the incorrect samples from the Bi-FAS model and
indications that they were corrected by the Bi-FAS-S model on Protocol I of OULU-NPU [14].

Protocol IV of the OULU-NPU dataset is by far the most challenging testing set among
all of the experiments conducted in this paper. For this, we believe that it is appropriate to
provide an analysis based on this partition. From Table 3, we can observe that the Bi-FAS-S
model has a higher BPCER score than APCER, meaning that the model fails to classify
bonafide samples more. The pattern shown in Figure 8 could be deduced from multiple
incorrect bonafide samples when we leveraged GRAD-CAM [53] to visualize and examine
the activations on the last convolutional layer of the P3 pyramid. From Figure 8, we can see
that the model had a higher activation region around the mouth, which points towards the
claim that these regions were subject to the high BPCER score.

We believe that these specific cases could be resolved by employing a problem-specific
augmentation methodology. However, in order to keep the experiments consistent, we
opted not to include any additional image augmentations, as this could affect the consis-
tency as well as the generalizability of the models.

Next, we inspected the patterns produced by the Bi-FAS-S model when tested on
Protocol IV of the OULU-NPU dataset. We picked two samples from the bonafide and
attack classes to first generate three heatmaps using the three pyramids, as well as to
show the Fourier spectra generated using the convolutional Fourier spectrum generator, as
shown in Figure 6.
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Figure 8. GRAD-CAM [53] visualizations of the last pyramid layer of the Bi-FAS-S model on the incorrect bonafide samples.

Observing Figure 9, we generated heatmaps from the three pyramids of the Bi-FAS-S
model, where each pixel refers to a probability score, as we used the pixel-wise approach
with this model. A darker color on the heatmaps refers to the degree of the realness of the
sample, whereas a lighter color refers to an inclination towards the attack sample. It can be
clearly noticed that while P3 and P4 function ideally for both of the classes, P5 was a bit
unstable, as it consisted of multiple pixels that seemed to lean towards the spoof class.

In the right module in Figure 9, we present three 80 × 80 Fourier spectra generated by
the convolutional generator. We found a clear distinction between the bonafide samples and
the attack samples. However, we found that in the case of the bonafide samples, the model
generated visible spectra, but generated solid or “almost” solid spectra, which potentially
corroborates our hypothesis that the Fourier spectrum for a bonafide sample should contain
a higher number of high-frequency components and higher standard deviations, where, in
contrast, an attack sample would hold the opposite.
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Figure 9. Heatmaps and Fourier spectra generated using three pyramids of the Bi-FAS-S model on four samples from the
OULU-NPU [14] dataset.

6. Discussion

In this section, we look into the positives as well as the negatives of our proposed
architectures. Next, we compare the architectural differences of our Bi-FAS and the Bi-FAS-
S models with the popular pixel-wise models for FAS. We finally discuss the significance of
using a face detector and further elaborate on some challenges posed by the datasets we
used and how they affected the inferences of our FAS models.

Firstly, we describe the differences in the architecture of our proposed Bi-FAS and Bi-
FAS-S models with the popular pixel-wise models, namely, A-DeepPix and DeepPix [16,17].
Both the DeepPix and A-DeepPix models use the DenseNet [34] backbone to retrieve
a feature map of size 14 × 14 for pixel-wise supervision. In contrast, in our approach,
we use the EfficientNet [21] backbone, as it integrates readily with the BiFPN module.
The main difference between the DeepPix and the A-DeepPix models is the introduction
of an angular constraint on the conventional binary cross-entropy loss function, which
is used in both the pixel-wise supervision branch as well as the classification branch.
However, in this paper, we used the binary cross-entropy loss function, similarly to the
DeepPix paper, but we applied it over the pixels of the three pyramids rather than using a
14 × 14 feature map. In addition to this, we also added an auxiliary supervision branch
that optimizes the model based on its capability of reconstructing the Fourier features of
the input sample. This added modality of supervision was also not investigated in the
compared pixel-wise papers.
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One of the significant positives that we found through our proposed models was the
achievement of extremely competitive scores on Protocols III and IV of the OULU-NPU [14]
dataset. This is important because Protocol IV is the most difficult testing partition of this
dataset. Next, to demonstrate further generalizability, we achieved outstanding scores
while conducting inter-dataset testing on the grandtest protocol of the Replay-Mobile
dataset [6] and one of our self-acquired datasets (Appendix A). For these inter-dataset tests,
the Bi-FAS and the Bi-FAS-S architectures were trained on Protocol I of the OULU-NPU
dataset, as done by [16,17]. Additionally, in the Bi-FAS-S model, we used the features of
the Fourier spectra of the image as an added form of supervision during training. While
using depth-based features for additional supervision [33] may seem to be the preferable
choice, generating Fourier features, as done in this paper, is less computationally expensive
than generating depth features. This would essentially result in faster computation during
the training phase.

In this paper, we used the RetinaFace [44] face detector for face localization and crop-
ping. It can be argued that leveraging this component would increase the computational
complexity of the pipeline, whereas an end-to-end approach could have led to further
optimization and possibly an improvement in performance. However, an end-to-end
approach would require a large quantity of data for the bonafide and attack classes, with
a significant variation in the scenarios and background conditions; the amount of data
publicly available for FAS is nowhere near what would be needed. On the other hand,
using a pre-trained detector to locate faces means that the need for variability in scenarios is
eliminated as background information is discarded. The use of a pre-trained face detector,
however, makes the task simpler to handle, but carries all the associated issues. Next, we
show examples that underline these issues more clearly to show how the usage of our face
detector affects our FAS pipeline.

Dataset Issues

As previously noted, we used a face detector to extract the faces from a full-framed
image. Due to this dependency, one such shortcoming of this model arises, which essen-
tially leads to the conclusion that our proposed models would operate optimally when
using a cropped frontal face.

Considering the samples shown in Figure 10, we found that on multiple occasions,
the face detection pipeline would fail to localize the face due to the samples having either
motion blurriness or merely not containing a visible face. If we rejected the samples where
RetinaFace fails to find a face from the frame, it would be sufficient to make a robust and
potentially deployable FAS model.

Figure 10. Samples indicating cases where the face detector failed to extract the face crops.

7. Conclusions

In this paper, we looked into the problem of face anti-spoofing, which is commonly
used with face recognition technologies. We employed a bi-directional feature pyramidal
network to extract features of multiple scales. We initially found that the multi-scaled
features from the BiFPN potentially consisted of texture-based cues, one of the dominant
attributes for a spoofed image. Next, we hypothesized that, upon transforming an image
into the frequency domain, the number of high-frequency components for a bonafide
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image would be significantly higher than a that for a spoofed image. Following these two
ideas, coupled with the pixel-wise approaches from the DeepPixBis paper, we proposed
two architectures.

In the first model, we computed the features from the EfficientNet backbone and fur-
ther used it to extract multi-scaled features from the BiFPN. Despite using all five pyramids
from the BiFPN, in our experiments, we abandoned the two high-level pyramids, as they
did not contribute to improving the results. A sigmoid operation was performed over all
of the pixels of the three pyramids, after which we computed the mean of the probability
scores, which determined the final probability of the sample being a bonafide image.

For the second approach, using the first model as a baseline, we added a self-
supervised auxiliary branch that used multiple convolutional operations and reconstructed
the outputs of the three pyramids into the original image in its frequency domain. Ac-
cording to the evaluation strategies of prior works, our two proposed approaches showed
competitive results on the OULU-NPU and Replay-Mobile datasets. We particularly found
that our second approach obtained an ACER of 2.92% on Protocol IV of the OULU-NPU
dataset, which is currently the highest score among all of the published works. We also
performed inter-dataset testing on the OULU-NPU and Replay-Mobile datasets to confirm
that with the inclusion of a wide variety of data, our model would generalize well on an
unseen test set with various sensors.

In the future, we would like to explore our baseline approach further. We plan
to experiment with angular-based constraints, enforcing the performance of multiple
computations on the angular space according to the convention set by A-DeepPixBis. We
would also like to explore methods where we leverage depth-based features, which, as
in the CDCN paper, can be used for an additional form of supervision. We believe that
these ideas would be helpful in contributing towards the problem of face anti-spoofing and
would help to build solutions that would make FAS systems more functional and robust.
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Appendix A. Evaluation on a Self-Acquired Dataset

In this section, we provide information on the experiments that we conducted on
our self-acquired dataset to further demonstrate the generalizability of our proposed
architectures. Due to physical constraints, we assembled this dataset with three subjects.
All of the videos captured in this dataset were captured with the iPhone 7, OnePlus 7,
and OnePlus Nord camera sensors. All of the images were captured within an indoor
setting and consist of only a testing partition. The attack samples were comprised of only
replay attacks from a BenQ monitor and a Macbook Air display. Each of the bonafide and
attack videos were recorded for 10 s in length with in an attempt to integrate multiple
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orientations of faces as well as to add natural artifacts, such as motion blur and glare
from indoor lights. In total, the dataset consisted of around six videos and extracted
1003 bonafide frames and 1469 attack frames, which were further used to evaluate our
proposed models.

Figure A1 depicts a sample of images taken from our self-acquired dataset. In the
figure, the two leftmost samples of subject 1 and 2, respectively, denote the bonafide
class, and the last two images represent the attack/spoof class. We tested our pre-existing
models on this dataset and report our results in Table A1. For this evaluation, similarly
to Table 4, we leveraged the two models trained on Protocol I of the OULU-NPU dataset.
We would like to reiterate that we selected this protocol for our trained models because
this partition consists of the maximum number of training samples of all of the protocols,
and other popular papers [16,17,33] used the same protocol for the trained models in
such evaluations.

Figure A1. A few frames extracted from the videos of our self-acquired dataset.

Table A1. Performance of our proposed architecture on our self-acquired dataset and trained on
Protocol I of the OULU-NPU dataset.

Model APCER (%) BPCER (%) ACER (%)

Bi-FAS 16.26 13.75 15.01
Bi-FAS-S 14.01 14.29 14.17

Table A1, gives a quantitative overview of the performance of the two architectures
proposed in this paper. Our Bi-FAS-S model achieved an ACER, APCER, and BPCER
of 14% on this dataset, which, by itself, indicates that for both the bonafide and attack
classes, the model correctly predicted 86% of the cases. On the other hand, our plain Bi-FAS
model achieved an ACER of 15.01%, from which it can be concluded that it performed
correctly on 85% of the samples. Both the ACER scores of the two models—albeit extremely
close—consisted of a large variation when compared with the metrics of the OULU-NPU
evaluations in Table 3.

From this analysis, we can arrive at several conclusions. Firstly, we believe that
achieving an ACER of 15% and 14% on a testing set with a distribution that is entirely
unknown for the model is a reasonable achievement. Secondly, although we achieved
satisfactory metrics on our self-acquired dataset, it is not guaranteed that the performance of
our model on completely unknown testing sets would be proportional to the performance
achieved on a benchmark dataset.

The self-acquired dataset that we used for evaluation will be available on request for
conducting further research and performance comparisons.
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