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Abstract: Unmanned Aerial Vehicles (UAVs, also known as drones) have become increasingly
appealing with various applications and services over the past years. Drone-based remote sensing
has shown its unique advantages in collecting ground-truth and real-time data due to their affordable
costs and relative ease of operability. This paper presents a 3D placement scheme for multi-drone
sensing/monitoring platforms, where a fleet of drones are sent for conducting a mission in a given
area. It can range from environmental monitoring of forestry, survivors searching in a disaster
zone to exploring remote regions such as deserts and mountains. The proposed drone placing
algorithm covers the entire region without dead zones while minimizing the number of cooperating
drones deployed. Naturally, drones have limited battery supplies which need to cover mechanical
motions, message transmissions and data calculation. Consequently, the drone energy model is
explicitly investigated and dynamic adjustments are deployed on drone locations. The proposed
drone placement algorithm is 3D landscaping-aware and it takes the line-of-sight into account. The
energy model considers inter-communications within drones. The algorithm not only minimizes the
overall energy consumption, but also maximizes the whole drone team’s lifetime in situations where
no power recharging facilities are available in remote/rural areas. Simulations show the proposed
placement scheme has significantly prolonged the lifetime of the drone fleet with the least number of
drones deployed under various complex terrains.

Keywords: 3D placement; coverage problem; terrains; drone; remote sensing; energy efficiency

1. Introduction

As Unmanned Aerial Vehicles (UAVs) are getting more attractions due to their mobility,
convenience and low costs, both industry and academia have investigated and deployed
drone-related applications and services [1–4]. UAV-based remote sensing is one of those
promising applications [5–7]. Drones as camera/sensor platforms offer key advantages over
traditional spaceborne and aircraft methods. Compared to satellite observations, the drone-
based systems are more capable of having high spatial resolution images. In addition, drone
flights can be scheduled whenever the weather and hardware equipment are permitted,
as opposed to spaceborne sensing which requires that the satellite orbits back to where
the site of interest is covered [8]. As for systematic aerial photography through flights, it
requires more resources including aircraft, pilots as well as photographers and has more
constraints such as speeds and altitudes.

Due to the above-mentioned capabilities of drone-based sensing systems, drones find
many promising applications in crop science, environmental studies, remote sensing and
archaeological research [9–11].

1.1. Related Work

Most researchers focus on planning the flight trajectory of a single drone to serve the
sensing/monitoring mission. In [12], Holness et al. let DJI Phantom 2 Vision+ fly linear
transects, which were oriented over the area of interest and allowed for the collection
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of overlapping imagery. They treated overlapping as a necessary requirement for post-
processing image stitching to create the large high-resolution mosaic needed for analysis.
Authors in [13] applied multispectral, thermal and visible light imaging modules simulta-
neously for acquiring diagnostic information to serve smart farming purposes. The drone
ACSL-PF1 flew at the altitude of 100 m with the speed of 4 m s−1 over the target area.
In [14], a drone scheduling problem in which a drone flew on a fixed path was presented.
The authors proposed a dynamic algorithm to optimize the speed of the drone to complete
tasks within a certain time and without depleting its battery.

The above works produce good results with applications that only require one-time
noncontinuous data, but are not suitable with applications that require monitoring the
whole area simultaneously for a certain period of time. Studies on coordinated multi-
drone surveillance have gained increasing attention over the past years. The multi-drone
surveillance mission requires two critical problems to be resolved: drone placement and
battery endurance.

The drone placement is a coverage problem. The work in [15–17] studied the 3D
placement of drone base station. Unlike remote sensing using visual cameras, it applies
the electromagnetic (EM) wave for communication. The EM wave can be treated as a
type of active sensing while the camera is passive sensing. Alzenad et al. [15] applied
line-of-sight and non-line-of-sight communication models to find the best height for drones
that maximizes the covered area with a fixed transmitting power. It then formulated the
coverage problem to a 2D placement strategy. The authors in [16] applied the same model
from [15] to do the placement with extra environmental parameters provided: urban,
suburban and dense urban. Reference [17] proposed a simplified placement scheme that
utilized equal circles without overlapping to improve coverage efficiency at the cost of
some uncovered zones.

These studies, however, only considered the given landscape as a smooth horizontal
plane. They typically obtained the optimal altitude first, then formulated the coverage
problem into a 2D placement strategy. In real-world applications, especially for visual sens-
ing, each drone’s coverage varies tremendously as topography changes, which complicates
the placement.

The battery endurance plays an important role in designing the drone sensing fleet.
Naturally, flying drones have limited battery supplies which are supposed to cover physical
motions, message transmissions and data calculation. Since the surveillance job demands
a drone fleet to hold its position for certain periods, the drone energy model needs to
be explicitly investigated and necessary adjustments should be deployed on drone loca-
tions. Some existing drone-related papers took energy efficiency into account and tried
to minimize the power of each drone. In paper [15], authors tried to find the smallest
coverage circle while supporting the same amount of clients, which saved the drone’s
transmitting power. Authors in [18,19] managed to find an optimal travel path to improve
energy efficiency.

However, these only consider the total energy consumption without evaluating the
impact of bottleneck drones on the lifetime of the drone fleet, which is an important factor in
the operations of real-world applications. In addition, the fact that drones typically operate
in geographically challenging areas is often ignored. Note that in our paper, the lifetime
of the drone fleet is defined as the time of the first drone running out of power, which is
widely adopted [20,21].

1.2. Our Contribution

To address these issues, in this paper, we propose a 3D placement algorithm for
the multi-drone sensing fleet, which targets large areas with continuous omnidirectional
surveillance requirements and various geographical conditions. The sensing technology
ranges from visible light, multispectral, hyperspectral camera to EM transceivers. Potential
applications include the assistance of rescuing missions in flooded regions, temporary
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recovery of telecommunication systems in earthquake areas and environmental monitoring
of areas with rough terrains.

In the 3D placement problem, we consider the visual blocking situation for each
drone hovering over various terrains. To save the overall energy consumption, we analyze
the drone’s energy model and study the impact of mutual distances among the drones.
Considering the finite amount of energy sources as well as the fact that each drone has
to work in coordination with remaining drones to share information as required by the
application, the lifetime of the entire drone fleet is strongly affected by the lifetime of
individual drones, especially those in critical locations. In order to balance the entire
network’s energy, we design the routing algorithm that chooses the relaying neighbors
and selects the data path to reach the destination. In addition, dynamic adjustments are
applied to drones’ locations during the mission to prolong the drone fleet’s lifetime.

In our work, we have the following assumptions: The geographical conditions of the
investigated area are known with its 3D dimensional contour map given. There are no
charging facilities or battery replacements available. Compared to other research, our work
contributes in the following ways: (1) We study the placement of a multi-drone sensing
problem that requires continuous omnidirectional monitoring. (2) Our model considers
topographical factors, including rough terrain situations where mountains, valleys or other
obstacles exist. (3) Our 3D placement, routing scheme and real-time location adjustments
aim at improving individual energy efficiency while prolonging the lifetime of the whole
drone fleet at the same time.

The rest is organized as follows: First, the system architecture is described in Section 2.
More specifically, the system model and energy model are elaborated. Next, research
methods are illustrated in Section 3, which shows the details of the mesh simplification,
sub-section division, drone placement, routing scheme and dynamic adjustments. Then,
Section 4 presents simulation results and evaluates the performance. Finally, Section 5
draws the conclusion.

2. System Architecture
2.1. System Model

For simplicity, the target area T is defined as a square with a side length of a. The ter-
rains are generated by translating and scaling Gaussian distributions. A set of drones
D = {D1, D2, D3, ..., Dn} are responsible for the area of interest. The number n is kept as
small as possible to serve the monitoring job. The whole surveillance area is supposed to be
covered by the drone fleet’s cameras. Based on the requirements of different applications,
the camera can be visible light, multispectral, hyperspectral and even be replaced by EM
transceivers. Since our focus is on the placing algorithm and the mission duration, we
simplify this model with the most common visible light camera HD 1080p. θh and θv are the
camera’s horizontal and vertical field of view (FOV), respectively. Figure 1 illustrates the
drone camera’s FOV and shows its coverage during the mission execution. χ (pixels m−1) is
the image resolution parameter required by the surveillance task, e.g., the requirements of
χ vary greatly from object identification, motion detection to object tracking. The objectives
of the placement algorithm include:

• building a regional coverage model;
• determining the least number of drones needed for coverage in a given area;
• finding optimal drones’ 3D-placement locations to save communication energy;
• proposing a strategy to prolong the entire drone fleet’s lifetime.
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Figure 1. The drone camera’s field of view.

2.2. Energy Model

The energy consumption of the drone Di during the mission execution process is
given by:

EDi = E f light + Ecal + Ecom, (1)

where E f light, Ecal and Ecom are the energy consumed during the flight, calculation and
communication modes, respectively.

2.2.1. Flight Mode

Even without any communication cost, drones need to consume power to maintain
flying status, which consumes the majority of the battery energy. Drone’s mechanical
energy involves two processes, namely, hover and motion. It can be written as:

E f light = Ehov + Emov. (2)

The hover energy Ehov can be calculated through:

Ehov = Phov × thov, (3)

where thov is the time duration of the hover status, and Phov is the hover power. According
to the model in [18,22], Phov is a function of the drone’s mass m, the number of propellers n
as well as the propeller’s radius r:

Phov =

√
(mg3)

2πr2nρ
, (4)

where g and ρ are the Earth’s gravitational acceleration and the air density, respectively.
As stated in Equation (4), we want to have a lighter drone with more and larger propellers
to achieve low Phov. It is a paradox since larger numbers and sizes of propellers will
incur larger mass, which goes against the “lightweight” drones. In addition, there is
another antinomy: in the real world, manufacturers intend to equip drones with high-
capacity batteries for longer flight time; however, the mass of the battery itself has a linear
relationship with its charging capacity.

The above constraints limit the drone’s flight duration based on today’s technology.
New low-density materials and high-volume batteries are the technical bottlenecks for
energy efficiency research in the flight mode, which is in the domain of mechanical and
chemical engineering. We apply the latest commercial drone’s parameters as the basis of
our following analysis.

As for the motion energy, it can be obtained by:

Emov =
∫

Pmov(t)dt, (5)
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where Pmov is the motion power that measures the “moving” process from one location to
another and can be modeled as a linear function of the drone speed v [18]:

Pmov(t) =
Pmax − Pidle

vmax
v(t) + Pidle, (6)

where Pmax and Pidle represent the power of drone when moving at the maximum speed
vmax and holding the hover status, respectively. To some extent, Pidle is equal to Phov. Pmax
and vmax are usually known drone parameters. The speed v is time-variant and is subject
to:

d =
∫

v(t)dt, (7)

where d is the distance between the departure and destination locations.

2.2.2. Calculation Mode

The calculation energy Ecal can be written as:

Ecal =
∫

Pcal(t)dt, (8)

where Pcal is the power consumption of computation. These calculations range from image
processing, pattern identification, object tracking to decision making and event reporting.
The critical technologies that impact energy efficiency are the calculation algorithms and
data structures that are related to specific tasks and applications. In this paper, we do not
restrict the type of applications of the drone fleet. However, for simulation purposes, Pcal is
simplified as a constant and the detail is shown in the Section 4.

2.2.3. Communication Mode

The energy spent in message sharing among drones made up another significant
portion of battery consumption. For example, in some applications, surveillance area
videos should be transmitted to the server where groups of experts and officials can make
real-time decisions. It incurs a large amount of data to be sent from drones’ antennas,
which makes the batteries drain faster and it might even exceed the energy consumption of
the flight mode. Even for cases where there is no need for real-time video transmissions,
the critical event reporting messages and nearby drone information sharing packets can
still involve a large energy consumption when the communication distance is far. As we do
not restrict the type of applications of the drone fleet, we focus on 3D placement schemes
that optimize energy spent in the communication mode.

The communication energy is:

Ecom = Etx + Erx, (9)

where Etx and Erx are the energy required for the transmitter and the receiver, respectively.
To simplify the energy consumption during the radio communication process, we adopt
the model as depicted in [23]. For transmitter or receiver circuitry, the radio transmission
dissipates Eelec (nJ bit−1). The Eamp (nJ bit−1 m−2) is defined for the transmitter amplifier’s
consumption. The energy to transfer a message of lpacket bits over distance d is:

Etx(lpacket, d) = lpacket × Eelec + lpacket × Eamp × d2. (10)

The energy consumption to receive the packet is:

Erx(lpacket, d) = lpacket × Eelec. (11)
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3. Research Methods

We define f (x, y, z) = 0 as the terrain function. The location of the drone Di is
denoted as LDi (xDi , yDi , zDi ). ADi = {Pi|(xPi , yPi , zPi ) ∈ R3} labeled as the covering region
of drone Di, is the collection of all points where each Pi(xPi , yPi , zPi ) can be detected by
drone Di. As a result that the sensing camera is HD 1080p (1920p × 1080p), with the task
resolution requirement χ (pixels m−1) known, we can obtain the maximum region a drone
can supervise by:

l =
1920

x
, (12)

and
w =

1080
y

, (13)

where l and w represent the length in the X axis (east–west) and the width in the Y axis
(north–south), respectively. To meet the resolution requirement, ADi is constrained by:

ADi ⊆ Rl×w, (14)

where Rl×w represents an l × w rectangular area. The horizontal and vertical FOV θh, θv
are constrained by:

tan θh
2

tan θv
2

=
1920
1080

≈ 1.78. (15)

For convenience, we assume that the drone’s horizontal FOV is always along the X
axis and the vertical FOV is corresponds to the Y axis. Considering the light blockage,
the coverage problem can be formulated as follows: For any Pi(xPi , yPi , zPi ) ∈ f (x, y, z) = 0,
we say Pi is under the surveillance of drone Di, if

|zPi − zDi | × tan
θh
2
≥ |xPi − xDi |, (16)

and
|zPi − zDi | × tan

θv

2
≥ |yPi − yDi |, (17)

and no other Pj(xPj , yPj , zPj) ∈ f (x, y, z) = 0 that satisfies Equations (16) and (17) as well
as:

0 <
xPj − xDi

xPi − xDi

=
yPj − yDi

yPi − yDi

=
zPj − zDi

zPi − zDi

< 1. (18)

3.1. Terrain Simplification

In real-world surveillance tasks, the target region can stretch for several miles. Time
and space complexity are critical bottlenecks for the coverage problem and the drone
placement scheme. Considering the target area’s size, it is not possible or even necessary to
test feasible drone locations point by point. We only need to try the particular coordinates
which are iconic “landmarks”. We simplify the terrains as illustrated in Figure 2. Only the
space above the simplified vertices is explored. The given topography of the target area T
is a height map H = {hi,j(xi, yj)|(xi, yj) ∈ R2}.



Sensors 2021, 21, 2622 7 of 24

(a) (b)

Figure 2. The results of the terrains’ simplification: (a) the terrain before simplification, and (b) the terrain after simplification.

Simplification is performed as follows:

• transfer height map H into a 3D binary volume array V = {vi,j,k(xi, yj, zk)|(xi, yj, zk)

∈ R3};
• extract the isosurface of the volumetric array V and store the faces and vertices

information as FV;
• apply a mesh decimation algorithm to simplify the surface and obtain faces and

vertices as SFV.

The isosurface extraction and patch reduction algorithm are mature [24–26] and can
be found in many packages or libraries. One example using MATLAB library is shown in
Algorithm 1 for other researchers to replicate our works. In addition, some of the notations
in the algorithm are used in later discussion.

Algorithm 1: Terrain Simplification: Calculate SFV
Require: hij(xi, yj) > 0, ∀hij ∈ H
Ensure: SFV 6= ∅

1: V ⇐ 0
2: for i = 1 to a do
3: for j = 1 to a do
4: for k = 1 to hij do
5: V(i, j, k)⇐ 1
6: end for
7: end for
8: end for
9: FV ⇐ isosur f ace(V)

10: SFV ⇐ reducepatch(FV, ratio)

3.2. Area Division

The given area T is supposed to be covered by the drone fleet, where each drone will
be assigned to a small section SDi . We denote the number of sections as n. In papers where a
flat plane is assumed for the whole area T, the division problem is usually simplified. More
specifically, every drone will be distributed with an equal rectangular shape. However, due
to the sophisticated terrains in our study, the above algorithm does not apply to our system
model. As shown in Figure 3, the coverage of a drone can be stretched when placed over
the valley (green line) and shrunk when near the mountain (red line). Hence, we propose
our division algorithm, which detects the terrain variances and automatically adjusts
each subarea’s range so that the drone can cover as large a region as possible, with the
least number of drones needed for the mission. The objective of sub-section division is
formulated as:

min(n), (19)
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subject to:
n⋃

i=1

SDi = T, (20)

and
SDi ⊆ ADi , ∀i ∈ (1, 2, ..., n). (21)

Figure 3. The coverage of the drone is impacted by topography’s variations.

Since the coverage area SDi is a variable and there is no explicit math model to follow,
we adopt the greedy algorithm. We perform a search on the remaining uncovered area
to find the largest region for each SDi , and a location LDi (xDi , yDi , zDi ) that allows ADi to
cover SDi . As we analyzed earlier, ADi can be calculated by Equations (12)–(18). However,
the terrain function is not available and needs to be inferred first. In Algorithm 1, we
have simplified faces and vertices stored as SFV. We can fit the vertices vi,j,k(xi, yj, zk) to a
function, which approximates the terrain function f (x, y, z) = 0 [27,28]. More details are
shown in Algorithm 2.
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Algorithm 2: Area Division: Calculate SDi

Require: T 6= ∅
Ensure: min(n)

1: f (x, y, z) = 0⇐ f it(SFV)
2: n⇐ 0
3: while T 6= ∅ do
4: n⇐ n + 1
5: f ind the bottom le f t corner (x0, y0) o f T
6: len⇐ l; wd⇐ w
7: repeat
8: f lag⇐ f alse
9: SDn ⇐ ∅

10: for ∀(xi, yj) ∈ T do
11: if (x0 ≤ xi ≤ x0 + len) and (y0 ≤ yj ≤ y0 + wd) then
12: SDn ⇐ SDn ∪ (xi, yj)
13: end if
14: end for
15: for ∀(xi, yj) ∈ SDn do
16: for zk = hi,j(xi, yj) to zmax do
17: LDn ⇐ (xi, yj, zk)
18: ADn ⇐ ∅
19: for ∀(x, y, z) ∈ SFV do
20: if (x, y, z) covered by Dn then
21: ADn ⇐ ADn ∪ (x, y, z)
22: end if
23: end for
24: f ind max(x), min(x), max(y), min(y) o f ADn
25: if SDn ⊆ ADn and (max(x)−min(x)) ≤ l and (max(y)−min(y)) ≤ w then
26: f lag⇐ true; break
27: end if
28: end for
29: if f lag == true then
30: break
31: end if
32: end for
33: len⇐ len− δl ; wd⇐ wd− δw
34: until f lag == true
35: T ⇐ T \ SDn
36: end while

3.3. Placement

In the placement scheme, we aim to save overall energy consumption, which can be
written as:

min(
n

∑
i=1

EDi ). (22)

According to Equations (1)–(11), we know that E f light depends on drone’s hardware
parameters, and Ecal is related to the specific application. We focus on 3D placement
schemes that optimize the energy spent in the communication mode Ecom. Equation (10)
shows that distance di,j, between a pair of drones Di and Dj, has large impacts on the
energy consumed at the transmitter Etx. We further rewrite the target Equation (22) as:

min(
n

∑
i,j=1

d2
i,j), (23)
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subject to:
d2

i,j = shortest_path(LDi , LDj), (24)

where the shortest path algorithm is applied to calculate the distance by considering the fact
that to save the transmitting power during communication, drone Dk might be assigned
to relay the packets sending from Di to Dj. More specifically, we adopted Dijkstra’s
algorithm [29].

In order to decide the drone location LDi (xDi , yDi , zDi ), we need to find the collection
of all feasible drone locations first. We label the desired collection within subarea SDi as
RDi . The calculation of LDi is implemented in Algorithm 3. The main steps are as follows:

1. search RDi for every sub-area SDi according to Equations (12)–(18);
2. initialize each sub-area’s drone location LDi with a random element of RDi ;
3. for each sub-area SDi , find the best location within RDi that minimizes the total

distance from drone Di to Dj where j ∈ (1, 2, ..., n), j 6= i;
4. compare the new drone coordinate set with previous ones;
5. if the differences are greater than a predefined threshold, repeat steps 3 and 4. Other-

wise, return current drone fleet coordinates.

Algorithm 3: Placement: Calculate LDi

Require: SDi 6= ∅, ∀i ∈ (1, 2, .., n)
Ensure: min ∑Di ,Dj∈D ||LDi − LDj ||

2

1: for id = 1 to n do
2: for ∀(xi , yj) ∈ SDid do
3: for zk = hi,j(xi , yj) to zmax do
4: LDid ⇐ (xi , yj, zk)
5: ADid ⇐ ∅
6: for ∀(x, y, z) ∈ SFV do
7: if (x, y, z) covered by Did then
8: ADid ⇐ ADid ∪ (x, y, z)
9: end if

10: end for
11: f ind max(x), min(x), max(y), min(y) o f ADid
12: if SDid ⊆ ADn and (max(x)−min(x)) ≤ l and (max(y)−min(y)) ≤ w then
13: RDid ⇐ RDid ∪ (xi , yj, zk)
14: end if
15: end for
16: end for
17: end for
18: for id = 1 to n do
19: LDid ⇐ RDid (1)
20: end for
21: OldL⇐ L
22: Di f ⇐ Threshold + 1
23: while Di f ≥ Threshold do
24: for i = 1 to n do
25: sum⇐ MAX
26: for ∀(x, y, z) ∈ RDi do
27: temp⇐ ∑j∈(1,2,...,n)andj 6=i Dijkstra(LDj , (x, y, z))
28: if temp < sum then
29: sum⇐ temp
30: LDi ⇐ (x, y, z)
31: end if
32: end for
33: end for
34: Di f ⇐ ||OldL− L||
35: OldL⇐ L
36: end while

3.4. Dynamic Adjustment

According to Equation (10), the radio transmission power significantly increases with
distances. When communication packets are delivered between two remote drones, we
prefer to use one or more intermediary drones for relaying. As all the drone’s locations are
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fixed and known, we use Dijkstra’s algorithm to find the shortest path from each drone
Di to Dj. We denote Q as the routing table. Qi,j is the next-hop drone when the packet
source is Di and the destination is Dj. Detailed routing table calculation is illustrated in
Algorithm 4.

Algorithm 4: Routing Table: Calculate Qi,j

Require: LDi 6= ∅, ∀i ∈ N = (1, 2, .., n)
Ensure: Qi,j 6= ∅, ∀i, j ∈ N

1: for i = 1 to n do
2: for j = 1 to n do
3: Qi,j = j
4: disi,j = ||LDi , LDj ||2
5: end for
6: end for
7: for i = 1 to n do
8: d = dis
9: M⇐ N \ (i)

10: temp⇐ i
11: while M 6= ∅ do
12: for ∀j ∈ M do
13: if di,temp + dtemp,j < di,j then
14: di,j = di,temp + dtemp,j
15: Qi,j = temp
16: end if
17: end for
18: f ind j that di,j = mink∈Mdi,k
19: M⇐ M \ j
20: temp⇐ j
21: end while
22: end for

The initial 3D placement ensures optimal overall energy saving. During the mission
execution, the drone at the team center is more likely to relay the most packets and have
the least energy left. We further propose a dynamic location switching scheme to prolong
the drone fleet’s lifetime. The main idea is to switch the location of the lowest remaining
battery drone with the highest remaining battery drone when a threshold condition is met.

Compared to the initial 3D placement, which is performed before the mission with
no constraints in time, memory and energy, the dynamic adjustments are calculated by
the drones in real time. Each drone maintains a battery volume table, which stores every
drone’s remaining energy and will be updated periodically by receiving other drone’s
broadcast packets. This somehow implies extra energy consumption. However, comparing
to other messages and information exchanged among the drones, the remaining battery in-
formation can be sent with a single short packet and it has negligible overheads comparing
with the potential gains in extending the lifetime of the fleet. In addition, the maintenance
costs of a one-dimensional array are negligible compared to the drone’s other processing
tasks. Considering energy efficiency, only the drone with the highest remaining battery will
run the dynamic switching algorithm. Denote the highest energy drone as Di. By checking
its battery volume table, Di will start to execute the switching strategy as follows. First, Di
calculates the approximate power of each drone through:

POWER =
ENERGYpre − ENERGY

INTERVAL
, (25)
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where ENERGYpre is the old battery volume table and ENERGY is the newly updated
table. INTERVAL is the table update period. Next, Di computes the ideal maximum
lifetime left Tle f t for the drone fleet via:

Tle f t =

∑
i

ENERGYi

∑
i

POWERi
. (26)

Tle f t is the upper limit, which can only be achieved when the entire drone fleet is balanced
and every drone has the same power. Then, Di checks whether the lowest battery drone
(denoted as Dj) needs switching according to:

ENERGYj

POWERi
≤ Tle f t, (27)

where the inequality means the battery capacity of Dj is extremely low and a switching
process is urgently needed. If the condition in Equation (27) is met, Di will further compare
the movement energy consumption Emov from LDi to LDj and Esw_ovhd with the switching
benefits. Esw_ovhd is the energy consumption caused by the switching overheads and is
calculated by:

Esw_ovhd = Psw_ovhd × tsw, (28)

where Psw_ovhd accounts for the extra power needed for switching and tsw is the time needed
for the switching process between LDi and LDj . As a result that our works do not restrict
the type of applications running on the drone fleet or the specific hardware configurations,
and the switching overheads are application/machine-dependent, we simplify Psw_ovhd as
a constant, which is given in Section 4 and identical to Pcal . Finally, as long as the Emov and
Esw_ovhd are affordable compared to the savings, drone Di will initiate a switching request
to Dj. Once drone Dj received the request, it will respond according to its application
process. If drone Dj is executing a critical program, it will decline the request with a busy
response. Drone Di can wait for a certain period before initiating the next request.

To avoid the cases where the high energy drone Di keeps switching with other drones,
we design in such a way that once it makes a switch, it will initiate a protocol to inform the
next highest energy drone to take over the processing role. Di also broadcasts a message to
mark Dj as switched, and Dj will not be taken into account in future switching processes.
Details are shown in Algorithm 5.
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Algorithm 5: Positions Dynamic Switch: Calculate Tli f e

Require: ENERGY > 0
Ensure: Tli f e

1: while min(ENERGY) > 0 do
2: update(ENERGY)
3: if ID == max(ENERGY) then
4: POWER⇐ ENERGYpre−ENERGY

INTERVAL

5: Tle f t ⇐
sum(ENERGY)
sum(POWER)

6: j⇐ lowest battery drone

7: if (
ENERGYj
POWERID

≤ Tle f t) then
8: Calculate SwitchMoveCost(ID,j)
9: Initiate switch protocol

10: if request accepted then
11: Inform next highest battery drone
12: Broadcast Dj has been switched
13: end if
14: end if
15: end if
16: end while
17: Tli f e ⇐ Current time

4. Results Evaluation

We conducted simulations with rough terrain profiles using MATLAB and the results
are analyzed. The proposed scheme is evaluated by comparing the drone team lifetime
with/without the 3D-placement algorithm and dynamic location switching strategy. Table 1
defines the parameters used in the simulation.

Table 1. The simulation parameters.

Parameters Values Parameters Values

Field side length a 3000 m Drone maximum moving power Pmax 4 W

Horizontal FOV θh 120◦ Drone maximum speed vmax 25 m s−1

Resolution requirements χ 1 pixel m−1 Drone processing power Pcal 1 W

Drone’s mass m 800 g Transceiver circuitry energy consumption Eelec 50 nJ bit−1

Number of propellers n 4 Transmitter amplifier energy consumption Eamp 100 pJ bit−1 m−2

Propeller’s radius r 12 cm Drone initial energy storage ENERGYini 34,632 J

Gravitational acceleration g 9.8 m s−2 Communication rate within drones 49.8 Mbit s−1

Air density ρ 1.225 kg m−3 Drone switching overheads power Psw_ovhd 1 W

To ensure that our model applies to various landscapes, we ran three sets of simula-
tions with different terrains as shown in Figure 4: mountain, valley and complex topogra-
phy.
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(a)

(b)

(c)

Figure 4. The three different terrains used in our simulations: (a) the mountain topography; (b) the valley topography and
(c) the complex topography.
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The first part of the simulations deals with the terrains’ profile simplification. As de-
scribed in Algorithm 1, the height map of the target area needs to be converted to a
volumetric array and be reduced further in scale. Figure 5 shows the terrains’ extraction
results. The simplification ratio we applied is 0.0001, which means the number of ver-
tices is approximately reduced by a factor of 10,000. Originally, given the target square
area side length as 3000 m, even if we only consider the integer coordinates, there are
9,000,000 possible locations for drone placement in the horizontal plane. After applying
the terrain simplification algorithm, there are only 1295, 1196 and 1127 possible locations
for mountain, valley and complex topography, respectively. It is clear that the simplified
terrain tremendously reduces the number of vertices and edges while preserving critical
landmarks and features.

(a)

(b)

(c)

Figure 5. The terrain simplification results of: (a) mountain topography; (b) valley topography and (c) complex topography.
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The simulations of the sub-area divisions are immediately followed. The segmentation
of various terrains is illustrated in Figure 6. Each sub-region is identified with dots of
different colors. For better understanding, each terrain’s division results are demonstrated
with both aerial and top-down views. By applying Algorithm 2, we segment the target
mountain, valley and complex topography area into 10, 9 and 10 sub-areas, respectively.
We can discover that the rectangular coverage over the area with steep slopes is relatively
small, which is conformed to the theoretical analysis that the highlands are vulnerable
to line-of-sight blockage, resulting in a small surveillance region for the drone. Our area
division algorithm can adapt to terrain variances and use the least number of drones for
the monitoring mission.

(a)

(b)
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(c)

(d)

(e)
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(f)

Figure 6. The area division results of: (a) mountain topography in aerial view; (b) mountain topography in top-down view;
(c) valley topography in aerial view; (d) valley topography in top-down view; (e) complex topography in aerial view; and
(f) complex topography in top-down view.

The following simulations deal with the optimal positioning of the drones in order to
cover the target area with energy constraints applied. The final 3D-placement locations of
the three different terrains are depicted in Figure 7. The black dots represent the drones’
positions over the target zone. A more detailed drone placement coordinates for the three
terrains are illustrated in Table 2.

(a)
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(b)

(c)

(d)
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(e)

(f)

Figure 7. The 3D placement results of: (a) mountain topography in aerial view; (b) mountain topography in top-down view;
(c) valley topography in aerial view; (d) valley topography in top-down view; (e) complex topography in aerial view; and
(f) complex topography in top-down view.
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Table 2. The drone fleet’s locations of three different topographies.

Drone Location Mountain Valley Complex

LD1 (698, 448, 1245) (778, 425, 1127) (751, 516, 1074)

LD2 (2174, 515, 1134) (2210, 409, 1200) (2144, 500, 1132)

LD3 (809, 1410, 1031) (691, 1180, 1125) (410, 1465, 1085)

LD4 (1401, 1330, 1014) (2166, 1339, 1110) (1748, 1251, 941)

LD5 (2183, 1246, 1016) (721, 1905, 1018) (2496, 1308, 964)

LD6 (1571, 1697.5, 987) (1797, 2110, 1045) (1621, 1926, 1083)

LD7 (890, 1969, 1096) (2553, 2161, 1046) (2548, 2176, 1052)

LD8 (2322, 2153, 1020) (757, 2703, 1345) (911, 2405, 1070)

LD9 (2168, 2579, 1120) (2130, 2561, 1229) (2160, 2505, 1176)

LD10 (909, 2494, 1048) N/A (885, 2903, 1136)

To evaluate our placement algorithm, we further simulated drone task processing
and packet transmissions with the energy model applied. Equation (22) indicates that our
placement algorithm aims to save the overall drone fleet energy consumption. In order to
show the performance of our 3D positioning algorithm, we made a comparison of drone
fleet power between our placement and other random placements, as shown in Figure 8.
The reason why random placements are applied is because there is no similar placement
strategy available due to the terrain complexity, multi-unit coordination and supervision
continuity. To the best of the authors’ knowledge, our work is the pioneer in the topography-
aware 3D placement of a multi-drone fleet. The random placements are performed 10
times and only the best performance (minimum power) is used for comparison with our
3D placement algorithm. Clearly, with our 3D-placement scheme applied, the drone fleet
consumes less power under all three terrains. This is because our strategy takes drones’
mutual distances into account to minimize the overall communication cost.

Figure 8. The drone positioning algorithm performance.

Since our proposed 3D placement algorithm is efficient in saving overall drone fleet
power, the following simulation results are based on the 3D placement algorithm. To further
extend the duration of drone-based tasks, we applied the dynamic position switching
algorithm. Figure 9 shows the detailed performance improvements after the switching
algorithm is deployed. Since the lifetime parameter in our simulation results can be greatly
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impacted by the drone’s initial energy ENERGYini, we use the battery utilization U instead
for evaluation purposes. U is obtained by:

U =
∑ ENERGYini −∑ ENERGYle f t

∑ ENERGYini
, (29)

where ENERGYle f t is the drone’s remaining energy after the sensing mission is terminated.
Of course, large battery utilization is preferred, which indicates a longer lifetime. Obviously,
our strategy significantly improved battery utilization. Since the battery utilization is
proportional to the drone fleet’s lifetime, it is clear that with our dynamic switching scheme
applied, the lifetime of mountain topography is increased by 43% (from 55.6 to 79.5). There
are 71.3% (from 47.2 to 80.9) improvements for valley topography and complex topography
is increased by 59.7% (from 53.1 to 84.8). Due to the unbalanced drone networks, some
drones need to relay more data, and some may supervise larger regions and spend more
power on data processing. As a result, there are cases when a drone drains all its battery
while most of the others have a lot of power left, which causes the entire surveillance
mission to be terminated prematurely. Our scheme addresses this problem by dynamically
switching low-energy-capacity drones with high-energy-capacity drones.

Figure 9. The location dynamic switching algorithm performance.

We also analyzed the communication rate parameter. The data rate of drone’s transmis-
sion is proportional to the energy consumption in communication. The terrain applied in
this set of simulations is the mountain. Figure 10 illustrates the impact of the transmission
rate on the placement strategy. The lifetime prolonging ratio (LPR) is defined as:

LPR =
li f etime3D_DA − li f etimere f

li f etimere f
, (30)

where li f etime3D_DA is the lifetime with both our 3D placement algorithm and dynamic
adjustments algorithm applied. li f etimere f is the lifetime without applying the 3D place-
ment algorithm and dynamic adjustments. It is obvious that our placement scheme is a
clear winner, especially as the transmission rate increases.
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Figure 10. Shows the transmission rate’s impacts on placement strategy.

5. Conclusions

In this paper, we studied the dynamic 3D placement of a multi-drone-based sensing
system that maximizes the sensing mission time with a minimized number of drones.
The target sensing area is of various rough terrains. We analyzed the 3D coverage problem
by extracting the terrain features and dividing sub-areas. The drone fleet placement
was deployed with energy efficiency taken into account. Moreover, a dynamic position
switching algorithm was proposed to prolong the entire drone fleet’s lifetime. Simulations
have shown that our placement and routing schemes, as well as the dynamic switching
algorithms, are effective in improving the lifetime of the fleet. In the future, a more dynamic
positioning algorithm will be studied, where the drone can tour within a specific range,
which increases the surveillance area and avoids any potential blind spot.
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