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Abstract: Deep Neural Network (DNN) systems tend to produce overconfident or uncalibrated
outputs. This poses problems for active sensor systems that have a DNN module as the main
feedback controller. In this paper, we study a closed-loop feedback smart camera from the lens of
uncertainty estimation. The uncertainty of the task output is used to characterize and facilitate the
feedback operation. The DNN uncertainty in the feedback system is estimated and characterized
using both sampling and non-sampling based methods. In addition, we propose a closed-loop control
that incorporates uncertainty information when providing feedback. We show two modes of control,
one that prioritizes false positives and one that prioritizes false negatives, and a hybrid approach
combining the two. We apply the uncertainty-driven control to the tasks of object detection, object
tracking, and action detection. The hybrid system improves object detection and tracking accuracy
on the CAMEL dataset by 1.1% each respectively. For the action detection task, the hybrid approach
improves accuracy by 1.4%.

Keywords: smart camera active sensors; feedback control; deep neural network (DNN); object
detection; action detection; uncertainty estimation

1. Introduction

A critical component of data acquisition in active sensors [1–4] is the controller that
modules the output of the sensor. As Artificial Intelligence (AI) and Machine Learning
(ML) components become ubiquitous, they are increasingly being used as part of the
controller [2–4]. These design decisions have ramifications for the downstream systems
that consume and act on this sensor data. Thus, it is important to establish measures of
reliability and trust, especially when a DNN becomes a part of the controller [5–7].

Modern DNN-based task architectures are by nature black-box systems and do not
lend themselves to introspection. Moreover, it is shown in many studies that the DNNs
tend to generate uncalibrated overconfident detections [8]. Nevertheless, a body of research
exists in quantifying the uncertainty of the DNN output through a mix of sampling and
non-sampling based approaches [9–11]. However, there does not exist any studies on the
uncertainty behavior of DNN controllers in an active sensor system.

In this paper, we pick a closed-loop imager with a task DNN embedded in the control
loop [4] and study it from the lens of uncertainty estimation. We examine a number of tasks
including object detection, object tracking, and action detection. The task DNN outputs
Regions of Interest (ROIs) which are then used to guide the sampling characteristics of
the sensor array. The sampling characteristics include the spatial resolution of the pixel
array, the temporal sampling rate. In addition to that, we also examine a multi-modality
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imager [3]. The imager uses the confidence of the detections to decide which of these will
be used for feedback.

The problem with this kind of confidence-driven control is that relying just on the
score of the detection can lead to both false negatives (FN) and false positives (FP). A
visual example in Figure 1 shows a false negative with a low confidence score in the IR
domain. Thus, it is not kept as ROI for the next frame, and the area in question switches
to RGB. However, the uncertainty of that detection is higher in relation to the other ROIs.
The uncertainty measure gives an indication that the network may have made a mistake
and that ROI needs to be kept. This observation motivates us to propose a hybrid control
system that uses both the score of the detection as well as its uncertainty to decide the
control action.

Figure 1. Problems with confidence-driven control in a multi-modal sensor. The truck on the top
region of the frame gets rejected due to a low confidence (0.135). The detection, however, has a high
level of uncertainty. The uncertainty information can be exploited to keep this region in IR.

This paper extends our work on uncertainty characterization and the hybrid feedback
loop [12] presented earlier. We present additional settings of the hybrid control scheme
that work well on false negatives in addition to false positives. We also scale the concepts
to harder tasks. Specifically, we apply it to tasks with a well-defined temporal dependence
e.g., action detection. We show a procedure for separating out the contribution of spatial
and temporal features to the total uncertainty. In addition, we show that, in a practical
setting, estimating just the temporal uncertainty leads to a good performance when con-
sidering system constraints in addition to the accuracy. Overall, this paper makes the
following contributions:

• We characterize the uncertainty of a closed-loop imager with an embedded task DNN
in the control loop. We show that uncertainty is closely linked to accuracy of the
system, and, in the absence of ground-truth information, it can be used as a proxy
measure of success.

• We study the effect of input perturbation, such as additive Gaussian noise, on the
uncertainty. In addition, we also characterize the uncertainty for different input
modalities such as RGB, IR.

• We propose a feedback system that uses uncertainty in addition to the confidence of
the detections. The hybrid system removes over-confident detections and allows the
imager to focus on areas of the image where it is uncertain about its performance.

• We propose a methodology for establishing causality of the uncertainty on spatial or
temporal features for the task of action detection.

The new uncertainty-driven control (Figure 2) improves performance for false nega-
tives on the CAMEL dataset [13] for the tasks of object detection and tracking. The CAMEL
dataset contains RGB-IR videos with pedestrians and cars annotated. The uncertainty
control improves AP over the mixed-modality baseline by 1.1%. Similarly, for the action
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detection task, the uncertainty-driven control improves frame mAP by 1.1% over the
confidence-driven control on the UCF-Sports Dataset [14]. Finally, by separating the spatial
and temporal uncertainty, we can achieve the same accuracy metrics at a fraction of the
original cost of multiple Monte Carlo (MC) trials.

Figure 2. Proposed feedback system with uncertainty as an additional criteria for applying feedback.

The rest of this paper is organized as follows: Section 2 presents prior work in literature.
Section 3 presents a review of uncertainty estimation techniques in DNN and the feedback
imager. Section 4 presents the prior confidence-driven feedback imager. Sections 5 and 6
present the confidence and uncertainty-driven feedback and the separated spatial and
temporal uncertainty. Sections 7 and 8 present the experimental results.

2. Related Work

Feedback is an essential component of any imager. In commercial images, heuristic-
driven feedback loops are present such as Auto-White Balance, Auto-Exposure, etc. The
purpose of these control loops is to shift the captured image statistics towards the statistics
of natural images and to generate a high-quality image for human perception. In this work,
our focus is to tune the image to improve the accuracy of an end-user task such as pedestrian
detection. There exists prior work on task-driven feedback. They are discussed below.

2.1. Task-Driven Feedback

Early works in task-driven feedback focus on reducing the bandwidth required to
transmit the pixels from the sensor by selectively reading out some pixels. For example,
Chalimbaud et al. proposed selective readouts of the frame using output from an object
tracker [1]. Other works do compression of the pixels based on the task output. For
example, Wells et al. perform compression of sensor pixels in the DCT domain with direct
feedback from a spatial and temporal engine. The spatial and temporal engines use DCT
coefficient importance and motion estimation-compensation outputs, respectively, to drive
the control [15]. Going further, Wells et al. sample foreground pixels at full resolution and
adaptively decrease the resolution of background pixels using a tree configuration. The
sampling is driven by a segmentation and object tracking algorithm [16]. PISP performs
adaptive video encoding driven by motion estimation and motion compensation algorithms
to reduce the impact of soft errors in video compression [17]. Ko et al. use a multi-QF JPEG
encoder to encode motion ROIs at a higher QF while meeting bandwidth constraints [18].
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While the above works focus on task-driven compression, there also exists prior work
which performs control directly at the sensor level. This control either changes the spatial
resolution, temporal resolution, pixel depth, or the spectral modality of the pixels of interest.
For example, Saha et al. propose an early fusion of IR and Visual sensor modalities using
the output of an object detection task [3]. Saha et al. propose a Reinforcement Learning
(RL) based controller for multispectral fusion [19]. Mudassar et al. propose spatio-temporal
resolution control of individual pixels in a digital pixel sensor (DPS) using the output
of object detection and action detection tasks [4]. Mukherjee et al. propose a cross-layer
control scheme for tuning the pixel depth of ROI and non-ROI pixels [20]. What these
works do not address, however, is the uncertainty in the task output itself. In this work,
we apply uncertainty estimation techniques on the task and use those to filter the ROIs
provided to the controller.

2.2. Uncertainty Measurement in DNN

DNN models generate point estimates in their default configurations but do not pro-
duce uncertainty for each input sample. There exists prior work that focuses on modifying
the DNN to produce uncertainty estimates. Broadly, existing techniques can be classified
as sampling-based [9,10] or non-sampling based [11]. Sampling-based techniques per-
form inference multiple times on random permutations of the network. MC Dropout [10]
randomly turns off neurons in the network. Bayes By Backprop [9] samples from the
learned weight distributions. In contrast, non-sampling based techniques try to learn the
variance of the predictive variables during training by attenuating the loss with the learned
variance [11]. We apply both sampling-based and non-sampling based approaches in our
work to measure the uncertainty of the task DNN.

2.3. Uncertainty Estimation for Detection Tasks

Uncertainty techniques for detection tasks [21,22] also involve a combination of
sampling-based methods[23–25] and non-sampling-based methods [26–28]. Miller et al.
evaluate the performance of object detectors in open-set conditions. They show that a
sampling-based dropout object detector is better at rejecting false positives and lowering
the overall uncertainty [23]. They also evaluate merging strategies for aggregating de-
tection outputs across multiple samplings , e.g., based on spatial affinity, based on same
winning class label, etc. [21]. Hall et al. propose a new metric for measuring detection
uncertainty called Probabilistic Detection Quality (PDQ) [22]. Non-sampling based tech-
niques add a learned variable of uncertainty during the training process. Effectively, the
output class and bounding box variables have a counterpart uncertainty variable that is
learned and is dependent on the input. He et al. learn variance of the bounding boxes
and use variance voting to reduce importance of high variance boxes [26]. Wirges et al.
apply loss attenuation to learn variance of 3D bounding boxes in 3D object detection [27].
Corbiere et al. use true class probability instead of maximum class probability during the
training process [28].

3. Background

The uncertainty estimates for the task DNN are collected using both a sampling [10]
and a non-sampling method [11] referred to as model and data uncertainty, respectively
(Figure 3). The model uncertainty or epistemic uncertainty model the uncertainty in
parameters of the model. It can be reduced by increasing the training data or adding more
knowledge. Hence, it is also known as knowledge uncertainty. The data uncertainty or
aleatoric is due to the inherent noise or irregularities in the signal which cannot be removed
by adding more data. An example is an occlusion which can hinder detecting an object or
at least make it harder to ascertain its actual size.
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Figure 3. Method for calculating Model and Data Uncertainty in DNN. In model uncertainty,
inference is run for T trials with dropout enabled. The sample variance is then computed. In data
uncertainty, the variance is computed as a function of the input and the weights of the network.
Reprinted with permission from ref. [12]. Coprright 2020 IEEE.

3.1. Predictive Variables

In the detection task (object/action), two types of output variables are predicted, i.e.,
labels and bounding boxes. Both are treated separately when determining their uncertainty.
They will be referred to as label uncertainty and location uncertainty. Note that they
are separate from model and data uncertainty. We will be calculating model and data
uncertainty for both labels and bounding boxes.

3.2. Model Uncertainty

In the sampling method, dropout layers are added within the network architecture.
The dropout randomly turns off neurons during the forward pass of the network. For a
selected input, inference is run multiple times and the predictive variance of the detections
is generated through Monte Carlo (MC) averaging. The object detector outputs bounding
boxes and class scores. The class uncertainty σcls is computed using the entropy of the
mean softmax vector µcls (Equation (1)) while the box uncertainty is modeled as a Gaussian
RV. The bounding box uncertainty is computed independently for the four bounding box
coordinates x, y, w, h using Equation (2), which represents the variance. T denotes the
number of MC trials. C is the number of output classes. f represents the DNN, while µ is
the mean of the the output variable over T trials:

σcls = −
C

∑
i=1

µcls[i] ∗ log(µcls[i]) (1)

σout =
1
T

T

∑
i=1

f (i)(in)T f (i)(in)− µT
outµout (2)

3.3. Data Uncertainty

Aleatoric uncertainty is estimated by directly learning to predict variance parameters
for each output variable. The cost function is also modified. For bounding box regression,
the loss is attenuated by the predictive variance σ (Equation (3)). y represents the network
output while ygt represents the ground truth. A regularization term is also added so that
the network does not learn to ignore the training data and predict a high variance of all
inputs. The reader is referred to [11] for more details:

Lreg =
1

(2σ2)
∗ ||y− ygt||+

1
2
∗ log(σ2) (3)

For classification, the logits vector x before the softmax are corrupted by a random
vector with variance equal to the predictive variance of each class (Equation (4)). The mean
and variance of the output after softmax cannot be analytically computed, so the sample
mean and variance is computed by drawing MC samples from the logits and applying the
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softmax function. The mean of the softmax outputs is computed using Equation (5), and
the variance is represented by the entropy of the mean softmax vector:

g(i)(x, σcls) = f (i)(x) +N (0, σcls) (4)

µcls =
1
T

T

∑
i=1

so f tmax(g(i)(x, σcls)) (5)

3.4. Tasks and DNN Architectures

For the characterization and uncertainty-driven control, we look at a number of high-
level detection-based tasks which include object detection, object tracking, and action
detection. The complexity of these tasks requires a DNN-based implementation, so we
take off-the-shelf DNN architectures and fine-tune or re-train them for feedback operation
and to be able to get uncertainty measures from them.

Experiments were conducted for the tasks of object detection and object tracking. A
SSD-based network architecture was used for both tasks [29] (Figure 4). A Mobilenet-v1 [30]
backbone was used for object detection, which is suitable for an embedded implemen-
tation. We use the modified version SSD Mobilenet V1 that is more suitable for small
object detection [31]. The object tracker is a tracking by detection system, which uses
hypotheses from the object detector to perform tracking. We use the SORT tracker [32] for
multi-object tracking.

Figure 4. SSD Architecture [29] for Object Detection, which consists of a CNN backbone followed by
extra convolutional layers. Classification and Regression Layers follow, and the last step is NMS,
which removes redundant detections based on spatial overlap.

For action detection, we evaluated on two architectures ACT (Figure 5). The ACT
architecture generates features for each frame by passing them through a CNN. The per-
frame high dimensional features are aggregated using a temporal aggregator (1 × 1 conv
or LSTM or mean) followed by classification and regression layers. The NMS is performed
both per-frame and on a video basis. Both architectures take in multiple frames as input
and generate detections. An offline post-processing step links the detections across frames
to produce action tubes.
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Figure 5. ACT Architecture [33] for action detection. It is similar to SSD, but it takes in multiple
frames as input and applies aggregates the features for every time step before doing classification
and regression. The network applied to each frame is the same.

4. Confidence-Driven Feedback Control
4.1. System Architecture

We characterize the uncertainty of a closed-loop imaging system with embedded task-
driven feedback [4]. The system consists of a processing-in-memory acceleration tier and a
digital pixel sensor array (DPS) in a 3D-stacked topology as shown in Figure 6. A digital
pixel sensor array occupies the top 3 tiers. The digital pixel sensor array allows for localized
control of each pixel. It is composed of the photodiode tier, a photocurrent to frequency
converter (PFC) tier, and a tier containing the counters. Communication between the tiers is
realized through high-throughput TSVs and Cu-Cu interconnects [34]. We base the design
of our photodiode tier on the broadband array presented by Goosens et al. [35] to realize
applications requiring hyperspectral input. The specialized read-out circuits allow for
localized control of each pixel. These control functionalities include choosing the modality
of each pixel (multi-modality control), choosing which pixels to turn on or off (spatial
resolution control), and sampling the pixels at multiple frame rates (temporal resolution
control). A logic layer at the bottom of the stack performs real-time task processing to
realize the per-pixel control. The confidence-driven feedback control from [4] is used. We
call this confidence-based as it solely relies on the confidence of the detections to determine
whether they should be used for feedback.

4.2. Feedback Control

The detection step is followed by an ROI prediction layer. The ROI prediction module
enforces temporal smoothness of detections using a Kalman Filter and predicts locations of
objects in the next frame with a linear motion model. The ROIs from the ROI prediction
layer drive the feedback control. Two types of control are investigated in this work for
uncertainty characterization. The first is spatio-temporal resolution control. In the spatio-
temporal resolution control scheme, individual pixels can be turned on or off, or sampled
at a lower or faster rate based on a downsampling factor. The second is mixed-modality
control in which we create a mixed-modality image where each pixel can be activated in
either of the modalities—for example, RGB and IR.
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Figure 6. System architecture for the Feedback Imager. A 3D stacked topology allows for the ML
control tier to be closely coupled with the sensor tier.

The uncertainty for the baseline system with no feedback and feedback systems with
spatial resolution control and mixed-modality control are characterized for the task of
object detection and tracking.

4.2.1. Spatial Resolution Control

A downsampling factor Nspatial is chosen for spatial resolution control. In this ap-
proach, we turn off pixels in local neighborhoods belonging to non-ROI regions. For
example, if Nspatial is 2, we turn on only one pixel in a 2 × 2 neighborhood. ROI regions
are kept at full fidelity. For processing by the DNN, the holes are removed by replicating
the chosen pixel.

4.2.2. Temporal Resolution Control

Similar to spatial resolution control, we downsample the temporal resolution of non-
ROI regions. The downsampling factor for temporal resolution control is referred to as
Ntemporal . This control is used more in the task of action detection as changing the frame
interval has a more discernable effect on the detection quality.

4.2.3. Multi-Modality Control

In multi-modality control, a mixed modality image (for example an image with both
RGB and IR channel values) is created. However, in one spatial location, it can only be one
of either RGB or IR. The control proceeds as follows. For the very first frame of a sequence,
an input to object detection network is initialized with any single modality image. An RGB
image is used for the first frame, and any detected bounding boxes are considered as RoI.
In the next frame, the modality of the RoI is retained to ensure its detectability, whereas the
nonRoI modality is switched to IR in search of any missed object. RoIs from the second
frame are propagated to the third frame in their respective modalities, whereas nonRoI
modality is altered. In this fashion, we keep track of modality for each RoI and ensure they
get detected in the next frame while altering nonRoI modality in search of new objects.

In the confidence-driven control, the set of detections setcon f is constructed by picking
detections that have a score greater than a threshold thcon f :

set1 = score ≥ thcon f (6)

5. Uncertainty-Driven Feedback Control

The uncertainty-driven feedback control is formulated as follows. In addition to the
confidence score of each detection, the uncertainty of the detection (measured using model
or data uncertainty) is also used to select it as ROI or non-ROI. As described earlier, we
have the label as well as location uncertainty at our disposition. The location uncertainty
is useful in the sense that it can correct for mislocalizations of small margins. The label
uncertainty is more useful as it allows us to determine whether a misdetection has occurred.
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In the uncertainty-driven feedback system, the model/data uncertainty is calculated
for each output detection using the methods described earlier. The label uncertainty
for each detection is normalized for each frame by the detection having the maximum
uncertainty of all detections in that frame. This is done as the entropy fluctuates across
frames (although it can be bounded by the entropy of a uniform source). Depending on the
values of the uncertainty and the score, we outline the control decisions that need to be
taken and are described further.

In the confidence-driven system, we only consider the detections having a high
confidence score as correct for feedback. If we incorporate uncertainty into the control, we
get four possibilities:

• High Score + Low Uncertainty (True Positive)
• High Score + High Uncertainty (Possibly a False Positive)
• Low Score + High Uncertainty (Possibly a False Negative)
• Low Score + Low Uncertainty (True Negative)

The first possibility corresponds to the score only control as it is likely a true positive.
The second possibility is most likely a false positive as the network is overconfident about
its prediction. The third possibility can be a false negative as it is missed by the network,
but the uncertainty is high. Finally, the fourth possibility is a true negative as both measures
are rejecting it. Formally, the hybrid control considers possibility 1 and possibility 3 for
providing feedback.

Based on the above hypotheses, we formulate three different types of control that
incorporate uncertainty into the feedback pipeline.

5.1. Uncertainty-False Positive

In this control, the uncertainty information is used to remove false positives from the
decision set (Equation (7)). Detections with an entropy lower than threshold thlow and a
score greater than thcon f are kept:

set f p = (score ≥ thcon f ) ∩ (entropy ≤ thlow) (7)

5.2. Uncertainty-False Negative

In this control, the uncertainty information is used to remove false negatives from the
decision set (Equation (8)). Detections with an entropy higher than threshold thhigh and a
score lower than thcon f are kept:

set f n = (score ≤ thcon f ) ∩ (entropy ≥ thhigh) (8)

5.3. Uncertainty-Hybrid

In the hybrid control, we merge the two sets to get the decision set for feedback
(Equation (9)). The expectation is that this set will balance the removal of false positives
and false negatives using the uncertainty information:

sethybrid = set f p ∪ set f n (9)

6. Separation of Spatial and Temporal Uncertainty

We introduce formulations for separating the uncertainty contributions of spatial
and temporal features. In the current formulation of uncertainty measurement, the un-
certainty is measured as a whole and not directly linked to a singular feature or variable.
Hence, the causality of the features contributing to the greater uncertainty cannot be es-
tablished. Particularly for temporal-dependent tasks such as action detection, it cannot
be determined whether the spatial features or temporal features are contributing to the
increased uncertainty.
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If we revisit the ACT architecture, it consists of a CNN followed by temporal aggrega-
tion layers and classification/regression layers. The CNN operates independently on each
frame to generate per-frame features. The temporal aggregator combines frame features
from a set of frames and passes them to a predictor. The detection is done on a whole video
in a sliding window fashion.

The uncertainty in the variables is approximated using dropout sampling of the
networks. The spatial uncertainty and temporal uncertainty are approximated by changing
the insertion points of the dropout layers. The spatial features are generated by the CNN so
dropout is added after every parameter layer (Convolution and its variants). Additionally,
each frame’s features are generated independently by passing through the CNN, so the
notion of temporal behavior is not introduced until the aggregation phase. Thus, to
approximate the uncertainty due to the temporal features, the dropout is added after the
temporal aggregation (Figure 7).

Figure 7. The spatial and temporal uncertainties are separated by changing the insertion points of
the dropout layers. In the case of spatial uncertainty, the dropout layers are added in the CNN after
every parameter layer. For temporal uncertainty, the dropout layers in the temporal aggregator only.

7. Experimental Setup

The SSD Mobilenet v1-S1L0 has a compute complexity of 5.9 GFLOPs. On a Jetson
Xavier platform, processing one image takes 26.6 ms for this network [36]. Dropout was
added to the output of the backbone with a 0.2 probability of dropping. Evaluation was
performed on the CAMEL dataset [13] which contains registered RGB-IR pairs at a reso-
lution of 256 × 336 and 5 classes of objects annotated. The test set contains six sequences
with challenging lighting and occlusion conditions. Two datasets were used for bench-
marking for action detection. The UCF101-24 [14] dataset contains 928 clips with 24 labeled
actions. The MOVE dataset contains 43 clips with 15 labelled actions and a high degree of
camera motion.

For each input image, 40 MC trials were performed to get model uncertainty. The
threshold for correct detections at the sensor was kept at 0.3, which was the original
threshold for the confidence-only controller. The bounding box detections from the trials
are clustered using the spatial affinity of the boxes measured using the Intersection over
Union (IoU) metric [24]. The class entropy of each detection is normalized by dividing by
the maximum entropy among all detections in the same frame.

Metrics for Evaluation

The diversity of the different tasks requires different measures of success. We provide
a preliminary on the important metrics for discussion.



Sensors 2021, 21, 2610 11 of 20

Average Precision. The average precision is calculated by measuring the area of the
Precision–Recall Curve. The precision and recall values are determined by calculating the
number of true positives and false positives. Detections with a high degree of overlap with
ground-truth boxes are designated as true positives (TP) while the rest are designated as
false positives (FP). Any unmatched ground truth boxes are False Negatives (FN). The
detection threshold of the network is swept to get multiple PR pairs. The trapezoidal rule
is employed to approximate the area. The AP is measured per-class. For all the classes,
the mean AP (mAP) is computed. There are two specializations for the AP based on the
task. For action detection frame, mAP and video mAP are calculated. While frame mAP is
straightforward, video mAP is slightly different. The video mAP metric uses overlap both
over space and time to designate true positive detections. For action detection, video mAP
is more valuable as it is important to localize the action both over space and time.

Multiple Object Tracking Accuracy. The object tracking task is evaluated using the
Multiple Object Tracking Accuracy (MOTA) metric. The MOTA weighs the combined effect
of false positives (FP), false negatives (FN), and ID switches (Equation (10)). An ID switch
occurs if the running ID for a continuous trajectory changes at some point during the video.

MOTA = 1− (FN + FP + IDswitch)

GT
(10)

8. Experimental Results
8.1. Characterization
8.1.1. Input Perturbations

The input space perturbations are applied to determine the response of the uncertainty
measures. In our first experiment, we add additive white Gaussian noise to the input image
with various levels of variance (σ). Both model and data uncertainty are characterized for
an object detection task. The characterization is performed for the CAMEL dataset. The
results are presented in Figure 8.

Figure 8. Model and Data Classification Uncertainty estimates for an object detection model on the
CAMEL dataset. Reprinted with permission from ref. [12]. Coprright 2020 IEEE.

The results show that the increasing levels of noise decrease the accuracy (mAP) of the
tasks. Correspondingly, the uncertainty (class entropy) also increases. A dip follows the σ
value of 0.05. This dip occurs as the network fails to produce any positive detections. Thus
far, the uncertainty measures we have described are all dependent on actual detections
being produced. As the noise level crosses a threshold, the network starts failing. Thus, the
uncertainty measure also becomes unreliable in that scenario.

At a noise sigma of 0.05, the model/data uncertainty increases by 83%/30%, respec-
tively. The change in model uncertainty is more pronounced than the data uncertainty. The
uncertainty for true positives (TP) and false positives (FP) is also examined under various
levels of noise as shown in Figure 9. At all levels of noise, the uncertainty values of FP are
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much higher than TP. For clean data, the uncertainty of TP is 64.1% lower than FP. Thus,
in addition to the score of detections, we can use the uncertainty values to remove false
positives. This characterization is performed without any feedback.

Figure 9. Uncertainty for True Positives (TP) and False Positives (FP) at different levels of sensor noise.
Reprinted with permission from ref. [12]. Coprright 2020 IEEE.

8.1.2. Multi-Modality

We characterize the uncertainty in a multi-modal scenario with RGB and IR modalities
available to us. We examine this at a per-sequence level. In Seq03, a well-lit scene, there
is no difference in the uncertainty for RGB or IR. In Seq30 (a poorly lit scene), we see a
difference in the class entropy. The first observation is that, in the absence of any detections,
the class entropy reaches a floor value. This makes uncertainty estimation unsuitable in the
case of false negatives. Second, the uncertainty rises due to lighting or occlusion conditions
as shown in Figure 10.

Figure 10. Per-sequence Model Uncertainty Comparison on the CAMEL Test Set. Seq03 is well-lit, so
no major fluctuations in uncertainty are observed. In Seq 30, two major spikes are observed in RGB
and IR domains due to occlusion and lighting, respectively. Reprinted with permission from ref. [12].
Coprright 2020 IEEE.
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8.1.3. Characterization with Feedback

We characterize the model uncertainty in the confidence-driven feedback imager.
We characterize the uncertainty for spatiotemporal resolution control and multi-modality
control as shown in Figure 11. In the mixed-modality case, the baselines are RGB only and
IR only. For well-lit sequences, there is no difference in the entropy. For poorly lit sequences
(Seq 30), the entropy is lower for IR only and mixed modality. The mixed-modality control
shows the lowest entropy compared to both baselines.

The same behavior is observed for spatial resolution control. The entropy for the
control is compared to a downsampled by 2× image. The entropy of the feedback control
is similar to the baseline RGB system. The advantage is that the feedback control consumes
lower bandwidth by 3×. For spatial resolution control, the feedback system shows lower
uncertainty than 2× lower resolution system (Figure 12). The feedback system reduces the
uncertainty of the detections while transmitting the video at a lower bandwidth.

Figure 11. Uncertainty results on CAMEL Dataset. (a) With RGB only, IR only and Mixed-modality
control (b) with RGB, 2× downsampled and Spatial Resolution Control. Reprinted with permission
from ref. [12]. Coprright 2020 IEEE.

Figure 12. Per-sequence model uncertainty comparison on the CAMEL Test Set. As shown, the task
uncertainty for the spatial resolution control is similar to the task uncertainty of the full quality system.
Reprinted with permission from ref. [12]. Coprright 2020 IEEE.

8.2. Uncertainty-Driven Feedback Control

Evaluation of the uncertainty-driven control is performed on the CAMEL dataset
and compared with the RGB baseline, RGB-IR Mixed Modality approach [3], and the



Sensors 2021, 21, 2610 14 of 20

uncertainty-FP approach described in [12]. In this work, we present the uncertainty-FN
and hybrid approach that combines both uncertain-FP and uncertain-FN. In all cases, thcon f
is set to 0.3 for feedback. The value of thlow is set to 0.9 and the value of thhigh is set to 0.7.

The threshold for false negative feedback thhigh is also swept as shown in Figure 13.
As it is increased, only the detections with high uncertainty (in addition to the detections
with a high score) are considered for feedback. At a value of 1.0, the system becomes purely
confidence-driven as no high uncertainty detections are used for feedback. The threshold
for confidence thcon f is fixed at 0.3.

Figure 13. Number of False Negatives on the CAMEL dataset by sweeping the threshold for False
Negatives thhigh. A value of 1.0 turns the system to purely confidence-driven.

The object detection and object tracking metrics (AP and MOTA, respectively) show
improvement with the addition of uncertainty as a decision criterion as shown in Table 1.
The false positives reduce from 587 to 567. The uncertain-FN by itself does not improve
FN compared to RGB-IR, but it does improve FN from RGB baseline from 17,307 to 17,266.
The hybrid approach shows the best improvement by reducing the FN to 16,816. The mAP
and MOTA also improve by 1.1% and 1.1%, respectively.

Table 1. Accuracy metrics on the CAMEL dataset.

Detection
(mAP) ↑

Tracking
(MOTA) ↑

Bandwidth
(Mbps) ↓ TP ↑ FP ↓ FN ↓

RGB 0.223 0.221 61.9 5357 609 17,307
RGB-IR [3] 0.233 0.235 52.8 5577 587 17,087

Uncertain-FP [12] 0.234 0.235 53.2 5608 567 17,056

This Work

Uncertain-FN 0.223 0.230 53.3 5389 589 17,266
Hybrid 0.244 0.246 53.2 5848 571 16,816

Similar to the task of object detection and tracking, we also evaluate the uncertainty-
driven control on the task of action detection (Table 2) on the UCFSports Dataset. The
accuracy metrics improve for the hybrid approach by 1.4%, and the False Negatives reduce
by 18 from 74 to 56. Again, the uncertainty-FN by itself does not work well unless it is
coupled with Uncertainty-FP. Nspatial is set to 2, and Ntemporal is set to 3 in-line with [4].
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Table 2. Accuracy metrics on the UCFSports dataset.

Frame
mAP ↑

Bandwidth
(Mbps) ↓ TP ↑ FP ↓ FN ↓

No Feedback 76.9 210 3132 68,654 74

Spatio-Temporal Control

Confidence-Driven 77.3 29.03 3132 66,315 74
Uncertainty-FP 78.3 28.77 3129 65,128 77
Uncertainty-FN 78.4 29.10 3077 66,314 129

Hybrid 78.7 29.12 3150 64,318 56

Visually, the confidence-driven and uncertainty-driven feedback controls are shown
for the CAMEL dataset in Figure 14. For the car sequence, the uncertainty-driven control
manages to detect the cars going in the dark region of the image. Although they have a
lower score, they are flagged by their high uncertainty causing the sensor to stay in IR
mode. Similarly in the pedestrian sequence, the low score causes the detector to keep
switching between RGB and IR in the bottom right section. The uncertainty-driven control
is able to detect it in the RGB frame due to its high uncertainty. At the host side, we see
the positive effects as the normal network is able to do better detection even though the
uncertainty estimation and control happen only at the sensor side.

Figure 14. Comparison of confidence-driven and uncertainty-driven control on CAMEL Dataset. Top
Row: Seq 09. Bottom Row: Seq 03. Columns from left to right: confidence-driven (output at sensor),
uncertainty-driven (output at sensor), confidence-driven (output at end user), and uncertainty-driven
(output at end user).

8.3. Separation of Spatial and Temporal Uncertainty

The spatial and temporal uncertainty are compared for two datasets. The UCF Sports
dataset contains 10 actions. The videos are trimmed to the action. The actors are fairly
centered in the video, and there is little camera motion or motion-induced blurring in the
videos. The MOVE dataset, on the other hand, contains a high degree of camera motions
and off-center actors. This makes the MOVE dataset a challenging benchmark for video
action detection.

The comparison (Figure 15) shows that the spatial uncertainty for the bounding boxes
is quite similar. The absolute values differ between datasets due to the different image sizes
and actor’s pixel extent. The temporal uncertainty shows an interesting behavior. In terms
of absolute value, the temporal uncertainty is higher for the MOVE dataset compared to
the UCFSports dataset. Within datasets, the temporal uncertainty is higher vs. spatial
uncertainty for the MOVE dataset (1.50 vs. 0.80) while it is lower for the UCFSports dataset
(0.45 vs. 0.80). This goes with empirical observations that the localization task is harder
in UCFSports while the classification task is harder in the MOVE dataset. Similarly, we
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observe that the spatial uncertainty is higher for the bounding box variables in both datasets,
showing a degree of correlation between bounding box uncertainty and spatial uncertainty.

Figure 15. Left: Spatial and Temporal Uncertainty for class and location variables on the UCFSports
dataset; Right: On the MOVE dataset.

The separated spatial and temporal uncertainty is visualized in Figure 16. The spatial
uncertainty contributes more to the bounding box uncertainty, while the temporal uncer-
tainty is more pronounced when discussing the class of the detection. We believe that the
class is highly dependent on the temporal features for the task of action detection; hence
the label uncertainty is also more sensitive to the temporal uncertainty.

Figure 16. Left: Detections with only uncertainty due to spatial features. Right: Detections with only
uncertainty due to temporal features. The filled extent of the boxes represent the 2σ bbox uncertainty
from the mean of the box. The shade of the boxes represents the label uncertainty. The top row is Seq
001 from UCFSports, while the bottom row is Biking01 from MOVE.

8.3.1. Comparing Temporal Aggregators

The effect of different temporal aggregators is measured. A simple mean aggregator
and an LSTM aggregator are used (Figure 17). In the second study, the input modality is
changed to study the effect of uncertainty. Between the aggregators, there is little difference
in the label uncertainty (both spatial and temporal). The RGB is the baseline configuration
with just RGB inputs. In the Flow config, inputs are Brox-Flow images. In the fusion
configuration, we have two separate networks for processing RGB and Flow images. The
decision of both networks is fused by averaging the scores of the corresponding anchors.
The Flow modality shows a lower uncertainty than the RGB one, even though it has a
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lower AP. The reason is that the Flow modality produces less false positives but is prone
to more false negatives, which reduces the AP score. The fusion shows the best AP and
lowest uncertainty.

Figure 17. Left: Mean vs. LSTM aggregator. Right: Comparison with different input types. Evalu-
ated on the MOVE dataset.

8.3.2. Connecting to the Feedback Control

The separated uncertainty measures show sensitivity to different factors within the
video and give us distinct information. Next, we construct a feedback system that utilizes
these separated uncertainty measures to drive the control of the sensor. We take a baseline
feedback system with action detection task driving spatio-temporal control and construct
four configurations to evaluate the uncertainty-driven control.

In the first, the total uncertainty of the network (calculated by adding dropout layers
after every parameter layer) is used to drive both the spatial and temporal control. In
configurations (3) and (4), the spatial and temporal uncertainty are connected to both
controls, respectively. In configuration (2), the spatial uncertainty is connected to the spatial
resolution control while the temporal uncertainty is connected to the temporal resolution
control (Figure 18).

Figure 18. The spatial and temporal uncertainty are connected to the control parameters in
4 different configurations.

The quantitative evaluation (Table 3) shows that, even if the temporal uncertainty is
connected to both control knobs, the same accuracy metrics as the baseline are achieved
with a fraction of the original cost of multiple MC trials.



Sensors 2021, 21, 2610 18 of 20

Table 3. Ablation Study on Feedback Configurations with Spatial and Temporal Uncertainty.

Frame
mAP ↑

Bandwidth
(Mbps) ↓

Compute
(GFLOPS) ↓

Config 1 78.7 29.12 17.4 × T
Config 2 78.6 28.76 17.4 × T
Config 3 78.5 28.55 17.4 × T
Config 4 78.1 29.97 14.9 + 2.52 × T

T is the number of Monte Carlo Trials.

9. Discussion

The uncertainty of a high-level task DNN was characterized in an active sensor feed-
back system. It is shown that the uncertainty is minimized in the feedback configurations.
A hybrid system that uses uncertainty as a decision criterion was demonstrated. For future
work, the aim is to address the limitations of compute complexity. The compute complexity
required to obtain the uncertainty estimates is prohibitively high. For each image, we are
performing 40 Monte Carlo trials. This number can also change depending on the task we
are running. If it is too small, the predictive distribution will not match the true distribution.
If it it too large, it will not be feasible to run on a deployed system. Nevertheless, this is an
interesting and active area of research. Some lines of research are using distillation to have
a small network mimic the uncertainty [37], one-pass uncertainty estimation [38,39], while
some advocate developing a trust score calculated using a non-parametric model such as
nearest neighbors [40]. It will be interesting to see what developments are presented in
that domain.

Additionally, determining the causality of uncertainty is also an interesting research
problem that this paper tackles to some extent by separating the uncertainty due to spatial
and temporal factors. The thresholds for determining the ROIs based on score and uncer-
tainty are also computed empirically. The threshold may not respond well to changing
input distributions; thus, it should be tunable based on an error signal. For example,
frequent switching of ROIs may be an indicator of error in the feedback loop, and the
threshold can be adjusted accordingly.

10. Conclusions

In this work, we have shown that feedback systems that rely solely on the output of
the task can lead to deteriorating operations. For detection tasks such as object detection,
the error arises due to false positives and false negatives. We show in this work that using
uncertainty estimation techniques to measure the reliability of the task output is useful
to determine these types of errors. Additionally, we aid the feedback process by using
the uncertainty to filter out uncertain detections. The hybrid control scheme involving
both uncertainty and score improves the task accuracy. Additionally, for temporal tasks
such as action detection, we separate the uncertainty that arises due to spatial/temporal
factors. We show that, in a practical system, just using the temporal uncertainty is enough
to guarantee reliable feedback operation.
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