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Abstract: Image acquisition is a complex process that is affected by a wide variety of internal and
environmental factors. Hence, visibility restoration is crucial for many high-level applications in
photography and computer vision. This paper provides a systematic review and meta-analysis of
visibility restoration algorithms with a focus on those that are pertinent to poor weather conditions.
This paper starts with an introduction to optical image formation and then provides a comprehensive
description of existing algorithms as well as a comparative evaluation. Subsequently, there is a
thorough discussion on current difficulties that are worthy of a scientific effort. Moreover, this paper
proposes a general framework for visibility restoration in hazy weather conditions while using
haze-relevant features and maximum likelihood estimates. Finally, a discussion on the findings and
future developments concludes this paper.

Keywords: systematic review; meta-analysis; visibility enhancement; haze removal; image dehazing;
image defogging

1. Introduction

Currently, the ubiquity of camera-based systems has increased the demand for high
image quality from the end-users. Consequently, the digital camera workflow has become
more intricate. Figure 1 exemplifies the in-camera processing flow from the formation
to the viewer, following the description of Parulski and Spaulding [1]. Notably, the
constituent components and their corresponding order may differ, conforming to camera
manufacturers. This section primarily aims to portray the digital camera workflow because
Section 2.2 will describe the optical image formation. The end-users hardly perceive the raw
image data that are captured by image sensors. Accordingly, a set of algorithms comprising
analog-to-digital (A/D) conversion, white balance, demosaicking, color transformation,
gamma correction, and data formatting has been instituted. Thus, the image data become
perceptible. However, any artifacts or imperfections that are introduced by the foregoing
tasks can accumulate and significantly affect the subsequent computer vision applications,
such as object recognition, driver assistance, and surveillance.

Hence, visibility restoration is an active research area for alleviating any untoward
effects that originate from the image formation and processing pipeline. Earlier, image
visibility could be restored by denoising and then reversing the environmental effects. The
noise was typically assumed to follow a Gaussian distribution. Meanwhile, the image
formation was modeled by adopting theoretical optics. Oakley and Satherley [2] devel-
oped a physical model for the contrast enhancement of grayscale images. Subsequently,
Tan and Oakley [3] adopted wavelength dependency to extend the previous model to color
images. Currently, researchers usually refer to this model as the simplified Koschmieder
model. Additionally, with the significant technological advances in image sensors, the
noisy effect has substantially diminished, insofar as researchers usually disregard its in-
volvement. Hence, visibility restoration is, highly pertinent to image formation. Despite
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the fact that there are diverse imaging environments, covering all of them is extremely
laborious. Therefore, this study primarily focuses on visibility restoration algorithms for
the atmospheric environment.

Illumination

Object Lens

Color filter array White balance

A/D converterMedium

Demosaicking

Color transformation

Gamma correction

Data formatting

StorageCaptured scene

Figure 1. Typical example of digital camera workflow.

Recently, the ill-posed nature of visibility restoration has been attracting interest
from academia and industry. This is attributable to the potential benefits in consumer
photography and computer vision applications. The utilization of visibility restoration
algorithms as a pre-processing step in high-level vision tasks (for example, object recog-
nition/localization) is a prime example. Liu et al. [4] demonstrated that the reduction in
detection rate was proportional to the haze density, positing that image dehazing is a prac-
tical solution for facilitating object recognition algorithms. However, in the development of
visibility restoration algorithms, researchers have faced an ever-present under-constrained
problem, which is, the number of freedoms exceeds the number of observations. Accord-
ingly, despite the unceasing efforts to circumvent this intractability, visibility restoration
remains a challenging problem.

To date, although the myriad algorithms have been put forth to address the afore-
mentioned issue, there are not many studies on systematic reviews of visibility restoration.
Indeed, those studies have only covered a few aspects of this many-sided subject. Conse-
quently, it is difficult for researchers to appraise the maturity and ascertain the research
trends and future dimensions of the field. It is also necessary to investigate a research
agenda for visibility restoration to meet the considerable demand for a generalized and
sophisticated algorithm. Hence, a systematic review that collates, classifies, and appraises
all of the relevant research results will enable knowledge transfer in the scientific commu-
nity. As mentioned previously, although there have been a few investigations on visibility
restoration, none have included all essential aspects. Liu et al. [4] and Pei et al. [5] inves-
tigated the effects of image degradation on object recognition. The results demonstrated
that the accuracy declined as haze increased. Applying haze removal algorithms could
alleviate this problem to a certain extent, but not much. Li et al. [6] conducted a thorough
evaluation, focusing on traditional and deep learning-based dehazing methods. The results
demonstrated that the former methods favored human perception, whereas the latter
methods favored numerical metrics. Recently, Yang et al. [7] launched a challenge to evoke
discussions and explorations regarding exploiting low-level image processing techniques
in high-level vision tasks. The results were similar to those displayed by Pei et al. [5],
signifying large room for development.

This study conducted a systematic review and meta-analysis according to the PRISMA
statement [8] with the primary objective of appraising an extensive corpus of visibility
restoration studies and proposing a simple framework for haze removal. As a result of an
extensive appraisal, this study classified existing algorithms into three major groups and
summarized the relevant advantages and disadvantages. In particular, the results of this



Sensors 2021, 21, 2625 3 of 41

systematic review are beneficial for the following individuals in image processing, notably
visibility restoration.

• Researchers who require a systematically organized body of knowledge on relevant
studies.

• Practitioners who are interested in general knowledge on existing methods and
techniques.

• Laypeople who need a readable and understandable review of relevant research.

The remainder of this paper is organized, as follows. Section 2 introduces the PRISMA
statement, provides preliminaries on optical image formation, and appraises relevant
studies. Section 3 investigates the research agenda, particularly those that are high on
the top. Section 4 presents a general framework for haze removal using handcrafted
haze-relevant features and maximum likelihood estimates. Finally, Section 5 provides
the conclusion.

2. Preliminaries

This section first introduces PRISMA—a basis for reporting systematic reviews—
and then presents the fundamentals of optical image formation, followed by a general
classification of visibility restoration algorithms. The optical image formation lays the
foundation stone for virtually all existing methods thus far, and the classification aims to
provide practitioners and laypeople with a concise and understandable body of knowledge.

2.1. PRISMA

PRISMA is the abbreviation of Preferred Reporting Items for Systematic Reviews
and Meta-Analyses, and it is comprised of a checklist and a flow diagram [8]. These
two components aid researchers with reporting in systematic reviews and meta-analyses.
Figure 2 depicts the four-phase flow diagram with the number of included/excluded
studies in each phase.

To begin with, this study obtained 1309 research records through database searching,
in which 274 records from IEEE Xplore, 774 records from MEDLINE, 189 records from Sci-
enceDirect, and 72 records that were subsequently added after searching with new keywords.
Database searching was conducted using PubMed—a free search engine with Google-like
search formulations, and all of the search terms were included in Figure 2. The total of 1309
records then underwent the screening phase, where 234 duplicates were removed, and the
remaining 1075 records were uploaded to abstrackr [9] for abstract screening. In this study,
the same criteria were used to exclude records in both abstract screening and full-text
analysis. Figure 2 also illustrated those criteria. Finally, only 127 studies remained and they
were cited in this paper.

2.2. Optical Image Formation

There is a universal postulate among the optics community that the image irradiance
on a sensor element is a sum of two components: the irradiance that is reflected from the
object surface and the irradiance scattered directly to the sensor by the atmospheric aerosol.
Notably, this postulate significantly simplifies the actual imaging process. The light that
is reflected from the object surface encounters atmospheric aerosols in the path towards
the sensor element. Hence, this type of irradiance is also subject to scattering. However,
another postulate is that the scattering of reflected light is insignificant in hazy or foggy
weather conditions. Therefore, Tan and Oakley [3] defined the irradiance Et at a particular
sensor element k, as follows:

Et(k, λ, x) = ΩkS0(λ)Rk(λ, x)exp[−βsc(λ)dk(x)], (1)

where λ denotes the wavelength, x denotes the spatial coordinates of image pixels, Ωk
denotes the imaging angle, S0 denotes the sky’s mean radiance, Rk denotes the reflectance
factor, βsc denotes the atmospheric scattering coefficient, and dk denotes the distance from
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the sensor element to the object. Variables with the subscript k are pertinent to the sensor
element k.
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Figure 2. PRISMA flow diagram for the systematic review in this study.

The irradiance associated with the light scattered directly to the sensor element (de-
noted as Eb) can also be expressed in terms of the scattering coefficient, according to
Tan and Oakley [3]. In this context, it is the fraction of light reaching the sensor ele-
ment after particle-particle collisions between light photons and atmospheric aerosols, as
given by

Eb(k, λ, x) = ΩkS0(λ){1− exp[−βsc(λ)dk(x)]}. (2)

Consequently, the sum of Et and Eb denotes the total irradiance Es of the sensor ele-
ment k for a specific wavelength λ, as shown in Equation (3). Notably, the captured scene
irradiance is the integration of Es with respect to λ over all imaging wavelengths. It is gen-
erally convenient to consider three standard wavelengths that correpond to λred = 650 nm,
λgreen = 550 nm, and λblue = 450 nm, resulting in a red-green-blue (RGB) image. When
necessary, another wavelength (for example, near-infrared) can be considered to improve
the captured scene irradiance.

Es(k, λ, x) = ΩkS0(λ){1 + [Rk(λ, x)− 1]exp[−βsc(λ)dk(x)]}. (3)

Recently, researchers have widely exploited the simplified Koschmieder model, in
which Et and Eb are denoted as direct attenuation and airlight, respectively. In Equation (4),
I(k, λ, x) denotes the captured scene irradiance, J(k, λ, x) = ΩkS0(λ)Rk(λ, x) denotes the
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original scene irradiance, t(k, λ, x) = exp[−βsc(λ)dk(x)] denotes the transmission map (or
transmittance), and A(k, λ) = ΩkS0(λ) denotes the atmospheric light.

I(k, λ, x) = J(k, λ, x)t(k, λ, x) + A(k, λ)[1− t(k, λ, x)]. (4)

Moreover, although the digital camera workflow was complex, Grossberg and Na-
yar [10] discovered that the mapping from scene irradiance to image intensity is uniform
across the spatial dimensions of the image. Therefore, Equation (4) can be directly used
to represent the digital image formation. Additionally, contemporary researchers often
postulate that the dependency of transmittance on wavelengths is relatively weak and it
can be ignored. Accordingly, letting I(x) = I(k, λ, x), J(x) = J(k, λ, x), A = A(k, λ), and
t(x) ≈ t(k, λ, x) simplifies Equation (4) to the following:

I(x) = J(x)t(x) + A[1− t(x)], (5)

where the boldface representations are adopted to signify the wavelength dependency.
In Equation (5), I is the only observation, whereas J, A, and t are the unknowns. Conse-
quently, recovering the original visibility J requires the estimates of A and t, causing the
ill-posed nature of visibility restoration. Several prior information have been proposed
to address this challenging problem, and a wide variety of methods and techniques have
been exploited accordingly. Despite such diverse efforts, a few problems, such as color
distortion and domain shift, persist, which creates a large room for improvement. Figure 3
concludes this subsection by illustrating the aforementioned optical image formation in
the atmosphere, in which each constituent component has been labeled.

Illumination

Captured scene

Object

Transmission medium characterized by βsc(λ)

Camera

Airlight

Distance d(x)

Sensor element
A[1 – t(x)]

I(x)

J(x)

Figure 3. Visual illustration of the optical image formation in the atmosphere.

2.3. General Classification

This subsection collates studies on the visibility restoration field and broadly classifies
them into three main categories: image processing, machine learning, and deep learning
techniques, as illustrated in Figure 4. In most existing studies, researchers often categorize
visibility restoration algorithms according to the number of input images into single-image
and multiple-image algorithms. Hence, this study approaches the categorization from a
different perspective to arrive at the aforementioned three categories, aiming to bring a
new dimension to the field of interest. More specifically, this study appraises visibility
restoration algorithms by considering the practicality of deploying them in real-world
applications. In this context, the first category—image processing—consists of hand-
engineered methods that are framed using domain knowledge about image degradation.
Exemplars of such methods are contrast enhancement, image fusion, and morphological
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operations. The second category—machine learning—typically involves exploratory data
analysis to obtain statistical regularities of relevant datasets. Prime examples of this
are maximum likelihood estimates, support-vector machines, and k-nearest neighbors
algorithms. The last category—deep learning—refers to the increasing exploitation of deep
neural networks in image processing tasks and it is exemplified by convolutional neural
networks and generative adversarial networks. Although each category is not clearly
distinguishable from one another, the classification in this study is deemed germane to the
recent applications of constituent methods. Coming subsections will describe those three
categories in more detail.

Visibility restoration algorithms

Deep learningMachine learningImage processing

Contrast enhancement

Polarimetric dehazing

Dark channel prior and 

its variants

Image fusion

Other directions:

color ellipsoid prior etc

Regression

Regularization

Probabilistic graphical model

Searching-based optimization 

and linear approximation

Other directions:

dictionary learning etc

Convolutional neural 

networks

Generative 

adversarial networks

Other directions:

zero-shot learning etc

Figure 4. General classification of visibility restoration algorithms.

2.3.1. Image Processing

Contrast enhancement and polarimetric dehazing: initially, contrast enhancement
was a viable solution to visibility restoration because the image contrast considerably
influenced the human perception of image quality. Kim et al. [11] proposed a block-
overlapped histogram equalization method operating on image sequences that significantly
enhanced video visibility on mobile phones and security cameras. Oakley and Satherley [2]
devised a physical model describing contrast degradation in a turbid atmosphere. They
also proposed a compensation scheme using a temporal filter to address the exponential
reduction of the signal-to-noise ratio when processing the image sequences. Although these
early attempts demonstrated promising results in the near field, they shared a common
problem pertaining to noise amplification in the far field. Recently, Kim et al. [12] adopted
the contrast stretch concept to estimate the scene radiance’s saturation that was directly
used to derive the medium transmittance. Moreover, they exploited the white balance
technique to remove the color veil and, thus, laid the extended applicability to yellow-dust-
degraded images. This method showed great promise in real-world applications, owing to
its low complexity, good dehazing performance, and versatility.

Schechner et al. [13] developed a polarimetric dehazing model from a postulate about
the sole polarization of the airlight. This model required at least two images that were
captured under different degrees of polarization, which were used to reduce the number of
freedoms in the optical hazy image formation. In general, image dehazing based on the
polarimetric model leveraged two images, including p-polarized and s-polarized images,
which were pertinent to the incident light parallel and perpendicular to the incidence plane,
respectively. Fade et al. [14] instituted an experimental implementation for polarimetric
imaging that resulted in the previous two images. In order to improve the pioneering work
of Schechner et al. [13], Fang et al. [15] amended the existing postulate by considering
the polarization of the object and presented a decorrelation-based scheme for estimat-
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ing the airlight. Conversely, Liang et al. [16] and Liu et al. [17] retained the postulate of
Schechner et al. [13] and focused on addressing its limitations. Liang et al. [16] adopted
the distribution analysis of the angle of polarization to obtain an accurate estimate of the
airlight, whereas Liu et al. [17] adopted image decomposition to dehaze the base layer and
emphasize the detail layer. Although these methods surmounted the far-field noise amplifi-
cation problem, they were not widely deployed, owing to the burdensome configuration of
the experimental equipment. Zhang et al. [18] presented a field-programmable gate array
(FPGA) prototype for facilitating the application of polarimetric dehazing; however, this
study did not report hardware synthesis results, causing difficulties in appraising its practi-
cality. Furthermore, those involving airlight estimation also lacked generality, because they
required the presence of sky areas to function correctly. Recently, Qu and Zou [19] and
Liang et al. [20] attempted to overcome this problem, but the results were unimpressive.

Figure 5 provides simplified block diagrams of the aforementioned two approaches. In
Figure 5a, visibility restoration cthroughontrast enhancement is typically hand-engineered
by investigating image contrast, sharpness, and brightness, because weather-related image
degradation has manifest effects on those image features. Therefore, this approach often
results in a noticeable improvement in image quality; however, the degradation persists,
owing to the ignorance of degradation sources. In Figure 5b, the polarimetric dehazing
approach addresses the ill-posed nature of visibility restoration by utilizing several input
images that were taken under different polarization degrees. With sufficient images and
postulates regarding the airlight, acceptable estimates of parameters that characterize the
transmission medium are attainable, enabling the restoration of clean images. Nonetheless,
this approach has one major disadvantage—the burdensome configuration of experimental
equipment for input acquisition.

Input 

image

Output 

image

Hand-engineered image 

processing techniques

Sharpness

(a)

Input 

image I1

Input 

image In

Input 

image I2… Optical image 

formation model

Transmission 

medium’s parameters

Output 

image J1

Output 

image J2

Output 

image Jn

…

The configuration of experimental equipment for 

input acquisition is burdensome

Exploiting several input images and the 

optical image formation model to estimate the 

transmission medium’s parameters

(b)
Figure 5. Simplified block diagrams of: (a) contrast enhancement and (b) polarimetric dehazing
approaches in visibility restoration.

Dark channel prior and its variants: the discovery of the dark channel prior (DCP)
through an extensive observation of haze-free outdoor images by He et al. [21] proved to
be a significant turning point. This prior note was widely publicized and used in diverse
applications in computer vision. For example, Chiang and Cheng [22] utilized the DCP
to estimate the depth map, which was used for background/foreground segmentation to
detect and remove artificial light sources in underwater image enhancement. In addition,
Gu et al. [23], Wang et al. [24], and Ruiz-Fernandez et al. [25] successfully exploited the
DCP in clinical applications, such as laparoscopic surgery and digital radiography. The
DCP states that the image local patches possess extremely dark pixels whose intensity is
approximately zero in at least one color channel. The rationale behind this prior is the
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colorfulness of outdoor objects, except for the sky region, whose color intensities are high in
all channels. Hence, although the DCP generally provides accurate transmittance estimates,
it may fail and, consequently, produce artifacts in sky regions. Additionally, because
the DCP was a patch-based prior, He et al. [21] adopted soft matting [26] to refine the
estimated transmittance, inducing the high complexity limitation. Accordingly, the DCP
has aroused keen interest among contemporary researchers, resulting in its improvements
in several dimensions.

He et al. [27] proposed a guided image filter (GIF), which is an excellent edge-
preserving smoothing filter, to replace the computationally expensive soft matting. GIF
considerably shortened the processing time at the cost of a certain degree of degradation.
Subsequently, Li et al. [28] developed a weighted GIF (WGIF) by introducing an edge-
aware weighting scheme into the existing GIF. They also devised a DCP-like dehazing
approach, where WGIF was used instead of GIF to refine the estimated transmittance.
Li and Zheng [29] later improved WGIF by a globally guided image filter (G-GIF), which
embodied global structure transferring and global edge-preserving smoothing techniques.
A DCP-like dehazing method that they developed was equipped with sky-awareness and
fine detail preservation. Sun et al. [30] furthered the work of Li et al. [28] by exploiting the
salient features of the guidance image. They adopted the steering kernel, whose coefficients
were determined by singular value decomposition and local gradient matrix, to learn
the edge direction from the guidance image in an adaptive manner. Thus, WGIF with
steering kernel demonstrated a better dehazing performance than GIF and WGIF, at the
cost of extended processing time. However, the presented results in the foregoing methods
appeared to be limited for a comprehensive appraisal.

Moreover, Yeh et al. [31] estimated a pixel-wise dark channel by eliminating the
patch-based minimum operation. Subsequently, they exploited the bilateral filter to refine
the estimated transmittance, slightly decreasing the algorithmic complexity. Nonetheless,
the results appeared to be slightly over-saturated. Yeh et al. [31] also proposed the ex-
treme channels, which was, dark and bright channels, for atmospheric light estimation.
Sun et al. [32] later exploited this idea to estimate the airlight utilizing morphological
operations and bilateral filtering. Despite the significantly restored visibility, the color
shift persisted in the sky region. Morphological operations were also leveraged by Salazar-
Colores et al. [33] to replace the soft matting in the original DCP, substantially reducing the
algorithmic complexity and memory usage. Notably, Li and Zheng [34] extended DCP in a
creative direction. They postulated that the variation within the dark channel was small;
and, this postulate held true for the sky region. The WGIF was subsequently employed to
decompose the dark channel into base and detail layers. The transmittance was estimated
from the base layer, and an adaptive compensation scheme was devised, lest the far-field
noise amplification occurred. However, this method is computationally expensive and it
may result in an inaccurate estimate of the transmittance.

Other methods focused on improving the DCP, insofar as the refinement step could
be eliminated. Tarel and Hautiere [35] devised a novel method for a faster estimation
of the airlight using an edge-preserving smoothing technique, called the median of the
median along a line. Although this method significantly shortened the processing time,
it introduced halo artifacts in fine details in the image. Kim et al. [36] subsequently
addressed this drawback by improving the edge-preserving smoothing technique through
the modified hybrid median filter. However, this method left background noises unfiltered
in the smooth region, which might be perceptually unfavorable. Gibson et al. [37] replaced
the patch-based minimum operation in the DCP with a median filter, substantially declining
the computational load. Although halo artifacts ceased to occur after dehazing, the color
shift persisted in the sky region. Amer et al. [38] proposed the optimized DCP that could
be calculated from the Gaussian-filtered standard-deviation-subtracted version of the input
image. Because this method was developed for underwater image enhancement, it was
not easy to compare with the DCP. However, the optimized DCP eliminated the refinement
step; hence, it offered a conspicuous advantage in terms of processing time.
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Figure 6 summarizes the essential steps that are involved in DCP-based visibility
restoration algorithms. Beginning with the DCP’s derivation from observations on real-
world images, the medium transmittance can be estimated while using the postulate that
the haze-free image’s dark channel approximates to zero. Transmittance refinement is
then for compensating for any untoward effects that are caused by the previous postulate.
Finally, the haze-free image can be restored while using the transmittance and the atmo-
spheric light estimates. Subsequently, DCP’s variants improve the DCP’s postulate and the
transmittance refinement to reduce post-dehazing artifacts and algorithmic complexity.

Observations on 

outdoor images

Dark channel 

prior (DCP)

Optical image 

formation model

Transmittance 

estimation

Transmittance 

refinement

Atmospheric 

light estimation

Scene radiance 

recovery

0.2

DCP’s variants mainly focus 

on improving these two steps

Figure 6. Simplified block diagram of dark channel prior-based visibility restoration methods.

Image fusion: the aforementioned methods were prone to noise amplification and
patch-based artifacts; therefore, they exploited a computationally expensive refinement step
or compensation scheme. Accordingly, the researchers approached image dehazing from
the image fusion perspective to circumvent the estimation process. Ancuti and Ancuti [39]
pioneered the work by utilizing multiscale image fusion to restore the hazy image visibility.
White-balanced and contrast-enhanced versions of the hazy image were the inputs for
image fusion, where the corresponding weight maps were derived from the image lumi-
nance, chromaticity, and saliency. The multiscale fusion was conducted conforming to the
Laplacian pyramid representation to avoid post-fusion artifacts. Although the results were
impressive, the up- and down-sampling operations in the multiscale fusion did not favor
the hardware realization for real-time processing because of a large number of requisite
image buffers and line memories. Ngo et al. [40] addressed this problem by demonstrating
that the performance gap between single and multiscale fusions was insignificant, while
considering the small patch size (for example, 3× 3). This finding favored a real-time
hardware accelerator for haze removal that is capable of handling high-quality 4K images.

Choi et al. [41] furthered the work of Ancuti and Ancuti [39] by using an additional
fog-aware contrast-enhanced image as a third input to the fusion. Moreover, perceptual
fog density, luminance, and contrast were used in addition to the original three features
to derive the weight maps. Therefore, this increase in the computational cost slightly
improved the fused image. Image fusion could also be exploited to obtain the accurate
estimates of the transmittance and airlight. Guo et al. [42] estimated two transmission maps
that were based on the boundary conditions and then fused them. The final transmittance
yielded a strong enhancement for the sky region and weak enhancement for the rest of the
image. Ancuti et al. [43] recently extended their work to consider the heterogeneous lighting
conditions of nighttime scenes. Their method estimated the airlight with two different
patch sizes pertaining to daytime and nighttime scenes, respectively. Subsequently, the
corresponding dehazed images, coupled with the discrete Laplacian of the original image,
were fused to produce a clean image. These methods demonstrated impressive results, but
they were computationally expensive.

Another branch of image fusion-based dehazing fuses the RGB image with a near-
infrared (NIR) image. The rationale behind this approach is pertinent to the wavelength-
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dependency of the hazy image formation. As opposed to visible light waves, the NIR
wavelength exhibits less absorption and scattering losses and it retains more structural
information. Liang et al. [44] improved polarimetric dehazing by applying this paradigm
to an NIR image. The result obtained was fused with that of the RGB image to improve
the restored visibility. Similarly, Zhou et al. [45] proposed a multiscale fusion of RGB and
NIR images for nighttime vision enhancement, in which the RGB image underwent a pre-
enhancement step that was based on high dynamic range (HDR) compression. Despite the
impressive performance in terms of restored visibility, these methods faced a practical chal-
lenge of the burdensome configuration of the experimental equipment. Jee and Kang [46]
presented an exciting idea regarding color reconstruction from an RGB-NIR multispectral
filter array. This method could be exploited to pre-enhance the hazy image by leverag-
ing structural information from the NIR image, favoring the design of the subsequent
dehazing algorithm.

Figure 7 sketches out the computational flow of image fusion-based visibility restora-
tion algorithms. Input images to the fusion can be either real or artificial. In this context,
the real images are typically acquired from a single camera at different polarization degrees
or from a set of cameras whose constituents are sensitive to different light spectra. In
contrast, artificial images are generated from a single input using diverse image processing
techniques. Given input images, corresponding weight maps are then derived according to
the fusion purpose, and the fusion is typically conducted at multiple scales using pyramid
representation. This approach circumvents the computation-intensive estimation of trans-
mittance and atmospheric light; hence, it offers satisfactory performance while retaining a
fast processing rate.
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Figure 7. Simplified block diagram of image fusion-based visibility restoration methods.

Other directions: Deng [47] presented a generalized model for logarithmic image
processing, which is known as GLIP, pertaining to gigavision sensors. This imaging de-
vice possesses a logarithmic response function, favoring HDR-relevant applications. The
GLIP model lays a solid foundation for several low-level image processing tasks, such
as contrast enhancement and tone mapping, which benefit image dehazing consider-
ably. Zhang et al. [48] developed a biologically inspired retina model, which comprised
three types of cells, for image dehazing. The bipolar cell approximately removed the
low-frequency constituents of haze. The amacrine cell enhanced the image contrast to
compensate for the loss of details. Finally, the retinal ganglion cell refined the local haze
removal and enhanced image details. Luo et al. [49] proposed a hybrid method leveraging
the filtering approach of Tarel and Hautiere [35] and image fusion. The use of the bilateral-
of-bilateral-grid filter to replace the median filtering technique was a noticeable difference.
In addition, luminance fusion was conducted in the gradient domain to compensate for
the color infidelity problem that is induced by the dehazing process. The reported results
demonstrated a considerable improvement when compared to that of the methods of
Tarel and Hautiere [35] and Ancuti and Ancuti [39].
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Recently, Bui and Kim [50] developed a statistically robust prior, known as the color
ellipsoid prior (CEP). The CEP estimated the transmittance from the ellipsoid geometry
that modeled tight clusters of hazy pixels in the RGB space. Because the shape of the
ellipsoid was determined by the measurable deviations of clusters, the minority of noisy
pixels was effectively averaged and did not affect the estimation accuracy. Additionally,
they embedded fuzzy segmentation into the transmittance estimator to suppress the
halo artifacts. This method was considerably fast and it exhibited impressive dehazing
performance. Furthermore, Mandal and Rajagopalan [51] reduced hazy image formation
to a patch-based equation while using multiplicative and additive factors. Subsequently,
they assumed that the scene depth changed gradually within an adjacent neighborhood
around local patches and exploited this assumption to estimate the two factors. Despite
the impressive results and high versatility, the algorithmic complexity was exceptionally
high, and ringing artifacts might be observable.

Figure 8 depicts a branching diagram that summarizes the aforementioned introduc-
tion of dehazing algorithms utilizing image processing techniques. The label of each node
has been assigned, such that it is consistent with the occurrence order in the main text.
Hence, this diagram is beneficial to laypeople who are interested in an overall overview of
existing techniques.

Image processing

Contrast enhancement

Polarimetric dehazing

DCP and its variants
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Other directions

Physics-based contrast enhancement [2]

Block-overlapped histogram equalization [10]

Contrast stretch concept [11]

Polarimetric image acquisition [13]

Polarized airlight assumption [12,15,16]

Polarized airlight and polarized object assumption [14]

FPGA implementation [17]

Non-sky estimation of airlight [18,19]

Application of DCP in underwater image enhancement [21]

Application of DCP in medical image processing [22-24]

Guided image filtering [26] and its variants [27-29]

Pixel-wise dark channel and bilateral filtering [30]

Extreme channel, morphological operations, and bilateral filtering [31]

Morphological operations [32]

Variation of dark channel [33]

Filtering approach [34-36]

Optimized DCP [37]

Improvement on refinement

FPGA implementation favored by single-scale fusion [39]

Transmittance fusion [41]

RGB-NIR fusion [43,44]
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Biologically inspired retina model [47]

Hybrid model combining filtering approach and image fusion [48]

Color ellipsoid prior [49]

Patch similarity prior [50]

Improvement on prior

Original DCP [20]

Figure 8. Branching diagram summarizing image-processing-based dehazing algorithms.

2.3.2. Machine Learning

Regression analysis: scientific advances in imaging and memory technologies fa-
cilitate the acquisition and storage of a considerable amount of image data. Hence, a
detailed observation of the collected data may yield statistically significant regularities,
which are exploitable for visibility restoration. Tan and Oakley [3] employed maximum
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likelihood estimates (MLE) to estimate the atmospheric light and medium transmittance.
In this context, they assumed that the terrain reflectance followed a uniform, Gaussian,
or surveyed distribution. The last type of distribution was obtained from national sur-
veys, and hence its name. Indeed, this early attempt was prone to noise amplification
problems. Zhu et al. [52] also exploited MLE to estimate the coefficients of their proposed
model, which calculated the scene depth as a linear combination of the image saturation
and brightness. This model was rested on the color attenuation prior (CAP) discovered
through extensive observations of hazy images. Although the CAP was a fast and straight-
forward solution, the results were affected by color distortion, background noise, and
post-dehazing false enlargement of white objects. These limitations were addressed by
Ngo et al. [53,54] through adaptive weighting, low-pass filtering, and atmospheric light
compensation, respectively. Nevertheless, CAP-based dehazing algorithms appeared to be
ineffective against dense haze scenes.

Tang et al. [55] exploited random forest regression to estimate the transmittance from
a set of multiscale features, including the dark channel, locally maximum contrast, hue dis-
parity, and locally maximum saturation. This method partly alleviated the color distortion
in the sky region, and the performance could be considerably improved by considering
more haze-relevant features. However, transmittance inference utilizing random forest
regression was extremely time-consuming. Jiang et al. [56] modeled the optical depth as a
second-order polynomial combination of seven haze-relevant features. Subsequently, they
leveraged sensitivity and error analyses to reduce the number of employed features from
seven to three, including the dark channel, product of saturation and value, and chroma.
Nonetheless, the results tended to be bluish. Meanwhile, Lee et al. [57] reformulated the
visibility restoration problem to consider demosaicking artifacts and sensor noises in a
joint optimization. Total least squares regression was utilized to solve the optimization and
improve the robustness to noises. However, this method was computationally expensive,
and the results appeared to be mildly blurred.

Furthermore, Gu et al. [58] proposed a non-reference image quality assessment (IQA)
metric and employed it as a quality measure to guide a histogram modification-based
dehazing algorithm. Their IQA metric was an output of a regression model, whose inputs
were 17 image features pertinent to contrast, brightness, and sharpness, to name but
a few. This method was indubitably time-consuming because of the large number of
employed features, and the results were over-enhanced. Peng et al. [59] generalized the
DCP using the depth-dependent color change assumption, in which a three-bit indicator
was employed to signify whether the color intensity increased or decreased as the depth
increased. Subsequently, they assumed that the color intensity was linearly correlated
with the scene depth and it adopted linear regression to estimate the indicator and the
significance weighting factor, which were utilized to estimate the scene depth. Despite the
good results and broad applicability, the assumption on the linear relationship was easily
broken, resulting in failures for images with heterogeneous lighting conditions. Recently,
Raikwar and Tapaswi [60] estimated the medium transmittance using the difference of
minimum color channels, which was modeled by the bounding function. Next, they
adopted a supervised learning method that was fundamentally similar to MLE to estimate
this function. However, the results were affected by color distortion in the sky region.

Regularization: simple regression techniques are prone to overfitting, which is, the
machine learning model is strictly fit to the training dataset. Thus, it is highly likely to
yield a high error rate on future unseen data. Accordingly, regularization, another form of
regression, was developed to avoid the risk of overfitting. In this context, a regularization
term was added to the loss function to reduce the model variance, thus increasing the
ability to capture the true properties of the training dataset, notably those containing
noisy data. Schechner and Averbuch [61] adopted adaptive regularization to address
the noise amplification problem persisting in their previous work [13]. The employed
regularization term was the discrete Laplacian of the scene radiance that was modified by
a depth-dependent weighting factor. The qualitative results demonstrated that the far-field
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noise was suppressed significantly, but not completely. Li et al. [62] exploited relative total
variation (TV) regularization, in which the regularization term was the TV measure, to
improve the estimation accuracy of the medium transmittance. Because they leveraged the
extreme channels to estimate the transmittance, TV regularization was adopted to remove
the textual information captured by the minimum and maximum operations, thereby
effectively preserving depth information.

Furthermore, Kim et al. [63] utilized a stereo image pair to estimate the transmittance.
In this context, they adopted the combined local-global approach with total variation to
predict the disparity map, which positively correlated with the transmittance, owing to its
inverse relationship with the scene depth. The estimated transmittance was also refined
iteratively while using the temporarily dehazed result. Consequently, this method was
computationally expensive and inappropriate for real-time processing. Similar to image-
fusion-based dehazing algorithms utilizing NIR images, Son and Zhang [64] proposed a
near-infrared coloring method that was applicable to haze removal. They adopted regular-
ization to devise a linear mapping model for creating a new NIR image, analogous to its
RGB counterpart. Subsequently, color transfer was performed to obtain an RGB image that
possessed contrast and details of the captured NIR image. Li et al. [65] developed a robust
Retinex model by considering additive noise and formulated a regularized optimization
for low-light image enhancement. They utilized the TV measures of the illumination and
reflectance as regularization terms and adopted the alternating direction minimization
technique to solve the optimization. They also demonstrated that their proposed model
could be extended to other visibility restoration tasks, such as image dehazing; however,
the results suffered from the loss of details.

Similar to Li et al. [62], Liu et al. [66] adopted non-local TV regularization to preserve
the depth information while smoothing textual details in the transmittance refinement step.
While using the refined transmittance, they devised an adaptive regularized model for
scene radiance recovery. Although the dehazing performance was impressive, it was reliant
on the initial estimates of the transmittance. In another approach, Pan et al. [67] utilized the
dark channel’s sparsity as a regularization term, and they devised a linear approximation
technique to solve the induced non-convex optimization problem. However, the results
were slightly bluish, and the processing time was prolonged. Dong et al. [68] estimated the
medium transmittance by optimizing the local contrast regarding the information loss (that
is, the number of truncated pixels owing to underflow and overflow). They also proposed
an exciting idea of leveraging the network of local traffic cameras to reduce the processing
time. In this context, one camera was configured as the calibration camera, whose objective
was to calculate the initial transmittance. This value was applied to other cameras in the
same network, which considerably reduced the processing time. Recently, Wu et al. [69]
proposed a unified framework that accounted for both denoising and dehazing. They
jointly estimated the transmittance and scene radiance by adopting a semantic-guided
regularization and transmittance-aware regularization. Specifically, the former was used to
ensure the smoothness and edge-preservation in the transmittance, whereas the latter was
used to preserve fine details and reduce noise in the scene radiance.

Figure 9 summarizes the most basic steps in regression and regularization-based visi-
bility restoration algorithms. In this approach, researchers typically begin with postulates
regarding the input–output relationship, and then develop a corresponding mathemat-
ical model. Subsequently, regression techniques can be applied to estimate the model’s
parameters. However, this type of parameter estimation is prone to data overfitting; hence,
regularization techniques can improve the robustness against this problem. Additionally,
improvements in this branch of visibility restoration algorithms mainly lay in making
reliable postulates and developing accurate mathematical models.

Probabilistic graphical model: unobserved variables of the simplified Koschmieder
model exhibit conditional dependence that can be expressed by a probabilistic model
encompassing the properties of factorization and independence. This type of modeling
technique is beneficial for the analysis of complex data distributions, because it results in
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a succinct description favoring the extraction and utilization of underlying regularities.
Nan et al. [70] improved the simplified Koschmieder model by including the zero-mean
Gaussian noise. Subsequently, they devised a Bayesian framework for estimating the
transmittance and scene radiance. Despite the high computational cost, the dehazed results
were unimpressive when compared to that of contemporary methods. Wang and Fan [71]
investigated the effects of the patch size on the estimated depth information and proposed a
Bayesian approach for multiscale depth fusion. In this context, prior depth information was
calculated at different scales, and they adopted the Markov random field (MRF) to describe
the relation between multiscale priors and scene depth. They also adopted the adaptive
truncated Laplacian potential to construct the local regularization, which accounted for both
smoothing and edge-preserving constraints. However, this method was inefficient, owing
to its cubic-time complexity, and the results were affected by color distortion. Similarly,
Qu et al. [72] improved the MRF model by considering local pixel blocks with the same
depth change, instead of adjacent pixels, as utilized by Wang and Fan [71]. High algorithmic
complexity and color distortion persisted, despite the aforementioned improvement.
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Figure 9. Simplified block diagram summarizing regression and regularization-based visibility
restoration methods.

Searching-based optimization and linear approximation: another approach is to
leverage searching algorithms to seek the plateau of the induced energy term in visibility
restoration. Ju et al. [73] proposed the gamma correction prior (GCP) for stabilizing the
scattering coefficient. Subsequently, they exploited GCP to create a virtual transformation
image, which was used jointly with the simplified Koschmieder model to derive the
formula for scene radiance. The only unknown parameter therein was the scattering
coefficient ratio, and they adopted the global-wise Fibonacci search algorithm to estimate
it. The results were impressive without noticeable artifacts. Ngo et al. [74] formulated an
objective function that conveyed essential image features, such as contrast and sharpness.
Therefore, they adopted the Nelder–Mead direct search algorithm to seek the optimum
transmittance that maximized the objective function. This method delivered good dehazing
performance at the cost of prolonged execution time. Wang et al. [75] proposed a hazy
image decolorization method that included the hazy weather effects in the traditional
decolorization model. Hence, the induced optimization was non-linear, and the Huber
loss was exploited for linear approximation. This method effectively preserved the global
luminance while demonstrating good color contrast in grayscales images.

Other directions: other machine learning techniques, such as blind source separation,
clustering, and dimension reduction, have been applied to visibility restoration. On the
one hand, Namer et al. [76] exploited independent component analysis to devise a blind
estimation scheme for the polarization degree. Their proposed method overcame the
existing problem of contemporary polarimetric dehazing algorithms, which was, the need
for sky region presence in the estimation of the polarization degree. Hence, the long-term
objective towards the automation of polarimetric dehazing was partly facilitated by the
work of Namer et al. [76]. On the other hand, He et al. [77] adopted dictionary learning
based on the difference-structure-preservation prior for refining the transmittance, which
was predicted while using the least square estimation. Although the dehazing performance
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was impressive, the execution was highly time-consuming. Chen et al. [78] exploited
a set of radial basis functions, whose summation was typically used to approximate a
given function and construct a simple neural network for image dehazing. The number
of hidden neurons was flexible, depending on the scene complexity. Accordingly, more
neurons were utilized for a textual surface and vice versa. Consequently, the run-time
was considerably prolonged because the network configuration had to be determined for
individual image patches.

Yuan and Huang [79] leveraged image retrieval to obtain external knowledge on the
scene being recovered. A feature detection technique that was known as scale-invariant
feature transform was adopted at two different scales to retrieve the correlated haze-free
references from the database. Global geometric registration and block-based adjustment
were then performed to obtain well-registered regions between each image pair, which
was, the input image and individual retrieved references. The medium transmittance was
estimated using the reference blocks, and Laplacian-based interpolation and regularization
were adopted to obtain the whole transmittance. This method provided good results at the
cost of high complexity and a lack of generality. Berman et al. [80] proposed a non-local
haze-line prior, which stated that a few clusters in the RGB space could approximate the real
color of haze-free images. They adopted the k-means clustering technique to derive the haze
lines and leveraged the k-dimensional tree to reduce the run time. Haze lines were used to
estimate the transmittance and atmospheric light to recover the scene radiance. This novel
prior was exploited in several applications, including underwater color restoration [81],
maritime surveillance [82], and three-dimensional (3D)-TV rendering [83].

Similar to the previous subsection, a branching diagram shown in Figure 10 provides
a quick overview of the aforementioned introduction of dehazing algorithms utilizing
machine learning techniques.
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Figure 10. Branching diagram summarizing machine-learning-based dehazing algorithms.



Sensors 2021, 21, 2625 16 of 41

2.3.3. Deep Learning

Convolutional neural network (CNN): in an artificial neural network, each neuron
in a particular layer is typically connected to all neurons in the next layer, hence, the name
fully connected network. This type of neuron interconnection may result in overfitting and
impede the development of deep neural networks. Accordingly, CNNs can be considered
as the regularized versions of fully connected networks because they are useful in avoiding
overfitting and reducing interconnections. Inspired by biological processes, CNNs have
been developed to resemble the organization of the visual cortex [84]. The response of
individual cortical neurons is driven by a restricted region of the visual field, and this region
is referred to as the receptive field. Similar to the image filtering technique, the receptive
fields of constituent neurons overlap each other to cover the entire visual field. CNNs take
advantage of this connectivity pattern; hence, they can extract the hierarchical pattern in
the data and combine simpler patterns into more complex patterns. Therefore, they are
widely exploited in diverse computer-vision applications, such as image classification and
image restoration.

Cai et al. [85] leveraged a three-layer CNN, which is known as DehazeNet, to estimate
the medium transmittance. This architecture was quite efficient and straightforward, in
which the first layer extracted low-level features from a single input image. The second
layer processed these features at different scales to achieve spatial invariance. The last layer
combined the previous results into the transmittance. Later, the DehazeNet architecture
was exploited in several studies, owing to its simplicity and efficacy. Wang et al. [86]
investigated color images in the YCbCr color space and discovered that haze primarily
affected the luminance channel. Subsequently, they devised a DehazeNet-like CNN for
dehazing only the Y channel; hence, this network was lightweight while retaining com-
parable performance. Dudhane and Murala [87] furthered the previous work by utilizing
two DehazeNet-like CNNs for estimating two versions of the medium transmittance in
RGB and YCbCr color spaces. Therefore, they fused the two transmittance estimates using
a fusion network to obtain a final transmittance. Recently, Huang et al. [88] devised a
dual-subnet network for the joint learning of visibility enhancement, object recognition,
and object localization. The restoration network that was employed in that study followed
the DehazeNet architecture with three main processes: feature extraction, multiscale map-
ping, and nonlinear regression. However, the foregoing networks demonstrated average
performance, owing to the lack of real training datasets and the simplicity of the employed
loss function (that is, mean squared error (MSE)).

Ren et al. [89] utilized a coarse-scale CNN with large filtering windows and a fine-
scale CNN with small filtering windows for estimating the transmittance in a multiscale
manner. This method differed from the aforementioned methods in the following aspect:
the cascaded estimation in coarse-to-fine scale replaced the parallel multiscale mapping.
Although the results were generally superior to that of contmpeorary algorithms, this
method was affected by the domain shift problem. In this context, two CNNs were trained
with a synthetic dataset that was created using the simplified Koschmieder model for
homogeneous lighting conditions. Therefore, it failed to restore scene visibility under
heterogeneous lighting conditions (for example, nighttime scenes). Additionally, the trans-
mittance estimate was occasionally inaccurate, which resulted in different transmittance
values for pixels within the same object. Accordingly, Ren et al. [90] addressed their own
limitations by adopting an additional CNN known as the holistic edge guided network
to enforce the transmittance smoothness inside the same object. Yeh et al. [91] exploited
image decomposition to visibility restoration by dehazing the base layer and enhancing
the detail layer. The dehazing task leveraged the multiscale network that was developed
by Ren et al. [89] for structural feature extraction and the encoder—decoder framework for
statistical feature extraction. These results were fetched to a regression network to obtain
the dehazed base layer. For the sharpness enhancement task, a lightweight CNN was
utilized to predict the scaling factor. The results demonstrated a satisfactory performance



Sensors 2021, 21, 2625 17 of 41

on thin haze scenes, but a lack of qualitative results on moderate and thick haze scenes
impeded a complete assessment.

Figure 11 provides a general insight into CNN-based visibility restoration methods.
This approach consists of two phases—training and inference—and the main improvements
lay in the network’s architecture and the training strategy. At the training phase, researchers
develop the network and determine the training strategy—supervised, unsupervised, or
hybrid learning method. When the loss function has been successfully settled at a plateau,
the trained network is ready for inference. CNN-based methods mainly aim to estimate
the medium transmittance and atmospheric light, imposing a performance limit, owing to
the simplification of the optical image formation model.
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Figure 11. Simplified block diagram of convolutional neural network-based visibility restoration algorithms.

Generative adversarial network (GAN): another deep learning framework, known as
GAN designed by Goodfellow et al. [92], has been used extensively in visibility restoration.
The fundamental idea is based on the competition between a generator and a discriminator
in the training phase. The generator (that is, the network to be deployed in the inference
phase) learns to generate new data with similar statistics as the given training dataset.
Meanwhile, the discriminator is dynamically updated to distinguish the data produced
by the generator from the true data distribution. Hence, the generator’s training goal is to
minimize the distance to a given dataset and deceive the discriminator into misinterpreting
its output as true data. Liu et al. [93] adopted this framework to estimate the medium
transmittance from a set of feature maps, including RGB, dark channel, haze-line, and
structural features. However, the dehazing performance was unimpressive, because the
fully connected generator was relatively straightforward. Accordingly, an efficient encoder–
decoder architecture has been exploited. Ren et al. [94] developed a GAN for video
dehazing that used a stack of five consecutive frames to predict three central estimates of
the transmittance in the frame stack. They adopted an additional semantic segmentation
network to enforce smoothness within the same object. This network demonstrated an
acceptable performance for video dehazing and it was considered relatively fast when
compared to other networks. However, the processing speed of approximately eight frames
per second (fps) is inappropriate for real-time processing, which requires at least 25 fps.

Moreover, Li et al. [95] designed a robust dehazing network by exploiting the encoder–
decoder-based GAN and semi-supervised learning framework. The designed GAN was
trained with two branches sharing the network weights. The first branch followed super-
vised learning with a labeled synthetic dataset, and the second branch followed unsuper-
vised learning with only real hazy images. The loss function was comprised of supervised
losses (MSE, perceptual, and adversarial losses) and unsupervised losses (dark channel
and TV losses). Despite the sophisticated network design, the results exhibited ringing arti-
facts on dense haze scenes. Zhu et al. [96] proposed a compositional-adversarial network,
known as DehazeGAN, which embodied multiscale feature extraction and patch-based
discrimination. The former was attained via a generator comprising a coarse-scale network
and a fine-scale network for extracting multiscale image features that were used to estimate
the atmospheric light and transmittance. The latter was attained via a deeply supervised
discriminator that was trained to classify individual patches in the input image instead of
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the entire image. Additionally, this network generated predictions at each convolutional
layer to provide the multiple level supervision to train the DehazeGAN. Despite impressive
results on synthetic images, DehazeGAN exhibited average performance on real scenes,
which was probably caused by the domain shift problem.

Recently, Li et al. [97] contributed significantly to the rapid development of GAN-
based visibility restoration. They developed a hybrid network that was based on the
encoder–decoder framework and spatially variant recurrent network architecture. This
deep neural network was trained using the combination of L1, TV, and dual composition
losses to perform the following operations: haze removal, haze residual removal, and
image fusion. Despite the expensive computation and supervised learning on a synthetic
dataset, this network demonstrated impressive results with high similarity to the ground
truth. It was also not affected by the domain shift problem. Apart from the conventional
discriminator, Pan et al. [98] introduced a discriminator that was trained to assess the
consistency between the regenerated result and the input image. The regeneration process
was devised as an inversion of a physical model describing optical image formation.
Hence, this framework was highly versatile, because it was applicable to several low-level
image restoration tasks. The performance of this physics-based GAN framework largely
depended on the physical base model. Accordingly, it is ineffective against images that are
degraded by complicated phenomena (for example, heterogeneous light conditions) whose
accurate models are currently unavailable. Park et al. [99] developed a heterogeneous
GAN that takes advantage of a cycle-consistent GAN (CycleGAN) and a conditional GAN
(cGAN) via a fusion CNN. Zhu et al. [100] proposed CycleGAN to enable the training
scheme without the strict requirement of a paired dataset through a cycle-consistent loss
function. However, CycleGAN had limitations, such as artifacts in dense haze regions
and a loss of details. In contrast, Sohn et al. [101] developed cGAN to stabilize the GAN
training. Park et al. [99] exploited this framework to estimate the atmospheric light and
transmittance, enabling image dehazing through the simplified Koschmieder model. cGAN-
based dehazing preserved the fine details in the recovered images, but might suffer from
the domain shift problem. Hence, the fusion CNN was used to balance the untoward side
effects of CycleGAN and cGAN, producing satisfactory results.

Figure 12 depicts essential aspects of GAN-based visibility restoration algorithms. At
the training phase, two networks—generator and discriminator—are utilized to conform
with the adversarial training strategy. The generator generates data from a random input,
and the discriminator, in turn, attempts to discriminate those data from the real data. The
results are then backpropagated to train these two networks. At the inference phase, only
the trained generator is deployed in real-world applications.
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Figure 12. Simplified block diagram of generative adversarial network-based visibility restoration algorithms.

Other directions: Santra et al. [102] proposed estimating the transmittance in local
patches based on the quality of the dehazing process. In this context, several dehazed
patches were generated using different transmittance values. A CNN that was designed
for patch quality comparison was then utilized in combination with a binary search to de-
termine the optimum transmittance value. This method was computationally inexpensive,
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owing to its simple CNN architecture. However, the results depended considerably on
environmental illumination. Golts et al. [103] proposed an unsupervised learning scheme
for image dehazing, in which the DCP was exploited to formulate the loss function. Despite
improving the traditional DCP and eliminating the need for a paired dataset, this method
failed to recover dense haze regions and it exhibited color distortion in the sky regions.
Liu et al. [104] attempted to bridge the gap between knowledge-driven and data-driven
methods while using a data-and-prior-aggregated transmission network (DPATN). The
DPATN fused two transmittance estimates, one from a deep CNN and another from a gen-
eralized formula of the DCP, to obtain the final transmittance. The DPATN demonstrated
impressive dehazing performance, even in distant regions; however, it might suffer from
post-dehazing artifacts. Currently, Li et al. [105] exploited zero-shot learning to devise a
training-free unsupervised dehazing network. They utilized three encoder–decoder-based
submodules, known as J-Net, T-Net, and A-Net, corresponding to three unknowns in the
simplified Koschmieder model. The loss function was minimized using the sole input
image, and the dehazed result was the J-Net output. Despite the impressive performance,
the inference is time-consuming, because zero-shot learning is still in its infancy and it
requires future scientific efforts.

Figure 13 provides a summary of deep-learning-based dehazing algorithms. Addi-
tionally, Table 1 provides a quick overview of three main categories of visibility restoration
algorithms. As the detailed description is available in the main text, Table 1 presents the
most general information on each category and its constituent techniques.
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Zero-shot learning [104]

Figure 13. Branching diagram summarizing deep-learning-based dehazing algorithms.
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Table 1. Summary of visibility restoration algorithms in the literature.

Category Typical
Techniques Pros and Cons

Image
processing

Histogram
equalization

Pros: Simplicity and fast processing speed

Cons: Noise amplification

Polarimetric
dehazing

Pros: High restoration quality

Cons: Complex configuration of experimental
equipment

Dark channel prior
Pros: High restoration quality and efficacy

Cons: Failures in sky regions

Image fusion

Pros: Circumvention of challenging
estimation process, efficacy, and fast
processing speed

Cons: Tradeoff between restoration quality
and hardware friendliness

Color ellipsoid
prior

Pros: High restoration quality and robustness
to noise

Cons: Probable artifacts in dense-haze regions

Patch similarity
Pros: High restoration quality and versatility

Cons: Probable ringing artifacts

Machine
learning

Regression
Pros: Simplicity and efficacy

Cons: Data overfitting and poor performance
in dense-haze regions

Regularization

Pros: Robustness to overfitting and high
restoration quality

Cons: Prolonged processing time and
probable color distortion

Probabilistic
graphical model

Pros: Facilitation of the analysis of complex
data distributions

Cons: High algorithmic complexity and
probable color distortion

Searching-based
optimization

Pros: High restoration quality

Cons: Prolonged processing time

Radial basis
function

Pros: High restoration quality

Cons: Prolonged processing time

Non-local haze-line
prior

Pros: High restoration quality

Cons: Tradeoff between restoration quality
and processing time
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Table 1. Cont.

Category Typical
Techniques Pros and Cons

Deep
learning

Convolutional
neural network

Pros: Spatial invariance and high restoration
quality

Cons: Poor performance in heterogeneous
lighting conditions and probable
domain-shift problem

Generative
adversarial
network

Pros: High restoration quality

Cons: Unstable training phase and probable
domain-shift problem

Zero-shot learning
Pros: High restoration quality and
elimination of training phase

Cons: Prolonged inference time

3. Current Difficulties

Visibility restoration is an active research area attracting diverse scientific efforts,
owing to its ill-posed nature. Although various algorithms covering manifold approaches
have been proposed, difficulties that hinder the current progress of visibility restoration
persist. Accordingly, this section describes three main issues worthy of collaborative effort.

3.1. Real-Time Processing

An image processing algorithm would be a workable solution to a particular problem
if it could meet the real-time processing requirements, which is, the capability to handle at
least 25 fps and fit into an end-device with limited computing resources. Similar to our
previous research [54], six dehazing methods corresponding to three main categories were
selected to evaluate the processing time. This experiment was conducted on a computer
with an Intel Core i9-9900K (3.6 GHz) CPU, 64 GB RAM, and NVIDIA TITAN RTX GPU.
Because all of the methods involved were publicized in the MATLAB source code, MATLAB
R2019a was used as the simulation environment. The results shown in Table 2 demonstrate
that none of the methods could handle images in real time. The fastest algorithm that
was proposed by Kim et al. [36] can process a 640 × 480 image at 6.25 fps (= 1/0.16)
and a 4096× 2160 image at 0.21 fps (≈1/4.81). This processing speed is far below the
real-time requirement of 25 fps, whih suggests that the software implementation is quite
impracticable, despite the quick development time.

Table 2. Processing time in seconds of different dehazing methods for various image sizes.

Category Method
Image Size

640 × 480 800 × 600 1024 × 768 1920 × 1080 4096 × 2160

Image processing
Kim et al. [36] 0.16 0.29 0.43 1.01 4.81

Bui and Kim [50] 0.32 0.52 0.86 2.37 10.06

Machine learning
Zhu et al. [52] 0.22 0.34 0.55 1.51 6.39

Ngo et al. [54] 0.18 0.34 0.49 1.13 5.77

Deep learning
Cai et al. [85] 1.53 2.39 3.88 10.68 47.35

Ren et al. [89] 0.54 0.88 1.53 3.43 17.90
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Moreover, software implementation appears to be inappropriate for real-time visibility
restoration because this type of image processing algorithm is typically considered a pre-
processing step for high-level computer-vision tasks. Accordingly, it is strictly constrained
by the processing time and computing resource utilization. However, the porting of visibil-
ity restoration algorithms to target end-devices requires expensive computing elements,
owing to the floating-point computations. Even though the source code can be converted to
fixed-point representation in advance, the porting is still inefficient. Hence, the hardware
implementation is a viable alternative, and FPGA prototypes have garnered increasing
interest, owing to their programmability. Shiau et al. [106], Zhang and Zhao [107], and
Ngo et al. [54,108] presented typical hardware implementations of visibility restoration algo-
rithms. It is currently observed that image-processing-based and machine-learning-based
algorithms favor the hardware implementation phase, whereas deep-learning-based algo-
rithms hinder the realization of their hardware counterparts. In the literature, Eyeriss [109]
and its successor [110] provided an energy-efficient framework for designing deep neural
networks. However, they primarily favor detection or classification tasks, and attaining
real-time processing is still challenging. The facilitation of the hardware implementation
of deep-learning-based algorithms is an active research area. Recent efforts include fpga-
ConvNet, Caffeine, and CNN2Gate that were developed by Venieris and Bouganis [111],
Zhang et al. [112], and Ghaffari and Savaria [113], respectively. These frameworks facil-
itated FPGA prototypes of deep neural networks that were designed using well-known
libraries, such as PyTorch and Caffe. Nonetheless, the optimization of hardware resource
utilization and real-time processing are challenging problems that require conscious effort.

3.2. Training Dataset

With the increasing research trend towards data-driven algorithms, the role of the
training dataset has become crucial. Specifically, in the field of visibility restoration in
adverse weather conditions, the acquisition of a reliable dataset appears to be unattain-
able because capturing the same scene under different weather conditions is impossible.
Accordingly, researchers have circumvented this challenging issue by utilizing synthetic
training datasets. Figure 14 illustrates a procedure for creating a synthetic training dataset
that is based on the simplified Koschmieder model. Clear images are widely available in
image-sharing services such as Google Images or Flickr. Hence, researchers have utilized
pseudo-random number generators to draw the atmospheric light and medium transmit-
tance (or equivalently the scene depth) from an assumed distribution (for example, uniform
or Gaussian). Subsequently, they have substituted those quantities into Equation (5) to
obtain the hazy synthetic images. This procedure has been employed in several machine-
learning-based and deep-learning-based methods, for example, those that were proposed
by Zhu et al. [52], Tang et al. [55], Cai et al. [85], and Ren et al. [89,90].

As the imaging technology advances, depth cameras and stereo cameras have been
leveraged to capture the scene depth, partly facilitating synthetic datasets. The NYU Depth
v2 dataset that was instituted by Silberman et al. [114] comprises indoor images with
their corresponding scene depths captured by the Kinect camera. This dataset has been
widely employed in the literature to train machine-learning-based and deep-learning-based
models, for example, the task-oriented dehazing network that was designed by Li et al. [97].
Moreover, specialized vapor generators have come into practice to resemble optical hazy
image formation. In this manner, Ancuti et al. [115–117] instituted three real datasets
covering indoor, outdoor, and indoor-outdoor images. Although these datasets appear
to be usable in training deep neural networks, the fundamental difference in suspended
particle diameters may cause the domain-shift problem. As a result, the preparation
of training datasets remains a challenging problem worthy of further research. Before
discussing another aspect, this paper tabulates datasets introduced thus far in Table 3 for
easy reference.
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The simplified Koschmieder model

Clear image
Atmospheric 

light
Transmittance Hazy image

Training DatasetTraining Model
Supervised Learning

Figure 14. Typical procedure for preparing the synthetic training dataset.

Table 3. Summary of usable training datasets mentioned in this section.

Dataset Authors Description Available at

NYU
Depth v2

Silberman
et al. [114]

Indoor images and corresponding
scene depths captured by Kinect
camera

https://cs.nyu.edu/~silberman/
datasets/nyu_depth_v2.html (accessed
on 19 January 2021)

O-HAZE Ancuti
et al. [115]

Pairs of outdoor real hazy and
haze-free images

https://data.vision.ee.ethz.ch/cvl/
ntire18//o-haze/ (accessed on 21
January 2021)

I-HAZE Ancuti
et al. [116]

Pairs of indoor real hazy and haze-free
images

https://data.vision.ee.ethz.ch/cvl/
ntire18//i-haze/ (accessed on 21
January 2021)

Dense-Haze Ancuti
et al. [117]

Pairs of both outdoor and indoor real
hazy and haze-free images

https://data.vision.ee.ethz.ch/cvl/
ntire19//dense-haze/ (accessed on 21
January 2021)

Other scientific attempts are to alleviate the strict requirement of paired datasets in su-
pervised learning. The semi-supervised learning that is presented by Li et al. [95] trains the
network with two different branches, including a supervised branch with a paired dataset
and an unsupervised branch with only real data. The performance of the unsupervised
learning branch depends on the loss functions. Accordingly, Li et al. [95] leveraged the dark
channel’s sparsity and TV to enforce the network to generate images with similar statistical
properties as clean images. Golts et al. [103] also exploited the dark channel’s sparsity to
devise a wholly unsupervised model for single-image dehazing. However, image artifacts
might affect the results, as interpreted by Li et al. [95] in their analysis of the unsupervised
loss functions. Ignatov et al. [118] introduced weakly supervised learning, in which the
output image was converted back to the input domain via an additional generator for
comparison with the input image. The VGG-19 network [119] was utilized to form the
content loss function in the input domain. This loss function was then combined with the
output loss functions to jointly train the network. The physics-based GAN [98] discussed
earlier also followed this weakly supervised learning scheme. Shao et al. [120] adopted
the same unsupervised loss function as Li et al. [95] and exploited image translation to
bridge the gap between real and synthetic domains. Their work demonstrated promising
results in overcoming the domain-shift problem. Despite significant efforts thus far, future
research into training dataset preparation and learning schemes is deemed to be a crucial
requisite for improving the restoration quality.

https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
https://data.vision.ee.ethz.ch/cvl/ntire18//o-haze/
https://data.vision.ee.ethz.ch/cvl/ntire18//o-haze/
https://data.vision.ee.ethz.ch/cvl/ntire18//i-haze/
https://data.vision.ee.ethz.ch/cvl/ntire18//i-haze/
https://data.vision.ee.ethz.ch/cvl/ntire19//dense-haze/
https://data.vision.ee.ethz.ch/cvl/ntire19//dense-haze/
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3.3. Image Formation Model

Image formation in a particular environment is a complex phenomenon that involves
various factors, such as the lighting conditions, medium characteristics, object proper-
ties, and imaging sensor attributes. The simplified Koschmieder model described earlier
was devised based on several assumptions, for example, the atmosphere was homoge-
neous, and the scattering of reflected light was insignificant. As a result, the majority
of visibility restoration algorithms demonstrated poor performance in heterogeneous
conditions. Although studies addressing this challenging problem did exist, they were
application-specific. Hu et al. [82] tackled glow-shaped environmental illumination in sea
fog images while using image decomposition. Similarly, Chiang and Chen [22] employed
foreground/background segmentation to deal with artificial light sources in underwater
images. Nevertheless, extending these methods to a general case is nontrivial and requires
further effort.

Additionally, noise within the digital camera workflow also affects digital image
formation. This untoward phenomenon merits consideration. In the literature, Lee et al. [57]
considered the demosaicking artifacts and sensor noises to devise a robust algorithm.
Wu et al. [69] addressed the noise amplification problem by removing haze and noise in a
joint recovery scheme. Despite the efficacy of noise and artifact suppression, these methods
failed to consider the heterogeneous transmission medium. Accordingly, an accurate model
describing optical image formation is still in great demand. This model will benefit diverse
image restoration tasks and alleviate the current problem in training datasets. In this
context, an accurate model provides an efficient tool for synthesizing degraded images,
which can be used to build a reliable paired dataset for supervised learning.

4. Proposed Dehazing Framework

An effective algorithm for visibility restoration in poor weather conditions is still in
great demand, as witnessed by the aforementioned review. Knowledge-driven methods
can yield satisfactory results, but it may fail in particular circumstances (for example, scenes
with a big sky). Similarly, data-driven methods can also produce passable results, but
they may be prone to the domain-shift problem. Hence, this section presents a machine-
learning-based framework that can balance the untoward effects of knowledge-driven and
data-driven methods.

Figure 15 illustrates the diagram of the proposed framework, in which green blocks
denote offline computations and blue blocks denote online computations. This framework
generalizes the work that was presented by Zhu et al. [52] in color attenuation prior
by considering the scene depth estimation with several haze-relevant features. First, to
address the domain-shift problem, the hazy and haze-free datasets were processed by a data
cleaning step to solely extract the representative hazy and haze-free patches. Subsequently,
the haze-free patches underwent the procedure depicted in Figure 14 to create a paired
dataset that was used in a supervised learning scheme (that is, MLE) to estimate the scene
depth estimator’s parameters. The hazy patches were jointly employed with the depth
estimator to determine features that were most pertinent to haze. The online computations
were principally similar to those that were utilized by Zhu et al. [52] with the following
distinctions. The efficient quadtree-decomposition algorithm [121] and the modified hybrid
median filter [36] were utilized for atmospheric light estimation and scene depth refinement.
Additionally, adaptive tone remapping [122] was exploited to post-process the dehazed
image, restoring the image vividness. The following subsections will describe these issues.
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Figure 15. Proposed dehazing framework based on a machine learning technique.

4.1. Data Cleaning Based on Haze-Relevant Features

It is observed that hazy images can contain haze-free regions that are generally located
near the camera. In contrast, haze-free images can contain regions that are hazy or exhibit
characteristics that are similar to haze. For example, clouds or white objects may be
misinterpreted as haze, owing to the high similarity in their appearance. As a result, using
the entire images or their extracted patches to train the machine-learning or deep-learning
models is subject to the domain-shift problem and may result in inaccurate training. This
study adopted the data cleaning method that was proposed by Choi et al. [41] to solely
extract representative hazy/haze-free patches from the corresponding hazy/haze-free
images. In their work, Choi et al. [41] employed 12 haze-relevant features denoted as fi,
where i ∈ Z∩ [1, 12]. The data cleaning step aimed to select image patches that maximized
the amount of information conveyed by haze-relevant features. For a particular feature
fi(k), where k ∈ Z ∩ [1, K] and K denoted the total number of image patches within an
image, min-max normalization was conducted, such that 0 ≤ fi(k) ≤ 1. Choi et al. [41]
selected representative hazy patches satisfying the condition fi(k) ≤ f̄i, where f̄i denoted
the average of the feature fi over all K patches. In contrast, they selected representative
haze-free patches that satisfied the opposite condition fi(k) > f̄i.

Figures 16 and 17 demonstrate the selection of representative hazy/haze-free patches
while using only six haze-relevant features for ease of illustration. The employed features
were mean subtracted contrast normalized, sharpness, contrast, entropy, DCP, and saturation.
The patch size was set to 111× 111. The hazy image that is depicted in Figure 16 contains
two distinct regions, which is, a close-field region of a clear rooftop and a far-field region of
a hazy city spot. The selected patches that are depicted in Figure 16g were chosen as an
intersection of all selected patches using individual features, effectively omitting the haze-
free region. Conversely, the haze-free image depicted in Figure 17 contains an immense
sky with properties similar to those of haze. Accordingly, the selected patches depicted in
Figure 17g only cover the light aircraft and demonstrate the selection scheme’s efficacy.

It is noteworthy that the feature extraction step shown in Figure 15 utilizes the for-
mulas presented by Choi et al. [41] to calculate the haze-relevant features. Therefore, this
paper does not rephrase those formulas, and interested readers can refer to Choi et al. [41]
for a full description.
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(a) (b) (c)

(d) (e) (f) (g)
Figure 16. Selection of representative hazy patches based on: (a) mean subtracted contrast nor-
malized, (b) sharpness, (c) contrast, (d) entropy, (e) dark channel prior, and (f) saturation features.
(g) Selected patches.

(a) (b) (c)

(d) (e) (f) (g)
Figure 17. Selection of representative haze-free patches based on: (a) mean subtracted contrast
normalized, (b) sharpness, (c) contrast, (d) entropy, (e) dark channel prior, and (f) saturation features.
(g) Selected patches.

4.2. Scene Depth Estimation

In the work of color attenuation prior, Zhu et al. [52] postulated that the scene depth
closely correlated with the difference between the image saturation and brightness. There-
fore, they modeled the scene depth as a linear combination of the image saturation and
brightness. This study leveraged the findings of Choi et al. [41] to extend the previ-
ous postulate, so that the scene depth could be modeled as a linear combination of all
12 haze-relevant features, as illustrated in Equation (6).

d(x) = θ0 +
F

∑
i=1

θi fi(x) + ε(x), (6)

where θ0 denotes the bias, θi denotes the linear coefficient that is associated with the haze-
relevant feature fi, F denotes the number of features utilized to estimate the scene depth
d, and ε ∼ N(0, σ2) denotes the model error following Gaussian distribution with zero
mean and σ2 variance. Accordingly, the scene depth also follows a Gaussian distribution
and it can be expressed as d ∼ N(θ0 + ∑F

i=1 θi fi, σ2). Hence, the linear coefficient θi can be
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estimated by minimizing the model error. For this purpose, Zhu et al. [52] assumed that
the random error at individual scene points was independent and identically distributed,
consequently resulting in the likelihood L, as follows:

L =
N

∏
j=1

1√
2πσ2

exp

−drj −
[
θ0 + ∑F

i=1 θi fi(j)
]

2σ2

, (7)

where drj denotes the ground-truth reference of the scene depth corresponding to the jth
scene point and N denotes the total number of scene points. Minimizing the model error is
implicitly attainable by maximizing the likelihood, and it is more convenient to maximize
the natural logarithm of the likelihood. The optimization problem is now expressed as

argmax
θ0,θi ,σ2

ln(L) =
N

∑
j=1

ln

 1√
2πσ2

exp

−drj −
[
θ0 + ∑F

i=1 θi fi(j)
]

2σ2


. (8)

Following Zhu et al. [52], the values of θ0, θi, and σ2, which maximize the natural
logarithm of the likelihood, are given as

σ2 =
1
N

N

∑
j=1

{
drj −

[
θ0 +

F

∑
i=1

θi fi(j)

]}2

, (9)

θ0 := θ0 + ρ
∂ln(L)

∂θ0
, (10)

θi := θi + ρ
∂ln(L)

∂θi
, (11)

where ρ denotes a hyper-parameter known as the learning rate, and the partial derivatives
are as follows:

∂ln(L)
∂θ0

=
1
σ2

N

∑
j=1

{
drj −

[
θ0 +

F

∑
i=1

θi fi(j)

]}
, (12)

∂ln(L)
∂θi

=
1
σ2

N

∑
j=1

fi(j)

{
drj −

[
θ0 +

F

∑
i=1

θi fi(j)

]}
. (13)

Notably, the linear coefficients are updated dynamically; hence, the notation := is
used in Equations (10) and (11). Moreover, instead of the stochastic gradient ascent algo-
rithm that was employed by Zhu et al. [52], this study exploited the mini-batch gradient
ascent algorithm, as described in Algorithm 1. The conditional statement inside the inner
loop covers the case when the total scene point N is not divisible by the batch size BS.
Additionally, the statement “check for termination” determines when to stop the iteration.
It jointly tests whether the successive changes in linear coefficients and log-likelihood
are below a pre-determined stop criterion. In this study, 108 scene points constituted the
synthetic training dataset, which was, N = 108. The number of epochs EP, batch size BS,
learning rate ρ, and stop criterion were set to 105, 6× 105, 10−8, and 10−5, respectively.
Initially, the estimation process involved all 12 features. Subsequently, because each feature
exerted a different influence over the scene depth, a correlation analysis was necessary
to determine the most pertinent features. The correlation coefficients between individual
features and the estimated scene depth were calculated and sorted in descending order
using representative hazy patches. According to the number of employed features F, the
corresponding top F features were selected to construct the final model for scene depth
estimation. This process reduced the computational burden to a certain extent. In this study,
the top four features, including the saturation, brightness, dark channel, and local variance,
were selected. The best learning results were obtained after 315 epochs: θ0 = −0.5770,
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θ1 = 0.7243, θ2 = −0.3685, θ3 = 1.5210, and θ4 = 0.9042. Finally, the modified hybrid
median filter was used to refine the estimated scene depth, enforcing smoothness while
retaining edges.

Algorithm 1 Mini-batch gradient ascent.

Input: The number of employed features F, the training feature vector fi ∈ RN×1, the
training ground-truth depth vector dr ∈ RN×1, the number of epochs EP, the batch
size BS, and the learning rate ρ

Output: The estimates of θ0, θi, and σ2

1: Initialization ei = 0, bn = dN/BSe, θ0 and θi are initialized with random values
drawn from N(0, 10−2)

2: while ei < EP do
3: bi = 0
4: while bi < bn do
5: if bi < bn− 1 then

6: σ2 = BS−1 ∑
(bi+1)×BS−1
j=bi×BS

{
drj −

[
θ0 + ∑F

i=1 θi fi(j)
]}2

7: θ0 = θ0 + ρσ−2 ∑
(bi+1)×BS−1
j=bi×BS

{
drj −

[
θ0 + ∑F

i=1 θi fi(j)
]}

8: θi = θi + ρσ−2 ∑
(bi+1)×BS−1
j=bi×BS fi(j)

{
drj −

[
θ0 + ∑F

i=1 θi fi(j)
]}

9: check for termination
10: else
11: σ2 = (N − bi× BS)−1 ∑N−1

j=bi×BS

{
drj −

[
θ0 + ∑F

i=1 θi fi(j)
]}2

12: θ0 = θ0 + ρσ−2 ∑N−1
j=bi×BS

{
drj −

[
θ0 + ∑F

i=1 θi fi(j)
]}

13: θi = θi + ρσ−2 ∑N−1
j=bi×BS fi(j)

{
drj −

[
θ0 + ∑F

i=1 θi fi(j)
]}

14: check for termination
15: end if
16: bi = bi + 1
17: end while
18: ei = ei + 1
19: end while

4.3. Atmospheric Light Estimation

According to Equation (5), the atmospheric light is mathematically associated with a
pixel at infinite depth, because the transmittance approaches zero as the scene depth goes
to infinity. More specifically, d→ ∞ leads to t = e−βd → 0, and Equation (5) yields I = A.
However, the practical imaging devices cannot capture scene information at an infinite
depth. Accordingly, researchers usually investigate pixels at a considerable distance to
estimate the atmospheric light. Those pixels are widely regarded as the most opaque region
in the image. He et al. [21] selected the top 0.1% brightest pixels in the dark channel and
considered them the most opaque pixels. The atmospheric light was then the pixel with
the highest intensity in the input image. Zhu et al. [52] adopted a similar procedure to
He et al. [21]. The only difference was that the estimated scene depth was used instead of
the dark channel. Despite the widely recognized efficacy, these methods may fail in scenes
with bright objects. Figure 18a demonstrated that the method employed by Zhu et al. [52]
misinterpreted the bright side of a building as the atmospheric light. The red pixels are the
top 0.1% brightest pixels in the estimated scene depth, and they are not the farthest pixels.
Accordingly, the estimate of atmospheric light is incorrect in this case, regardless of which
pixel among the top 0.1% is selected.
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Park et al. [121] presented an efficient algorithm that was based on quadtree-decomposition
to address the aforementioned issue. This algorithm divides the input image into quarters
and repeats the decomposition in the quarter with the highest average luminance. This
process terminates when the quarter size is less than a predetermined value. In the last
quarter before termination, the atmospheric light is the pixel with the smallest distance
to the white point in the RGB color space. Figure 18b demonstrated that the quadtree-
decomposition algorithm that was utilized by Park et al. [121] produced a correct estimate
of atmospheric light (that was, the red dot in the upper half). This accuracy is attributed
to decomposition that is based on the average luminance. As illustrated in Figure 18b,
the bright side of a building is next to the shady side; hence, the average luminance of
the corresponding quarter is reduced. Furthermore, the estimated atmospheric light was
compensated according to the scheme that was proposed by Ngo et al. [54] to avoid the
post-dehazing false enlargement of white objects.

(a) (b)
Figure 18. Atmospheric light estimation procedure utilized by: (a) Zhu et al. [52]–red pixels be-
longs to the top 0.1% brightest pixels, and (b) Park et al. [121]—blue lines represent the quadtree-
decomposition process, and the red dot represents the atmospheric light’s estimate.

Using the scene depth and atmospheric light estimates, the haze-free image can be
recovered through the simplified Koschmieder model. However, this restoration step
generally causes overflows and underflows, consequently reducing the image dynamic
range. Although a simple tone remapping technique employed by Tarel and Hautiere [35]
can solve this problem, only enhancing the luminance channel might cause color distortion.
Therefore, this study exploited a more sophisticated method, known as adaptive tone
remapping (ATR), which was proposed by Cho et al. [122], to post-process the recovered
image. ATR enhances the luminance and then emphasizes the chrominance accordingly to
address the color distortion problem. Interested readers can refer to Cho et al. [122] for a
clear and concise description.

4.4. Evaluation with State-of-the-Art Methods
4.4.1. Employed Datasets

This study employed synthetic and real datasets to assess the proposed dehaz-
ing framework and other state-of-the-art benchmark methods. FRIDA2 [123] and D-
HAZY [124] are the synthetic datasets. The former includes 66 haze-free images of road
scenes, and it is developed for advanced driver-assistance systems using specialized soft-
ware, known as SiVIC™. Haze-free images are subsequently modified by the simplified
Koschmieder model and its variants to create four sets of 66 hazy images, namely ho-
mogeneous, heterogeneous, cloudy homogeneous, and cloudy heterogeneous sets. The
latter embodies 1472 clear indoor images and their corresponding depth maps that were
captured by a Kinect camera. The simplified Koschmieder model was also adopted to
synthesize the hazy images.

The real datasets are IVC [125], O-HAZE [115], and I-HAZE [116]. The IVC dataset
includes 25 images covering a wide range of objects, such as humans, animals, landscapes,
and road scenes. The O-HAZE and I-HAZE datasets include 45 and 30 images of outdoor
and indoor spots, respectively. The haze was introduced into clear scenes using a special-
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ized vapor generator. Table 4 presents a summary of the datasets that were employed for
algorithm performance evaluation.

Table 4. Summary of the datasets employed for evaluation. NA stands for not available.

Type Dataset Hazy Images (#) Haze-Free Images (#) Ground Truth

Synthetic
FRIDA2 264 66 Yes

D-HAZY 1472 1472 Yes

Real
IVC 25 NA No

O-HAZE 45 45 Yes

I-HAZE 30 30 Yes

4.4.2. Qualitative Evaluation

As the qualitative evaluation is highly subjective, coupled with the fact that all dehaz-
ing algorithms can exhibit good results on general outdoor images, visually assessing their
dehazing performance is challenging. Accordingly, this subsection provides a comparative
assessment using images that may cause untoward results.

Figure 19 shows a qualitative comparison of the results with eight typical algo-
rithms that were developed by Tarel and Hautiere [35], He et al. [21], Kim et al. [36],
Bui and Kim [50], Zhu et al. [52], Ngo et al. [74], Cai et al. [85], and Ren et al. [89]. The
hazy image in Figure 19a is a real scene depicting an approaching train with bright head-
lights, posing challenges for estimating the atmospheric light. The region of interest was
highlighted by a red rectangle, and its enlarged version was exhibited next to the image.
A conspicuous problem was the post-dehazing false enlargement of the train headlight,
arising in the results by He et al. [21], Bui and Kim [50], and Ngo et al. [74], as depicted in
Figure 19c,e,g, respectively. Additionally, the result by Tarel and Hautiere [35] exhibited
halo artifacts around fine details and background noises. Kim et al. [36] improved this
method to address halo artifacts, but the background noise persisted. Furthermore, the
result by Zhu et al. [52] was too dark, and the result of Ren et al. [89] was slightly bluish.
DehazeNet, which was designed by Cai et al. [85], produced a satisfactory result, because
the haze was removed effectively in both near and distant regions. The proposed frame-
work generated an acceptable result; however, it left more haze in the distant region than
DehazeNet.

Figure 20 illustrates another qualitative comparison. The hazy image shown in
Figure 20a is a real hazy scene depicting mountains with bright objects in the background
(a snowy mountain and the sky). A practical problem herein is the color distortion, as
depicted in the results that were produced by the methods developed by Tarel and Hau-
tiere [35], He et al. [21], Kim et al. [36], Bui and Kim [50], Zhu et al. [52], Cai et al. [85], and
Ren et al. [89]. The sky either turned bluish or exhibited untoward colors, and the front
mountain turned dark blue. Only the results of Ngo et al. [74] and the proposed framework
appeared to be acceptable.

Figure 21 demonstrates the dehazing performance of the proposed framework with
that of eight state-of-the-art benchmark methods. The input image shown in Figure 21a
is a real road scene covered by a moderate haze. It was observed that the results by
Tarel and Hautiere [35], He et al. [21], Kim et al. [36], Bui and Kim [50], and Zhu et al. [52]
exhibited color distortion in the sky at different degrees. This problem also existed in the
results of Ngo et al. [74], Cai et al. [85], Ren et al. [89], and the proposed framework, but it
did not significantly affect the general visibility.

In addition to the qualitative comparison of real hazy scenes, Figure 22 demonstrates
the dehazing performance on a synthetic road scene. Figure 22a,k show the hazy image
and the corresponding ground truth. It was observed that the results by Kim et al. [36],
Zhu et al. [52], Cai et al. [85], and the proposed framework suffered from the loss of
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dark details. According to the observation of the car tires and door handles, the method
that was developed by Zhu et al. [52] exhibited the highest degree of the loss of dark
details, followed by those developed by Cai et al. [85], Kim et al. [36], and the proposed
framework, in descending order. Moreover, although the algorithm that was proposed by
Tarel and Hautiere [35] demonstrated good visibility, halo artifacts at fine edges posed diffi-
culties for human perception. Additionally, among the impressive results by He et al. [21],
Bui and Kim [50], and Ren et al. [89], the result of Bui and Kim [50] exhibited the best
visibility. Despite the exceptional dehazing performance, the detailed information of both
near and distant objects was well-preserved.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Figure 19. A qualitative comparison of different dehazing methods on a real hazy image of a train. (a) Hazy image,
and results by (b) Tarel and Hautiere [35], (c) He et al. [21], (d) Kim et al. [36], (e) Bui and Kim [50], (f) Zhu et al. [52],
(g) Ngo et al. [74], (h) Cai et al. [85], (i) Ren et al. [89], and (j) the proposed framework.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Figure 20. A qualitative comparison of different dehazing methods on a real hazy image of mountains. (a) Hazy image,
and results by (b) Tarel and Hautiere [35], (c) He et al. [21], (d) Kim et al. [36], (e) Bui and Kim [50], (f) Zhu et al. [52],
(g) Ngo et al. [74], (h) Cai et al. [85], (i) Ren et al. [89], and (j) the proposed framework.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Figure 21. A qualitative comparison of different dehazing methods on a real hazy image of a road scene. (a) Hazy image,
and results by (b) Tarel and Hautiere [35], (c) He et al. [21], (d) Kim et al. [36], (e) Bui and Kim [50], (f) Zhu et al. [52],
(g) Ngo et al. [74], (h) Cai et al. [85], (i) Ren et al. [89], and (j) the proposed framework.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k)
Figure 22. A qualitative comparison of different dehazing methods on a synthetic hazy image of a road scene. (a) Hazy
image, results by (b) Tarel and Hautiere [35], (c) He et al. [21], (d) Kim et al. [36], (e) Bui and Kim [50], (f) Zhu et al. [52],
(g) Ngo et al. [74], (h) Cai et al. [85], (i) Ren et al. [89], (j) and the proposed framework, and (k) ground truth.

Another qualitative comparison of nine dehazing methods was conducted while
using a synthetic image of an indoor scene. Figure 23a,k depict the hazy image and
its corresponding ground truth, respectively. Except for the result of Bui and Kim [50],
all of the results by other authors and the proposed framework exhibited a satisfactory
restoration quality. The result by He et al. [21] demonstrated a high similarity with the
ground truth, followed by those of Kim et al. [36], Zhu et al. [52], Ngo et al. [74], and
Tarel and Hautiere [35]. In this case, the result by the proposed framework was on par with
those by Cai et al. [85] and Ren et al. [94].

A qualitative comparison of different dehazing methods using the real and synthetic
images revealed that image-processing-based or machine-learning-based methods tended
to produce results favoring human perception. In contrast, deep-learning-based meth-
ods exhibited an average performance. This finding might be interpreted, as follows.
Image-processing-based and machine-learning-based algorithms were developed from
handcrafted features of hazy and haze-free images, resulting from researchers’ manual
analyses. Hence, these features were highly perceptible to human visual systems because
they typically comprised essential aspects of images, such as contrast, sharpness, and color-
fulness. However, deep-learning-based algorithms learnt image features from the training
dataset; hence, they were prone to the domain-shift problem. Although image-processing-
based and machine-learning-based methods usually favor human visual systems, they may
also be beset with noticeable artifacts in unpropitious circumstances.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k)
Figure 23. A qualitative comparison of different dehazing methods on a synthetic hazy image of an indoor scene. (a) Hazy
image, results by (b) Tarel and Hautiere [35], (c) He et al. [21], (d) Kim et al. [36], (e) Bui and Kim [50], (f) Zhu et al. [52],
(g) Ngo et al. [74], (h) Cai et al. [85], (i) Ren et al. [89], (j) and the proposed framework, and (k) ground truth.

4.4.3. Quantitative Evaluation

The human subjective assessment is the most accurate method for evaluating the
performance of algorithms; however, it is laborious and unrepeatable. Hence, IQA metrics
were developed. For the dataset without the corresponding ground truth, such as IVC,
this study employed the blind IQA metrics that were proposed by Hautiere et al. [126],
known as the rate of new visible edges (e) and the quality of contrast restoration (r). These
two metrics were calculated according to the invisible edges in the original image, which
became visible in the restored image. Therefore, higher e and r values signified better
restoration quality. However, notably, Hautiere et al. [126] defined a local-contrast threshold
of 5% to determine whether edges were visible. Accordingly, the e and r metrics were
slightly prone to noise, for example, background noises and halo artifacts. Consequently,
the quantitative results that are associated with these blind IQA metrics do not necessarily
correspond to the qualitative results presented earlier.

For datasets containing ground-truth references, the feature similarity index ex-
tended to color images (FSIMc) and the tone-mapped image quality index (TMQI) were
adopted to assess the dehazing performance. Zhang et al. [127] proposed the FSIMc
to improve the well-known structural similarity index. The TMQI was developed by
Yeganed and Wang [128] to assess the dynamic range of the restored image when compared
to the ground-truth HDR image. Therefore, high FSIMc and TMQI scores are favorable
in the visibility restoration field. Although FSIMc and TMQI are more statistically robust
than e and r, they do not necessarily correspond to the human visual system, because they
indeed assess the degradation level.

Table 5 demonstrates the dehazing performance of the proposed framework and the
eight benchmark methods on the FRIDA2 dataset. The top three results are boldfaced
with red, green, and blue in descending order. The methods of Bui and Kim [50] and
Ren et al. [89] exhibited the best performance in terms of TMQI and FSIMc, respectively.
Additionally, after poring over the results, this study concluded that deep-learning-based
methods demonstrated high quantitative results. Furthermore, there was room for improve-
ment in this case, because the highest score was approximately 0.8, whereas it could reach
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the ideal value of 1. For the synthetic dataset of the road scene, the proposed framework
exhibited comparative performance in terms of FSIMc and slightly poor performance in
terms of TMQI.

Table 5. Quantitative evaluation results of different dehazing methods on the FRIDA2 dataset.

Method Metric
Haze Type 1

Type 1 Type 2 Type 3 Type 4 Overall Average

Tarel and Hautiere [35]
TMQI 0.7259 0.7310 0.7312 0.7373 0.7314

FSIMc 0.7833 0.7725 0.7567 0.8104 0.7807

He et al. [21]
TMQI 0.7639 0.6894 0.6849 0.7781 0.7291

FSIMc 0.8168 0.7251 0.7222 0.8343 0.7746

Kim et al. [36]
TMQI 0.7320 0.7037 0.7015 0.7343 0.7179

FSIMc 0.8048 0.7805 0.7751 0.8134 0.7935

Bui and Kim [50]
TMQI 0.7973 0.6956 0.6785 0.8163 0.7469 2

FSIMc 0.8106 0.7057 0.6955 0.8427 0.7636

Zhu et al. [52]
TMQI 0.7533 0.7254 0.7080 0.7674 0.7385 2

FSIMc 0.7947 0.7845 0.7764 0.8117 0.7918

Ngo et al. [74]
TMQI 0.7005 0.6976 0.6867 0.7135 0.6996

FSIMc 0.7950 0.8014 0.7931 0.8078 0.7993 2

Cai et al. [85]
TMQI 0.7398 0.7307 0.7119 0.7592 0.7354 2

FSIMc 0.7987 0.7886 0.7778 0.8199 0.7963 2

Ren et al. [89]
TMQI 0.7165 0.7275 0.7094 0.7393 0.7232

FSIMc 0.8044 0.7922 0.7831 0.8239 0.8009 2

Proposed framework
TMQI 0.7027 0.6917 0.6797 0.6707 0.6862

FSIMc 0.8013 0.7852 0.7890 0.7771 0.7882

1 Types 1, 2, 3, and 4 are homogeneous, heterogeneous, cloudy homogeneous, and cloudy heterogeneous, respectively. 2 The top three
results are boldfaced with red, green, and blue in descending order.

Table 6 summarizes the average scores of IQA metrics on the IVC, D-HAZY, O-
HAZE, and I-HAZE datasets. The top three results are boldfaced in red, green, and blue, in
descending order. For the IVC dataset, the method of Bui and Kim [50] exhibited the highest
e and r scores, followed by the methods of Tarel and Hautiere [35] and Kim et al. [36].
Nonetheless, it was observed in the qualitative comparison that these methods were prone
to noise and artifacts. These untoward components were misinterpreted as visible edges
and subsequently contributed to the high scores of e and r. Meanwhile, the remaining
methods demonstrated a comparative performance. For the synthetic indoor dataset, like
D-HAZY, the methods of Bui and Kim [50] and He et al. [21] exhibited the best performance
in terms of TMQI and FSIMc, respectively. Because these two methods produced artifacts
in the sky, the high performance with the synthetic indoor dataset was explicable. Notably,
these findings are consistent with the results that were reported by Ancuti et al. [124]. For
the real outdoor and indoor datasets (O-HAZE and I-HAZE), the proposed framework
demonstrated the best performance, being on par with the deep-learning-based method of
Ren et al. [89]. Despite the impressive results of quantitative comparison, it could only be
concluded that the proposed framework possessed a comparative performance, and there
was room for future development.
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Table 6. Quantitative evaluation results of different dehazing methods on the IVC, D-HAZY, O-HAZE, and I-HAZE datasets.

Dataset IVC D-HAZY O-HAZE I-HAZE

Method

Metric
e r TMQI FSIMc TMQI FSIMc TMQI FSIMc

Tarel and Hautiere [35] 1.30 3 2.15 3 0.8000 0.8703 0.8416 0.7733 0.7740 3 0.8055

He et al. [21] 0.39 1.57 0.8631 3 0.9002 3 0.8403 0.8423 3 0.7319 0.8208

Kim et al. [36] 1.27 3 2.07 3 0.8702 3 0.8590 0.6502 0.6869 0.7026 0.7879

Bui and Kim [50] 1.80 3 2.37 3 0.8799 3 0.8554 0.7655 0.7576 0.7116 0.7737

Zhu et al. [52] 0.78 1.17 0.8206 0.8880 3 0.8118 0.7738 0.7512 0.8252

Ngo et al. [74] 0.53 1.29 0.7683 0.8676 0.8616 3 0.8244 0.7756 3 0.8522 3

Cai et al. [85] 0.63 1.28 0.7932 0.8870 3 0.8413 0.7865 0.7601 0.8482

Ren et al. [89] 0.65 1.47 0.8021 0.8821 0.8645 3 0.8402 3 0.7719 0.8521 3

Proposed framework 0.62 1.55 0.7668 0.8565 0.8938 3 0.8277 3 0.8006 3 0.8618 3

3 The top three results are boldfaced with red, green, and blue in descending order.

5. Conclusions

This study collated information from existing research on visibility restoration in poor
weather conditions to identify the current research gaps. The main contribution of this
study is the comparison and classification of systematically selected studies. Additionally,
the results were tabulated and visualized to effectively transfer knowledge among image
processing researchers, practitioners, and laypeople. This study also identified the current
difficulties hindering future research, including a lack of real-time processing capability,
reliable training datasets, and accurate image formation models.

Section 4 presented a dehazing framework generalizing the color attenuation prior
by considering several haze-relevant features. This framework was efficient and it pro-
duced comparative results, as demonstrated by a meta-analysis. It was also observed that
image-processing-based and machine-learning-based methods produced results favored by
human perception. Conversely, deep-learning-based methods were trained by minimizing
the measurable distance of statistical regularities between the observed data and ground-
truth references. Accordingly, they favored quantitative assessment, as witnessed by high
scores of IQA metrics. However, because the IQA metric does not fully represent the human
visual system, the results that are produced by early deep-learning-based methods may be
less favored by human perception. With the significant advances in learning strategies, the
results that are produced by current deep-learning models are of exceptional quality.

The field is slightly stabilizing after reaching its formative stage. This study identified
that the expensive computation impeded the broad deployment of deep-learning-based
approaches, despite their outstanding performance. It was also observed that automa-
tion tools were developed to facilitate the real-time processing of deep-learning models.
Nonetheless, the attainable speed was still far below the real-time processing requirement,
and resource utilization was not optimized. In conclusion, it is deemed that collaborative
efforts are required to develop an accurate image formation model for further enhancement
of the field.
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GIF Guided Image Filter
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