
sensors

Article

A Synergic Integration of AIS Data and SAR Imagery to
Monitor Fisheries and Detect Suspicious Activities †

Alessandro Galdelli 1,* , Adriano Mancini 1 , Carmen Ferrà 2 and Anna Nora Tassetti 2

����������
�������

Citation: Galdelli, A.; Mancini, A.;

Ferrà, C.; Tassetti, A.N. A Synergic

Integration of AIS Data and SAR

Imagery to Monitor Fisheries and

Detect Suspicious Activities. Sensors

2021, 21, 2756. https://doi.org/

10.3390/s21082756

Academic Editor: Gwanggil Jeon

Received: 26 March 2021

Accepted: 10 April 2021

Published: 13 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 VRAI Lab, Dipartimento di Ingegneria dell’Informazione, Università Politecnica delle Marche,
60131 Ancona, Italy; a.mancini@univpm.it

2 CNR-IRBIM, Institute for Marine Biological Resources and Biotechnology, National Research Council,
60125 Ancona, Italy; carmen.ferravega@cnr.it (C.F.); annanora.tassetti@cnr.it (A.N.T.)

* Correspondence: a.galdelli@univpm.it
† This paper is an extended version of our paper published in Galdelli, A.; Mancini, A.; Ferrà, C.; Tassetti, A.N.

Integrating AIS and SAR to monitor fisheries: a pilot study in the Adriatic Sea. In Proceedings of the 2020
IMEKO TC-19 International Workshop on Metrology for the Sea, Naples, Italy, 5–7 October 2020; pp. 39–44.

Abstract: Maritime traffic and fishing activities have accelerated considerably over the last decade,
with a consequent impact on the environment and marine resources. Meanwhile, a growing num-
ber of ship-reporting technologies and remote-sensing systems are generating an overwhelming
amount of spatio-temporal and geographically distributed data related to large-scale vessels and
their movements. Individual technologies have distinct limitations but, when combined, can provide
a better view of what is happening at sea, lead to effectively monitor fishing activities, and help
tackle the investigations of suspicious behaviors in close proximity of managed areas. The paper
integrates non-cooperative Synthetic Aperture Radar (SAR) Sentinel-1 images and cooperative Au-
tomatic Identification System (AIS) data, by proposing two types of associations: (i) point-to-point
and (ii) point-to-line. They allow the fusion of ship positions and highlight “suspicious” AIS data
gaps in close proximity of managed areas that can be further investigated only once the vessel—and
the gear it adopts—is known. This is addressed by a machine-learning approach based on the Fast
Fourier Transform that classifies single sea trips. The approach is tested on a case study in the
central Adriatic Sea, automatically reporting AIS-SAR associations and seeking ships that are not
broadcasting their positions (intentionally or not). Results allow the discrimination of collaborative
and non-collaborative ships, playing a key role in detecting potential suspect behaviors especially in
close proximity of managed areas.

Keywords: Automatic Identification System; Synthetic Aperture Radar; data integration; machine
learning; maritime surveillance

1. Introduction

In previous centuries, many naturalists believed that fishery resources were inex-
haustible and independent of human harvesting, due to their consistency, dispersal capacity
and reproductive potential [1,2]. However, the continued exploitation and overfishing ob-
served in many areas of the world have drastically reduced the abundance of fish resources
and the Food and Agriculture Organization of the United Nations (FAO) has highlighted
the need to manage marine resources so that the rate of harvest is commensurate with their
capacity to self-renew [3,4].

For this reason, improving Maritime Domain Awareness (MDA) and sustainable use
of oceans, seas and marine resources has grown in importance [5] and requires monitoring
tools that can provide observations on the state of fish stocks [6–8] and on fishing fleets’
activity [9–11].

Presently, fishing activities can be monitored by several systems that can be broadly
classified as cooperative and non-cooperative. Cooperative systems rely on self-reporting
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information from vessels providing details on identification, position and speed; this
category includes data from Automatic Identification System (AIS), Long Range Identifi-
cation and Tracking (LRIT) and the Vessel Monitoring System (VMS). On the other hand,
non-cooperative systems employ radar and optical sensors (coastal, shipborne, airborne,
and spaceborne) to detect ships from the background sea clutter without relying on their
cooperation [12–14].

Recent studies highlighted the enormous potential that the cooperative AIS offers
in providing detailed vessel movements and classifying fishing activities [15–17], while
others investigated its reliability by applying statistical and machine-learning solutions to
detect anomaly in maritime behavior [18,19]. AIS position reports can indeed drop out for
many reasons, such as weak signals, signal interference in crowded areas or intentionally
tampering when entering port or in close proximity of fishery managed areas [20,21].
Moreover, AIS is adopted by only a fraction of vessels (≥15 m in Length Over All).

Regarding non-cooperative systems and maritime traffic surveillance, the satellite
Synthetic Aperture Radar (SAR) was considered the more suited if compared with optical
remote sensing, as it allows ship detection over wide swaths without being critically
affected by weather conditions and day-night cycles [22–25]. Nonetheless, it lacks regular,
global coverage of the oceans [26].

Given their distinct limitations, the synergic exploitation of both the above-mentioned
data represents a breakthrough to strongly improve MDA and effectively monitor fishing ac-
tivities [27,28]. It results in the quantification and additional mapping of the non-reporting
ship traffic and gives a more complete and informative picture of vessels’ activity, including
Illegal, Unreported and Unregulated (IUU) fishing [29]. The combined use of coopera-
tive and non-cooperative sources has already been proposed in the literature to increase
the potential of the single data source in classifying ships [30–32], investigating related
behavior [33,34] and detecting abnormal activities [35]. Zhao et al. [36] proposed a point-to
point association with merge AIS and SAR data using an iterative process based on the min-
imum distance criteria between the AIS and SAR positions [37], while Mazzarella et al. [33]
increased the quality of SAR/AIS fusion by exploiting knowledge of historical vessel posi-
tioning information. Park et al. [38] combined for the first time four satellite technologies to
publicly reveal large-scale illegal activities by dark fleets operating in North Korean waters.
Their method worked only when there were AIS positions relatively close in time to the
images, and for many scenes, because of poor AIS reception or vessels not broadcasting,
such matching was not possible.

In this context, this study proposes a method to integrate AIS and SAR data, starting
from the general approach that was presented by Galdelli et al. [39] and using two types of
associations to also address the presence of AIS blackouts. Open-source Sentinel-1 data and
the Search for Unidentified Maritime Objects (SUMO) algorithm [40] were used to detect
ships and feed an algorithm that was developed to automatically fuse ship positions and fill
data gaps due to non-reporting ships that could be hampered by technical limitations or
deliberately switching off the system while concealing suspicious activities. SUMO, which
works with a faster version of a pixel-based Constant False Alarm Rate (CFAR, [41,42]), was
adopted as it represents a good compromise between performance and computational time.
A case study in the central Adriatic Sea is analyzed and focus is placed in close proximity of
managed areas, such as those surrounding the offshore gas platforms and the 3 nautical miles
of the shoreline. Although some aspects of this work are particular to the case study (e.g.,
presence of offshore platforms and related safety zones), the proposed approach is easily
transferable to match AIS and vessel detections from other available global satellite imagery
or radar and investigate other managed areas by filling information gaps and revealing
activities of “dark” fleets. Achieving a more comprehensive picture of fishing activities at
sea is an important step toward sustainable and cooperative fisheries management.
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2. Materials and Method

Terrestrial AIS (t-AIS) data were collected with a poll rate of 2–5 min from a land-based
receiver (Comar SLR300N–PHP dispatcher (http://www.ais.dii.univpm.it, accessed on
12 April 2021)) that is installed on the roof of the Università Politecnica delle Marche, at a
height of 205 m above the sea level. Accordingly, the study area was chosen to cover the
coverage area (see Figure 1) of selected receiver (a radius of approximately 45 nm around
the port of Ancona).

Figure 1. t-AIS data coverage (Source: Marin Traffic, Station #82). The blue-colored areas reflect the
quality of data coverage in each grid cell.

This stretch of Adriatic Sea is intensively fished, and the fleet operating in this area
includes all fleet segments, from small-scale fishery vessels to large trawlers. Most fishing
activity is carried out by bottom otter and rapid trawlers, while the use of set gears (e.g.,
gillnets, trammel nets, and traps) remains typically confined within 3 nm of the coast
(where towed gears have been permanently banned, as defined by Article 13 of EU Council
Regulation 1967/2006) and/or in areas unsuitable for trawling [43]. The study area is also
characterized by the presence of a few gas platforms, within whose 500 m radius zones it is
forbidden to anchor, fish or navigate. The Italian law prescribes the same for all the over
one hundred platforms scattered over the Adriatic Sea.

t-AIS data were first pre-processed to generate fishing trips, blackout tracks and
investigate their overlay with known managed areas, such as the 3 nm of the coast and the
500 m safety zones in the vicinity of platforms. According to the management measure
under investigation and the gear type that is likely to be illegally used, only some AIS
report positions were retained and a distance criterion was applied to match them with
ship positions from SAR images. To this end, a classification process was carried out to
pre-assign AIS transmissions to specific fishing gears (Figure 2).

http://www.ais.dii.univpm.it
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Figure 2. Flowchart to integrate AIS data and SAR images.

2.1. AIS Data and Processing
2.1.1. AIS Data Pre-Processing

Repeated points and outliers were first removed, as well as pings located in land.
t-AIS data were then imported in a PostgreSQL database (https://www.postgresql.org/,
accessed on 12 April 2021) by converting geographic coordinates in PostGIS geometries and
enriched with a binary in-port status. This was directly derived by the spatial overlay with
a 1-km buffer layer and using the ST_Within (https://postgis.net/docs/ST_Within.html,
accessed on 12 April 2021) function of PostGIS.

Assuming that vessels travel in a straight line, tracks were generated by linear inter-
polation of subsequent pings and considered to be blackouts if exceeding a predefined
threshold of 30 min. Blackouts lasting from 30 min to 2 h were stored in the same database,
along with the following metrics inherited/derived from the two vertices (pings) forming
the track: date, start and end time, duration, length, positions immediately before and
after (vertices of the blackout), speed (as the average of the speeds of the two vertices) and
geometry (by default, a line is used). Tracks longer than 2 h were not saved because vessels
are unlikely to keep a straight course for long periods [44].

2.1.2. Vessel Classification

Individual trips were identified for each vessel, from the time it leaves a port to
the time it returns to a port, and stored in the spatial database. It is worthy to note that
often the algorithm failed because of the limited coverage of the data used in this work.
Nevertheless, it allowed us to work with single trips and to better identify the type of
vessels according to predefined classes: bottom otter trawlers (OTB), beam trawlers (TBB),
pelagic trawlers (PTM), purse seiners (PS), longliners (LL) and “OTHER” (including cargo
and cruise vessels).

In particular, a Boosting algorithm (AdaBoostM2, [45]) was executed to classify each
individual trip into one of five gear types (Figure 3). The AdaBoostM2 was chosen after
performing comparative tests with other ML algorithms and striking the right balance
between accuracy and processing time.

Prior to this, a Fast Fourier Transformation (FFT) was applied on position and course
data (using the pspectrum [46] Matlab function), and the performance was improved by
subdividing each spectrum twice into 20 and 100 power sub-bands from which additional
features (median, maximum and area of single sub-bands) were extracted and added to
the feature space. This choice was given by the right tradeoff between speed of execution
and performance obtained.

https://www.postgresql.org/
https://postgis.net/docs/ST_Within.html
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To validate the vessel classification algorithms, a ground truthed dataset was obtained
by experts that manually labeled—with also the support of fleet registers—AIS-based
fishing trips that were exerted during 2017–2020.

The machine-learning approach extends what was developed for towed gears in
Galdelli et al. [15], with the aim to include non-fishing vessels (as “other”) and additional
gear classes such as longlines and purse seines. This was needed to link back the type
of vessel, after having matched the SAR target to a specific AIS-based geometry (ping
or blackout).

Figure 3. ML approach to classify vessel’s trips (Source: [39]). Reprinted with permission from [39]. 2020 IMEKO.

2.2. SAR Images and Processing
2.2.1. SAR Images Download

Possible timestamps were identified in the frame 2017–2020, by temporal querying
the AIS database and looking for the highest traffic densities. SAR images were then
downloaded from two open-source providers—ONDA (https://catalogue.onda-dias.eu/
catalogue/, accessed on 12 April 2021) and Copernicus (https://scihub.copernicus.eu/,
accessed on 12 April 2021)—according to those identified timestamps, and then further
sub-sampled in terms of the number of targets SUMO was able to detect.

It resulted in nine dual-pol (VV + VH) Sentinel-1 acquisitions covering all the study
area, although with slightly different footprints. It is due to the orbital motion of the
Sentinel-1 satellites.

The image mode was IW GRDH (Interferometric Wide, Ground Range Detected High
Resolution [47]), which implies a resolution of 20 m × 22 m (ground range × azimuth) at an
Equivalent Number of Looks (ENL) of 4.4.

2.2.2. Detection of Ships and Platforms

SUMO was run in fully automatic mode to perform target detection, by working with
both the polarimetric bands that constitute the Sentinel-1 satellite image and adjusting
different thresholds to deal with the typically irregular distribution of the radar backscatter
over a target: 2.3 for VV (vertical transmission and reception) and 1.3 for VH (vertical
transmission and horizontal reception). Once identified in each band, neighboring detected
pixels were clustered again and thus merged into a single detection result/target (Figure 4).

To avoid inland targets, land masking was applied by using a 250 m buffer of the pub-
licly available Global Self-consistent, Hierarchical, High-resolution Geography (GSHHG)
database [48]. The use of this increased land mask buffer size allowed to speed up the
image process by overlaying a simpler geometry, and to reduce (but not totally suppress)
false alarms due to parts of land that were not accurately covered by the original coastline
vector (Figure 4).

Used automatically, SUMO was fast enough to keep up with current high production
volumes of Sentinel-1, although it depended for the most part on cross-pol data and thus
producing too many false alarms (e.g., signatures of the ship’s wake) that had to be checked.
Except for the increased land mask buffer size and the detection threshold adjustments, all
the other parameters were set by default.

For each image, SUMO provided as output the list of the georeferenced centroids
of each target detected. Given the sensitivity of the VV polarimetric band, only targets

https://catalogue.onda-dias.eu/catalogue/
https://catalogue.onda-dias.eu/catalogue/
https://scihub.copernicus.eu/
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that were detected in the VH band were manually retained and passed to the matching
algorithm for comparison with the reporting ships. It allowed to further reduce the number
of false positives, while minimizing the number of false negative.

Figure 4. Target detection by SUMO on Sentinel-1 image (9 March 2020 at 05:11:14 UTC), VH channel. The orange line
represents the 250 m buffer used by SUMO for land masking, while yellow crosses identify the centroids of the targets
which result by merging detections in VH and VV bands (green triangles and red rectangles, respectively). In detail a false
positive is shown due to a pier that was not masked by the 250 m buffer.

2.3. Supplementary Information

Positions of the offshore gas platforms were downloaded from the EMODnet–Human
Activities web portal [49] and used to confirm those targets that were fixed in repeat-pass
imagery as false alarms. They were excluded before passing the detected SAR targets to
the matching algorithm. Additional buffer layers were created and used to investigate
suspicious behavior, such as those within the 3 nm offshore the coastline and within the
500 m safety zones surrounding the offshore platforms.

2.4. AIS-SAR Matching Algorithm

SAR targets were first retrieved from the database, before being filtered to remove
overlapping targets and false positives that were likely to be offshore platforms. They were
then passed in loop to the matching algorithm. In particular, SAR targets were filtered
in two steps by: (i) flagging inter-target distances shorter the 150 m that were manually
resolved by retaining only one of the 2 overlapping targets; (ii) excluding SAR targets that
fell within 10 m buffers around offshore platforms. This was needed because, in addition
to platforms, SUMO generated several false alarms for many reasons, ranging from radio
interference and local ocean/atmosphere effects to ambiguities in range/azimuth and
situations of very high wind/waves or extremely low backscatter [40].

As regards AIS data, for each iteration of the loop, pings and blackouts were retrieved
at the epoch of SAR image collection: for each Maritime Mobile Service Identity (MMSI),
only nearest (in time) and preceding pings were retained (as compared to the SAR image
epoch), while for blackouts start and end times were used to select only lines straddling
the SAR image epoch. Selected AIS data were then used to attempt a Point-to-Point or
Point-to-Line associations, according to the following main cases under which the SAR
target can fall (Figure 5):
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• Case #1 Point-to-point: the SAR target is within a buffer area centered on AIS data.
Retrieving all the AIS pings temporally closest to the SAR image, buffer sizes are
set proportional to the distance d each vessel can travel in the time interval ∆T from
the AIS transmission to the image acquisition. Taking into account that vessels can
increase their speed during ∆T, the buffer radius is increased by 20%:

d = (v∆T) ∗ 1.2 (1)

where v is the speed the vessel broadcasted via AIS.
In case of SAR targets falling within multiple buffers, the choice was made based on
the hypothetical positions that vessel could reach at SAR epoch and the target was
associated with the nearest buffer edge. This occurs in areas of high traffic density
where vessels are close to each other.

• Case #2 Point-to-line: A SAR target is detected but no AIS reports are available in the
vicinity. This could be caused by a transmission problem or a voluntary switching off.
An attempt was done to associate the SAR target to the nearest blackout, by creating a
variable size buffer whose radius r increases moving away from the SAR epoch.
The buffer was generated dynamically by moving a pointer along the blackout line
(ρi) according to N regular intervals di that were defined as:

di = ∆v ∗ ∆Ti (2)

N =
duration o f blackout

AIS poll rate
(3)

where ∆v is the average speed between the two AIS vertices of the blackout and ∆Ti
is the time-lag between Ti and the SAR epoch.

Ti = Tstart_blackout + (i ∗ AIS poll rate) (4)

i starts at zero (starting vertex) and increase to N (ending vertex), while di ranges
between zero (when Ti = SAR epoch) and maximum values that are reached at the
vertices. The value of the buffer radius is determined accordingly, and defined as:

ri =
l
4

e−
(di−µ)2

2σ2 (5)

where µ e σ are the mean and standard deviation of the N hypothetical distances di
travelled by the vessel (and the pointer) while moving between the 2 vertices of the
blackout line.
Again, in case of SAR targets falling within multiple buffers, the closest buffer is
selected for the Point-to-Line association.

• Case #3 No match: The SAR target is unmatched because the AIS data is not available.
It is due to a remaining false alarm, a blackout longer than 2 h or a vessel that is not
adopting AIS.

• Case #4 No match: A SAR target is missed even if AIS data is available, due to the
failure of the vessel detection. This may occur for several reasons, including small
boats that were not detected by SUMO or bugs/shortfalls of the algorithm itself.

For each target, both Cases #1 and #2 were checked before labeling the SAR detection
as unmatched (Cases #3). At the end of the for loop, all the non-associated AIS data were
assigned to Cases #4.

Both Cases #1 and #2 validate the performance of the SAR-based detection algorithm,
whereas Case #2 discriminates collaborative and non-collaborative ships, playing a key
role in detecting potential suspect behaviors.

The pseudo-code that implements the AIS-SAR matching algorithm is summarized in
Algorithm 1 as it follows:
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Algorithm 1: AIS-SAR Matching Algorithm.
Input: AIS data, SAR targets, blackout traces and platforms’ positions
Output: SAR-Platforms and AIS-SAR matches
/* Read AIS data from DB */
/* Filtering AIS data */

1 list_mmsi = SELECT DISTINCT MMSI FROM ais_data_table
/* Find the AIS ping nearest in SAR time from each MMSI */

2 for (i = first MMSI; i < num. of list_mmsi; i++) do
3 mmsi_data = SELECT * FROM ais_data WHERE MMSI = i
4 closest_ping = MIN(mmsi_data.datetime - sar_time)
5 Add closest_ping to list_closest_ping
6 end
/* Read blackout traces from DB */

7 blackout_list = SELECT * FROM blackout_traces_table WHERE start_time <=
sar_time <= end_time

8 for (i = first SAR target; i < num. of SAR targets; i++) do
9 sar_matched = false

/* Filtering SAR targets */
/* Find overlapped SAR targets */

10 for (j = first SAR target; j < num. of SAR targets; j++) do
11 if (i != j AND (ABS(target(i) - target(j)) < 150m)) then
12 Select a single target
13 end
14 end

/* SAR-Platform association */
15 for (j = first platform; j < num. of platforms; j++) do

/* Point-to-Point Association */
16 Generate buffer area around platform’ position j (radius = 10 m)
17 if (Is SAR target i within buffer of platform j?) then
18 SAR target i is associated with platform j
19 sar_matched = true
20 end
21 end
22 if (NOT sar_matched) then

/* AIS-SAR Matching with Point-to-Point Association */
23 for (j = first closest_ping; j < num. of list_closest_ping; j++) do

/* Generate buffer area of radius d according v speed of
ping AIS and the ∆T time elapsed between ping
transmission and SAR acquisition time */

24 d = (v∆T) ∗ 1.2
25 if (Is SAR target i within buffer of AIS ping j?) then

/* Case #1 */
26 Add AIS ping j to list_ais_sar
27 sar_matched = true
28 end
29 end
30 if (sar_matched) then

/* In case of multiple selected AIS pings */
31 Select the nearest temporal and spatial AIS ping from list_ais_sar to the

SAR target i
32 Remove nearest AIS ping matched from list_closest_ping
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Algorithm 1: Cont.
33 else

/* AIS-SAR Matching with Point-to-Line Association */
34 for (j = fist blackout line; j < num. of blackout_list; j++) do

/* Generate buffer of radius r by moving a pointer (ρ) along
the blackout line at position i */

35 N = duration o f blackout trace
poll rate AIS data

36

37

38

39

40 for (i = 0; i < N; i++) do
41 Ti = Tstart_blackout + (i ∗ AIS poll rate)
42 di = ∆v ∗ ∆Ti

43 ri =
l
4 e−

(di−µ)2

2σ2

44 end
45 if (Is SAR target i within buffer of blackout line j?) then

/* AIS-SAR Matching with Point-to-Line Association */
/* Case #2 */

46 Add blackout line j to list_line_sar
47 sar_matched = true
48 end
49 end
50 if (sar_matched) then

/* In case of multiple selected blackout lines */
51 Select the nearest temporal and spatial blackout line from

list_line_sar to the SAR target i
52 Remove nearest blackout lines matched from blackout_list
53 else

/* Case #3 */
54 SAR target i unmatched
55 end
56 end
57 end
58 end

/* Are all the nearest pings matched? */
59 for (i = first closest_ping; i < num. of list_closest_ping; i++) do

/* Case #4 */
60 AIS ping i unmatched
61 end
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Figure 5. AIS-SAR Matching Algorithm.

3. Results

Nine dual-pol (VV + VH) Sentinel-1 acquisitions over the study area were processed
and results are shown in Table 1. Tests were performed using Python on board a PC
i7-7700HQ, 16 GB of RAM and NVDIA GeForce GTX 1050. It took 5 min to process each
Sentinel-1 image, while the AIS-SAR matching algorithm required ∼40 s to process each
target list and return AIS-SAR correlations.

Table 1. Summary of target detection and correlation results for all the processed images.

Datetime AIS (in Port *) SUMO (45 nm **) BL 1 FP 2 SP 3 PP 4 PL 5 SB 6

20 March 2017 16:56:52 85 (44) 290 (102) 2 1 18 28 2 1

19 July 2019 05:10:31 46 (20) 253 (117) 8 1 28 21 8 3

20 July 2019 16:57:09 48 (28) 128 (37) 8 0 14 7 8 1

24 July 2019 05:18:43 83 (52) 222 (57) 11 2 10 18 11 0

25 July 2019 05:11:14 88 (65) 195 (70) 14 2 28 20 14 0

26 July 2019 16:57:52 47 (21) 144 (39) 3 1 17 11 3 0

9 March 2018 16:57:40 49 (23) 147 (39) 3 0 17 8 3 0

9 March 2019 05:10:32 48 (20) 228 (116) 1 2 36 20 1 0

9 March 2020 05:11:14 79 (48) 321 (187) 5 2 28 28 5 0

* AIS pings in port (transmitted by maneuvering or moored vessels). ** SAR Targets within 45 nm. 1 BL = Blackout lines. 2 FP = False
positive. 3 SP = SAR-Platform associations. 4 PP = Point-to-Point associations. 5 PL = Point-to-Line associations. 6 SB = Suspicious
blackouts, within 500 m safety areas or 3 nm.

For each processed image, selected AIS blackouts and nearest pings are reported,
excluding those broadcasted by vessels in maneuver or moored in ports. Several reporting
ships were indeed docked at the various ports in the images, but those ships were not
detected by SUMO since the ports fell inside the land mask. These reporting ships were
therefore excluded from the evaluation.
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Given the limited coverage of the t-AIS data, only targets identified by SUMO within
the 45 nautical miles (receiver reception distance) were retained. Out of these, large num-
bers of detections were deemed azimuth ambiguities by SUMO and automatically assigned
the lowest reliability level and dropped. Such numbers are typical for coastal areas that
often show many azimuth ambiguities from port and urban constructions. Additional false
positives were filtered out by the algorithm because overlapping and/or associated with
platforms (FP and SP columns, respectively, Table 1), and therefore not considered for com-
parison with the reporting ships. Finally, the fusion process between the SUMO detected
ships and the selected AIS data returned point-to-point and point-to-line correlations (PP
and PL columns, respectively, Table 1). Out of the associated blackouts, a few lines were
considered suspicious and worthy of further investigation (SB column, Table 1).

The rest of this section presents an end-to-end example of the proposed analysis. The
Sentinel-1 image under study was taken on 19 July 2019 at 05:10:31 UTC (Figure 6) over the
central coast of the Marche Region (Italy).

Figure 6. VV polarization of the Sentinel-1 image used as example, SAR targets (red circles) and
selected AIS data (colored points and grey lines). AIS positions are categorized by MMSI.

Once gears were assigned, all AIS report positions were retained (regardless of the type
of gear in use) and consisted of 46 nearest AIS pings transmitted by different vessels (unique
MMSI) classified as: 18 OTB, 15 PTM, 3 TBB and 10 “other” (cruise/cargo). Ground truth
revealed that these AIS transmissions belonged to 46 fishing trips that were labeled by experts
as 16 OTB, 15 PTM, 5 TBB and 10 “other”, reflecting the mean accuracy of our classification
that reached 90%, 85.7%, 90% and 85.7%, for the over mentioned gear classes, respectively.

Twenty reporting ships were maneuvering or anchored in port and therefore excluded
from the following AIS-SAR integration. The automatic SUMO analysis gave 253 detections
in the image. Out of these, one false positive was due to a cross-pol signature of a ship’s
wake (Figure 7a), 117 were within the radius of 45 nm around the Comar receiver, and 28
were linked to offshore platforms.
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The matching algorithm between the remaining 116 SUMO detected ships and the
26 AIS positions returned 21 point-to-point associations (Case #1) with pings broadcasted
by 8 OTB, 7 PTM, 1 TBB and 5 “other” vessels. Additionally, 5 reported AIS positions were
left uncorrelated as no SAR targets were in their immediate area (Case #4). Regarding these
pings not correlated with SAR detections, three of them were small boats according to their
AIS (13, 14 and 18 m in length), which are apparently below the limit of detectability for
SUMO (at the adopted Nominal false alarm rate PFA, Figure 7b).

(a) (b)
Figure 7. Sentinel-1 image taken on 2019-07-19 and a false positive due to a ship’s wake (inter-target distance ≤ 150 m).
Green triangle and the red rectangles are objects detected in VH and VV, respectively (a). Close-up view of the 3 nm costal
area (VH channel). 3 AIS positions were reported by a PTM (green ping), a cargo/cruise (orange ping) and a small OTB
(pink) that according to its AIS, was below the limit of detectability for SUMO (b).

All the 8 blackouts resulted in point-to-line associations. Out of these, one (42 min in
duration and ∼18 km in length) belongs to a vessel that behaved suspiciously entering the
safety zone surrounding the offshore platform p2 and navigating very close to other two
platforms (1.2 km from platform p1 and 1.1 km from platform p3, Figures 8 and 9).

The heat map in Figure 10 helped investigate the behavior of this vessel and its
potential speed values during the blackout, with rows inform on the ratio between the
potential travelled distance at different speeds and the minimum distance to reach/exit
each forbidden area (pink lines in Figure 9) of platforms p1, p2 and p3. In line with the
high/non-fishing speed values predicted by the heat map, the classification algorithm
labeled this vessel trip as “other”, and the plot of its monthly activities confirmed it was a
tugboat acting as platform supply vessel (Figure 11).
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Figure 8. Close-up view of the Sentinel-1 image taken as example (VV channel), overlaying 41 SUMO/SAR
detections, 9 AIS reported positions, 3 AIS blackouts and 6 offshore platforms. The starting vertex of
the blackout entering the managed area of platform p2 is at the same time (for the given MMSI) the
ping nearest to the SAR epoch (cyan AIS position).

Figure 9. Graphical representation of a suspicious blackout (green line) in proximity of an offshore
gas field (platforms p1, p2 and p3). Blu points consist of the latest ping before the switching off and
first available ping after the power on, while cyan markers are the contact points between the 500 m
safety zones (red circles) and the minimal potential routes (dashed green lines) that the vessel could
follow to enter the forbidden areas.
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Figure 10. Graphical representation of the estimated distance travelled by vessel towards the offshore
platforms p1, p2 and p3.

Figure 11. Sentinel-1 image taken on 19 July 2019 (VV channel) and AIS signals (purple points)
broadcasted by a platform supply vessel during July 2019.

4. Discussion and Conclusions

The growing number of ship-reporting technologies and remote-sensing systems are
generating an overwhelming amount of spatio-temporal and geographically distributed
data related to vessels and their movements. The integration of these data is of paramount
importance to fill data gaps and have a better picture of what is happening at sea.
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AIS may accidentally malfunction or be voluntary switched off. Nevertheless, it
can highlight non-reporting vessels and be helpful to detect suspicious fishing activities
especially when coupled with satellite imagery.

In this context, a workflow is presented to integrate AIS and SAR data. For each
Sentinel-1 image, the proposed algorithm ingested the list of detections, retrieved AIS
positions and blackouts and attempted two type of correlations (Cases #1 and #2), before
labeling remaining SAR targets and loaded AIS data as unmatched (Cases #3 and #4, re-
spectively). The approach was tested with a series of Sentinel-1 images, reporting resolved
point-to-point and point-to-line correlations (PP and PL in Table 1) that validate detec-
tions in satellite imagery, and seeking ships that were-intentionally or not-not reporting
their positions (SB in Table 1). Obviously before data ingestion, AIS positions and SAR
targets were filtered to take account of the limited antenna coverage and “in port” AIS
transmissions. Suspicious point-line associations were finally investigated, especially when
they occurred in proximity of banned or fishery-regulated areas, such as those surround-
ing the offshore gas platforms and the 3 nautical miles of the shoreline. To this end, a
machine-learning classification was needed and carried out to pre-assign AIS transmissions
to specific classes and fishing gears. Other research experiences have proposed similar
AIS-SAR data associations [31,33,50], but none of them attempted to correlate blackouts
by point-to-line associations. It allowed to advance suspicions on the behavior of ships by
retrieving information from areas where AIS blackout periods occur.

More specifically, results were better shown for one of the processed satellite SAR
images (19 July 2019 at 05:10:31 UTC). For this Sentinel-1 image, the algorithm performed
well in associating all the known 28 offshore platform positions with the detected targets.
Out of the remaining 89 targets detected by SUMO, one was on a bright ship wake (oc-
curring in addition to the detection of the ship itself) and it was removed before feeding
the algorithm, and 59 fell into Case #3 and were labeled as unmatched. Visual inspection
gave no sound reasons to believe they were not a ship not adopting AIS. Of course, some
of them might still be false alarms that could be deleted by repeating target analysis.

Five AIS pings were not correlated with detections (Case #4) since there were no SAR
targets that fell in their buffer areas. Visual checking confirmed that they were below the
limit of detectability of the Sentinel-1 image for SUMO: even if some of them showed a very
weak signature, it was always at the level of the clutter. Twenty-one SAR targets fell in Case
#1 and were correctly point-to-point matched with corresponding AIS pings, while for the
8 point-to-line associations (Case #2) only assumptions could be made on the accuracy of the
results as AIS was actually off. One of these blackout lines was later labeled as “other” and
clearly traced by a platform supply vessel that was thus non-violating the managed 500 m
safety area. This was also confirmed by the analysis of the heat map (Figure 10), which
indicated only values higher than 11 knots as possible speeds to cover the blackout distance
in the considered time. This speed values are too high to be related to fishing activities, which
are performed at 6/8 knots maximum (by “rapido” trawlers). Nevertheless, the proposed
hypothetical route analysis proved useful to investigate unreported positions/blackouts
that could hinder suspicious behaviors in proximity of regulated areas.

Except for the machine-learning classification that was validated against fleet registers
and expert knowledge, the quality of the AIS-SAR matching algorithm was very difficult
to evaluate because no ground truth was available. It was not easy either to create and to
be sure about it.

Moreover, in the first place, accuracy relies on the performance of the SUMO detector
and of the SAR imaging itself, which depends in turn on many variables that are related
to the targets (e.g., ship size, ship material), the sensor (e.g., resolution, polarization), the
environment (e.g., wind, waves) and the imaging geometry (e.g., incidence angle, aspect
angles). Nonetheless, visual inspections validated associations and suggested that the
proposed approach could help monitor fishing activity and rate the effectiveness of some
fishery-regulated areas, provided that SAR imagery is available. Satellite images are indeed
limited to a maximum of a few images per day and cannot capture the same area every
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day due to satellite orbital cycles. It hampers the monitoring of the maritime situation on a
continuous basis.

Future work is planned to try to fix issues that emerged in this initial development,
starting from the detection of the coastline that will be improved by applying a state-of-the-
art wavelet-based methodology [51]. This will allow the minimization of the number of
coastal infrastructures that fell outside the land mask and were detected as false alarms.
Moreover, different data formats will be tested as input and processed in SUMO, with
special concern on TerraSAR-X and Cosmo-Skymed whose improved resolutions and
polarimetric capabilities could improve ship detection and consequently result in a higher
number of associations. Furthermore, their different/non-synchronized revisit times will
allow frequent enough matching to really monitor fishing fleets. Combing different satellite
technologies with different revisit times and spatial coverages, these investigations could
indeed be performed at large enough spatial and temporal scales to enable transparent
fisheries monitoring.
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