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Abstract: Internal combustion engines are among the most commonly used propulsion units for
drive systems in various industries such as land transportation, maritime transportation, and power
generation. Their operation involves a continuous change of technical condition as a result of not only
the combustion process but also their operation under conditions of variable load or ambient impact.
It is therefore important to monitor the technical condition of internal combustion engines to ensure
high performance and reliability over their lifetime. The article presents the test results obtained
from incorrect operation of an internal combustion engine as a result of forced failures of the ignition
and injection system. On this basis, a multicriteria comparison of the signal analysis of engine block
vibrations was made, after the transformation of the signal from the time domain to the frequency
domain, by using the induction technique obtained from the operation of decision tree algorithms.
For this purpose, the amplitude spectrum in the frequency domain, scaled to absolute values of
discretization for which teaching and testing data tables were created for successive harmonics,
was determined for the engine block vibration signal being tested. On the basis of the developed
algorithm using decision trees, a multicriteria data table was analyzed for which a compatibility
path for the analyzed engine block vibration signal is created. In this way, it is confirmed with a
specified degree of effectiveness, depending on the point of operation of the engine resulting from
its crankshaft speed, that there is a possibility of detecting a preset ignition or injection system
malfunction in the technical condition of the internal combustion engine with a probability up to
about 72%.

Keywords: internal combustion engine; logic tree; fault algorithm

1. Introduction

The internal combustion engine is a strongly nonlinear object, consisting of many
subcomponents, which, combined together, are responsible for its proper functioning.
It is their interaction that results in obtaining parameters of engine operation; however,
its operation is linked with body vibrations which are minimized in the design process.
The engine is a real object, in which random irregularities can occur, resulting from the
poor quality of fuel or from control system errors when they have a repetitive character.
Such faults cause the divergence of the indicators of engine operation from the expected
values, causing a decrease in power, an increase in fuel consumption, an increase in
exhaust emissions, and changes in the noise spectrum but also in the occurrence of intense
vibrations on the engine body. A frequently signaled malfunction related to the operation
of the engine is the occurrence of knocking combustion and the so-called misfire. The
causes of the detected combustion errors are not unambiguously determined and may be
related, depending on the type of internal combustion engine, to the lack of fuel injection,
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inappropriate fuel atomization, bad air-fuel ratio (AFR), or lack of ignition spark and other
errors, indicating its poor technical condition. From the point of view of the durability and
reliability, as well as for environmental reasons, it is important to detect the errors as early
as possible. For this reason, many research centers conduct research work related to the
diagnosis of this type of defects in a reciprocating internal combustion engine, where the
vibrations of individual engine components or their fitting are analyzed.

Barelli et al. [1] analyzed the quality of the combustion process and developed an
innovative diagnostic system using DWT (discrete wavelet transform) analysis for co-
generation reciprocating engines. This system is based on the evaluation of the energy
content of the vibration signal directly acquired on the cylinder heads through the discrete
wavelet transform technique and the Parseval’s theorem. Grajales et al. [2] dealt with the
diagnosis of internal combustion engine faults caused by the misfire, where they based
the diagnosis on the analysis of the engine vibration signals using envelope, peak energy,
and peak longitudinal acceleration techniques. Jianfeng et al. [3] presented a method of
diagnosing the misfire based on gradient boosting using a time and frequency analysis
of vibration signals using a triaxial accelerometer. For an accurate and timely diagnosis
of diesel engine misfire, this article developed a novel diagnostic method combining a
few methods. Thus, multi-synchro-squeezing (MSST), local linear deposition (LLE), and
extreme gradient gain (XGB) were combined. The results confirm a very high classification
accuracy of the proposed algorithm based on gradient boosting up to 99.93%.

Taghizadeh-Alisaraeii Mahdavian’s work [4] is focused on the diagnosis of combustion
engine injector fault and corresponding vibration amplitudes and frequencies likely to
cause the knock phenomenon. Welch test, short-term Fourier transform (STFT), Wigner–
Ville distribution (WVD), and Choi-Williams distribution (CWD) were employed for a
detailed scrutiny of vibrations generated by the engine under load. Komorska [5] proposed
to build a statistical model with abstractive parameters that could be, for instance, a
periodically time-varying autoregressive model AR for the diagnosis of given damages, like
valve clearance change or valve burning. Identifying model consists in finding periodically
time-varying coefficients of the equivalent filter.

Applying the STFT method to the diagnosis of IC engine valve clearance was shown
by Jedlinski et al., who analyzed the transformer window and the dominant frequencies.
Due to the signal dependence, the Kalman filter was used to analyze the vibration signal
for the diagnosis of IC engine valve clearance, which was presented by Puchalski [6]. The
occurrence of knock combustion was determined by the new knock index by Bares et al. [7].
In this work, Bares at al. proposed analyses of the frequency spectrum of the pressure
signal in two locations, i.e., near the maximum heat release and near the end of combustion,
using the fast Fourier transform and a window function which is compared with the
classical MAPO definition consisting in finding the maximum pressure oscillation in the
time domain. Genga et al. [8] published an analytical model of nonstationary engine
vibrations. Attention was paid to the time-varying vibrations with specific properties
which are important for the transformation of the vibration signal from the time domain
to the frequency domain, while maintaining its dominant properties. An autoregressive
model based on pseudo-Wigner–Ville distribution (AR-PWVD) was designed and applied
into this research work for detecting insufficient combustion and outlet valve leakage.

Regardless of the research possibilities to detect a defect, some researchers, such
as Ahirrao et al. [8], pointed out to the effect of the engine fixture to the frame and the
structural vibrations transmitted by the engine-frame assembly. Prażnowski et al. [9]
indicate that it is possible to diagnose selected engine faults through vehicle structure
vibration analysis using STFT spectrum and inference matrix.

Many researchers propose the use of advanced detection algorithms in the form
of artificial intelligence, including neural networks, to diagnose engine failure in ma-
chines. Huang and Liu [10] proposed a multifeature fusion model based on Dempster–
Shafer evidence theory combined with a particle swarm optimization algorithm and
artificial neural network (PSO-ANN). The proposed model in comparison with the k-
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nearest-neighbors method may effectively improve the accuracy of damage forecasting. In
turn, Gong et al. [11] proposed a novel method: that is, they improved the convolutional-
neural-network–support-vector-machine (CNN–SVM) method. This method improves the
traditional convolutional neural network (CNN) model structure by introducing the global
average pooling technology and SVM. This paper proposes a novel method, namely an
improved convolutional-neural-network–support-vector-machine (CNN–SVM) method.

In order to analyze the identification of defects, other works propose to use the
structure of decision trees for diagnostics of fault conditions and reliability. A linear model
tree (LMT) was suggested by Sharma et al. [12] after comparing the competencies of
various decision tree algorithms available. LMT algorithm offers high overall classification
accuracy with the value of 100% in differentiating between normal and fault conditions.
The use of vibration signals from the engine block secures a great accuracy and a lower
cost. Wang et al. proposed a novel method named conditional inference tree to conduct
the reliability analysis [13]. In [14,15], the theory of rough sets with high classification
efficiency for analyzing the technical condition of bearings was presented. The decision
to continue using the vehicle is based on the results of periodic inspections. Other papers
present the use of classification methods for analyzing financial data [16,17].

In the induction and classification of knowledge acquisition, the decision consists
of fragments describing the essence of the action to be taken. With the development of
information technology, the nature and possibilities of optimization methods and decision
support systems are changing. There is a wide range of research into the development
of methodologies supporting decision-making processes and management control, de-
sign methodologies, and systems of various complexity, including artificial intelligence. A
special direction of development that strengthens the role of classification systems is the
combination of various methods of processing, inference, and seeking knowledge devel-
oped separately under artificial intelligence into one coherent hybrid consulting system.
In particular, there are two general approaches to creating hybrid decision support sys-
tems: CI—computational intelligence and SC—soft computing [18]. In the case of CI, the
criteria are selected by mathematical methods: neural networks, genetic algorithms, fuzzy
logic, evolutionary, and heuristic programming. The second approach (SC) is to build
hybrid systems for the use of artificial intelligence. It is assumed that existing advisory
systems process additional structured information into additional structures, hierarchies,
and semantic algorithms. When analyzing the state of research using decision support and
decision making, one can observe the continuous development of computational intelli-
gence methods, i.e., neural networks, fuzzy logic, rough sets, expert systems, and the main
one of these methods, i.e., the hybrid method. This also applies to multicriteria decision-
making methods developed, e.g., by Trzaskalik [19]. The work contains specific methods,
including: AHP, ANP, ELECTRE, PROMETHEE, verbal methods, TOPSIS, BIPOLAR, and
alternative methods used based on the risk analysis.

At the same time, the state of the art in machine learning is constantly increasing. It
covers the problems of constructing systems whose operation increases with the experience
represented by the set of teaching examples. In this area, particular attention should be
paid to the further developments [20–23]. In the technical problems under consideration,
one of the methods of classification of information and decision support is the method of
inductive rule generation using decision trees. In induction, the entropy measure is used
to determine the most significant attribute. Inductive decision trees can be compared in
the process of classification, prediction, and determination of the importance of decision
variables with multivalue logical trees [24]. In a broader sense, it can be claimed that
inductive decision trees are a special case of modified tree structures [24,25].

There are many works presenting the use of inductive decision trees, multivalue logi-
cal trees (also with coefficients), and multivalue logical equations as decision support tools
in the discrete optimization and determination of decision variables [26–28]. Classification
methods found wide application in the analysis and diagnostics of internal combustion,
electric, and hybrid engines. For example, Wu and Liu [29] proposed a system for diagnos-



Sensors 2021, 21, 2470 4 of 18

ing damage to internal combustion engines using wavelet packet transformation (WPT)
and artificial neural network (ANN) techniques [30,31].

The paper [32] presents a method of diagnosing damage using error tree (binary) and
Bayesian networks (BN) in order to optimize the diagnostic system. An efficient binary
decision diagram with zero suppression (ZBDD) and diagnostic significance factor (DIF)
is used. Automatic diagnosis based on the reliability analysis methodology (ADORA)
using information about reliability during the design phase to build a diagnostic map is
presented in [33,34].

An interesting issue concerning the use of induction trees is presented by Aljavarneh et al.,
where useful functions of engine defects were identified using the J48 decision tree algo-
rithm [35]. The classification accuracy from the J48 algorithm, the best first tree algorithm,
the random tree forest algorithm, the functional tree algorithm, and the linear tree algo-
rithm are compared, and the best algorithm for a given system is recommended. Dep-
tuła et al. [36] use a modular decision system based on graph networks parametrically
playing an important role in the acoustic diagnostics of an internal combustion engine.
Currently, the classification with the use of inductive decision trees is used in determining
the most important faults. The algorithm, using decision trees, developed in this paper,
analyzes the distribution of spectrum values around the analyzed harmonic for which a
compatibility path is created for the given input (engine load). In this way, it is possible to
identify the technical condition of the engine with a high probability, which is equivalent
to the detection of a fault in the form of ignition or injection loss.

The applied vibro-acoustic methods in diagnosing the condition of a device use an
inference method based on the knowledge of a domain expert. The authors of the study
proposed to use the expert method in the form of decision trees. Such a solution makes it
possible to extend the inference system with new attributes. Their increased number may
positively influence the level of accuracy of the device state determination. The occurring
differences in the amplitude of the fundamental harmonic and the variation of amplitude
values for subsequent harmonics in the analyzed spectrum for a given failure are used
to develop an expert base. The obtained expert database is used by the proposed system
for conducting the inference analysis through multicriteria comparison of the analyzed
data sample with the data contained in the database. Such a solution may allow for the
construction of an extensive database, which can be used for diagnostic inference in the
scope of diversified defects of the tested object using vibrations of its supporting structure
as a source of diagnostic information.

2. Research Object
2.1. Measurement System

The research involved the use of a Polaris off-road vehicle (the technical specifications
of the test object are shown in Table 1) equipped with an original integrated measuring
system consisting of a wireless data transmission system from the on-board CAN BUS
network and an acceleration sensor (Figure 1).

Table 1. Technical data of the test object (Polaris Sportsman XP 850).

Engine Type Four-Stroke, Two-Cylinder, In-Line, Liquid-Cooled, SOHC

Engine displacement 850 cm3

Number of cylinders 2
Engine power 56.6 kW

Supporting structure Welded steel frame made of closed profiles

The wireless data transmission system uses diagnostic connector signals and allows
data to be transferred from the vehicle to the recording computer using a radio transmitter
(Ebyte Electronic Technology Co, Chengdu, China) operating in the 433 MHz band whose
range is up to 1 km.
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Figure 1. Sensor mounting location, sensor axis system.

The sensor (3DM-GX3-25) (Lord Sensing, Villiston, ND, USA) was used to measure
acceleration by a direct method. It is made in MEMS technology. Basic sensor data are
presented in Table 2. The sensor is insensitive to the effects of internal noise of conditioning
systems due to the use of a set of sensors with a pulse PWM output. It has a built-in
processor which provides static and dynamic orientation of its measurement axes thanks
to the algorithm of measurement synthesis.

Table 2. Acceleration sensor type 3DM-GX3-25 specifications.

Measurement Range +/− 5 g

Nonlinearity ±0.1% fs
In-run bias stability ±0.04 mg

Initial bias error ±0.002 g
Scale factor stability ±0.05%

Noise density 80 µg/
√

Hz
Date output rate 866 Hz

The sensor for measuring vibrations has been mounted on a structural element (frame)
of the tested vehicle. Such a solution is aimed at determining the possibility of using
the vibrations of the supporting structure to identify the selected preset failures of the
combustion engine. The diagnosis of the elastic-damping elements fixing the engine with
the frame was carried out, confirming their correct operation. The directional setting of the
axes of the sensor recording vibrations caused by the operating internal combustion engine
relative to the engine crankshaft (x-longitudinal axis, y-transverse axis, and z-vertical axis)
is shown in Figure 2.
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2.2. Methodology

To identify periodic vibrations, selected signal analysis methods in the paper were
used (Figure 3):

- analysis in the frequency domain FFT,
- scaling the spectrum to relative values,
- creating teaching and testing data files based on the scaled spectrum,
- inference methods based on decision trees.
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To perform inference based on the decision tree, one needs the data recorded from
the acceleration sensor and the on-board data transmission network of the actual machine,
in this case all-terrain vehicle, which have been archived in a text file. In the next step,
based on the FFT analysis of the recorded acceleration signal, an amplitude spectrum was
determined and scaled to relative values in the range 0–1 and discretized. The discretization
made it possible to determine the change in the distribution of the spectrum around the
value of the analyzed harmonic defined on the basis of the engine’s rotational speed
measurement. It normalizes the primary data, giving them the same weight and thus
creating tables of the teaching and testing sets. Using the algorithm for generating inductive
decision trees, it is possible to analyze the distribution of the spectrum around the analyzed
harmonic. In this way, compatibility learning paths are created for the assumed technical
condition of an internal combustion engine analyzed at a preset rotational engine speed.
In the inference process, an analysis of a fragment of the recorded vibration signal of a
combustion engine operating incorrectly at the same assumed rotational speed is performed.
Comparative consistency of the pattern between the nodes of the decision tree allows one
to determine the most probable technical condition of an internal combustion engine based
on expert knowledge.
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3. Measurement Signal and Analysis

For the analysis of the acceleration signal in the frequency domain, the waveforms
at a constant speed of the crankshaft were used. In this way, for the speed of 1250 rpm,
the spectrum of 30 cycles of the internal combustion engine’s operation (1 cycle = 2 shaft
revolutions) was obtained. Fragments of histories of the recorded signals are shown in
Figures 4 and 5.
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For the recorded signal, the influence of the Hamming window on the Fourier trans-
form shape was determined. Spectra obtained for assumed time intervals: ∆t = 0.5; 1; 2;
and 3 s are shown in Figure 6.
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The obtained spectra for ∆t = 1; 2; and 3 s show stable patterns for both the shape
profile and peak values. In the author’s work [37], a detailed analysis of the selection of the
time interval was made, where the time interval of ∆t = 2 s for the measurement window
established in 3 s was indicated for further analysis of the acceleration signal.

For an efficient internal combustion engine at idle speed, the maximum acceleration
values for the basic harmonic (f1) are ax = 0.0028 m/s2, ay = 0.19 m/s2, and az = 0.16 m/s2

(Figure 7). The highest acceleration values for the efficient motor were obtained for sub-
sequent folds of the basic harmonic: y-axis (f 1.5) ay = 0.42 m/s2 and for the z-axis (f 2.5)
az = 1.2 m/s2. Defects introduced in the form of a lack of injection into one cylinder or
insufficient tightness of the spark plug caused a visible increase in the value of amplitudes
for individual axes. The increase magnitude depends on the type of defects. In the case
of an inefficient injection system, an increase is seen for the x axis for harmonics: f1, f2,
and f2.5, for the y axis: f1, f2, f2.5, and f3, and the z axis: f2 and f2.5. The introduction of
a defect in the form of a leak in the connection of the spark plug with the head did not
introduce changes in the analyzed spectrum.

An increase in amplitude values is also visible for other engine speed ranges. An
example of the waveform for the rotational speed of the crankshaft 3500 rpm is shown in
Figure 8. Dominant amplitudes in the fundamental frequency range f1 as well as f1.5 and f2
are visible in the analyzed spectrum. For an efficient motor, the amplitude values for f1
are ax = 0.28 m/s2, ay = 2.75 m/s2, and az = 0.74 m/s2. An increase in the amplitudes of
subsequent harmonics of the fundamental frequency (x axis and y axis) is also visible.

The introduced fault in the form of an inefficient injection system caused an increase
in amplitude, which is visible for the harmonics f1.5 and f2 and f1 for the z axis. The leakage
of the spark plug results in an increase in the amplitudes of the x and y axis accelerations
for the f2 harmonic.

Based on the known rotational speed of the engine crankshaft, its basic frequency f1
was determined using a frequency range window of +/− 1.5 Hz. Then, dominant values
of component acceleration amplitudes were determined for the n-order n = f0.5, f1, f1.5, f2,
and f2.5. For the (x) axis, these values were determined as ax0.5, ax1, ax1.5, and axn.
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Then, relative values were determined for individual harmonics relative to the funda-
mental frequency. The obtained values take the designation Axn (n-order of the analyzed
basic harmonic) for individual harmonic components of the signal spectrum (Figure 8).
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Based on Equations (3)–(5), the acceleration components for the measuring axis x, y, and z
were determined for the selected rotational speed of the internal combustion engine.

3.1. Application of Induction Classification Trees in the Diagnosis of Internal Combustion
Engine Damage

To analyze the data, an algorithm for generating inductive decision trees was used; the
scheme of which is presented in Figure 9. The algorithm consists of three operating blocks:
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Discovering knowledge—creating a database of registered signals from the accelera-
tion sensor, FFT spectral analysis, and discretization;

Generating induction trees—the main algorithm for generating induction decision
trees, including an expert database for teaching and testing

Minimizing the criterion function and a final search for the best solutions.
Most algorithms look for such rules by inductively generalizing the description of

learning examples. The rules generated for each decision class should be satisfied by
examples belonging to that class (so-called positive examples). At the same time, the rules
should be met by none or only a few examples from other classes (the so-called negative
examples) [25,26]. The main characteristics of machine learning are:

• the use of artificial intelligence methods and concepts (e.g., symbolic representa-
tio knowledge),
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• the generalization (generalization) of the experience gained in the form of observation
or decision examples,

• the explanation of the obtained generalizations and decisions made on their basis.

The task of the learning system is to obtain knowledge from a given subset of examples:

L ⊂ U, (1)

called the training set, which is most often a random sample from the population of all U
objects. Objects are described by a set of features (attributes, variables):

F = { f1, f2, . . . , fm} (2)

where F—family of functions, corresponding to the variables in the statistical interpretation.
The feature is a function that maps a set of objects (examples) to a set of values:

f j : U → D−1( f j)
2 (3)

where f j(xi), f ∈ F-denotes the value of the j-th feature for the example xi

3.2. Generating Knowledge from Examples

As a result of training on a set of L examples described by F features, the machine-
learning system generates the hF (L) hypothesis. This hypothesis is a classifier. Knowledge
representation languages can be divided into the following:

• symbolic (logical expressions, decision rules, decision trees, and semantic networks)
• subsymbolic (represented mainly by neural networks). Usually the knowledge rep-

resentation language is imposed by the inductor. In a supervised environment, the
hF (L) hypothesis generated by the inductor in the learning process is used to classify
objects [9,10]. The hypothesis uniquely determines a certain partition PF (U). Then,
one can determine the accuracy of classification for the set:

η(h, X) =
1
|X|

∣∣∣∣X ∩ n
∪

k=1
Ck ∩ C′k

∣∣∣∣, Ck ∈ P(U), C′k ∈ P(U) (4)

where the error in classifying hypothesis h on the set of examples X can be determined
as follows: ∈ (h, X) = 1− η(h, X).

Constructive induction is usually iterative, leading to successive changes in the repre-
sentation space.

In the classification with the use of induction trees, it is assumed that the domain U
(i.e., all our results), in which the attributes u1, u2,..., un, (i.e., single measurements) are
defined, is given a class of concepts C with a set of categories C and:

1. A leaf containing any category label with z ∈ C is a decision tree;
2. t: X→it is a test carried out on the attribute values of examples with a set of possible

results it= { i1, i2, i3, ... im}; each is a single iteration (decision) in the tree search.

In the induction of decision trees, entropy determines the most significant attribute.
The criterion for choosing the attribute used to expand the tree is entropy as a measure

of the information contained in the phenomenon, which can randomly take n-states:

E =
n−1

∑
i=0

(−pi log2 pi), (5)

where pi—is the probability of the appearance of the ith element of the set.
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The information in the set of learning examples is equal to

I(E) = −
|E|

∑
i=1

|Ei|
|E| · log2

(
|Ei|
|E|

)
, (6)

where

E—a collection of learning examples
|Ei|—a number of examples of the ith object,
|E|—a number of examples in the teaching set E.

The expected value of information after subdividing the set of examples E into subsets:

E(m), m = 1, . . . , |Va| in which the attribute a has the value of Vm, specified as [12,13]:

where

E—a collection of learning examples∣∣∣E(m)
∣∣∣—a number of examples after the E set is divided by the m value of the given attribute,

|E|—a number of examples in the training set E.

3.3. Identification of Defects Based on the Determined Spectral Characteristics of Engine Vibrations

Two-stage analysis was used: the set was divided into two parts t1 and t2 (t1—the
set of all examples belonging to 1250 rpm and t2—the set of all examples belonging to
3500 rpm) (Table 3).

Table 3. Adopted harmonic frequency ranges of the signal spectrum.

Rev/Min Value f [Hz] with +/−
Deviations Rev/Min Value f [Hz] with +/−

Deviations Cl.

1250 Lower
Limit

Middle
Limit

Upper
Limit 3500 Lower

Limit
Middle
Limit

Upper
Limit

0.5f 0 8.41666 10.4166 12.4166 0.5f 0 27.1666 29.1666 31.1666 I
1f 0 18.8333 20.8333 22.8333 1f 0 56.3333 58.3333 60.3333 II

1.5f 0 29.2500 31.2500 33.2500 1.5f 0 85.5000 87.5000 89.5000 III
2f 0 39.6666 41.6666 43.6666 2f 0 114.6666 116.6666 118.8333 IV

2.5f 0 50.0833 52.0833 54.0833 2.5f 0 143.8333 145.8333 147.8333 V
3f 0 60.6000 62.5000 64.5000 3f 0 173.0000 175.0000 177.0000 VI

Measurement data have been divided into classes:

E =
1
2

N

∑
j=1

n

∑
i=1

(xij −
_
x ij)

2
, (7)

Figure 10 shows an example of the division into classes in the classification of ampli-
tude spectra for the assumed time intervals.

In the analysis including induction trees, five induction trees are obtained for the
t1 range: (ht1 (0.5f 0), ht1 (1f 0), ht1 (1.5f 0), ht1 (2f 0), ht1 (2.5f 0), and ht1 (3f 0)) and five
induction trees for the t2 range: (ht2 (0.5f 0), ht2 (1f 0), ht2 (1.5f 0), ht2 (2f 0), ht2 (2.5f 0),
and ht2 (3f 0).

The decision system presented on Figures 11 and 12 takes into account both conditions
t1 and t2 (). Due to this:

1. input attributes (in) are values for given frequencies i1, i2, i3, i4, i5, i6, ..., i170. In
general, we have nk and for a given nk, where k = 1, 2, ..., N.

2. h1, h2, ... hm are the hypotheses represented by DeTreex learning files leading to trees
T1, T2, ... Tm, respectively

3. the output attributes (out) represent the engine state, the test t with the result set it =
{i1, i2, i3, ... im}.
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The optimal response is assumed to be between 0–170 in the entire frequency range F.
The algorithm finds the optimal values of i1, i2, i3, i4, i5, i6, . . . , i170 and associates the

engine state with the output:

fN(t1) =
nk

∏
n1

min . . . min{n(h1, i1) + . . . + n(hk, ik)}, (8)

and

fN(t2) =
nk

∏
n1

min . . . min{n(h1, i1) + . . . + n(hk, ik)}, (9)

where t1—is the determination of optimal values for 1250 rev/min (or the first stage of tree
search) and t2—is the determination of the optimal values for 3500 rev/min (or the second
stage of tree search). The change of state i to state ti+1 is described by the correlation:

ti+1 = T(ti, hi), (10)
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where transformation:
T(ti, hi) = ti − iihi, (11)
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The analysis of the N-stage process is carried out from the beginning to the end,
searching all values from two sets of induction trees. The criterion function for the one-
stage process f 1 (t1) is only a function of the state tN and corresponds to the minimum
h (tN, iN):

f1(tN) = minh(tn, ii), (12)

For a two-step search, in which we want to find the optimal decision iN-1, we assume
that the optimal value f 1 (tN) and f 2 (tN) for the N-th stage are known. The criterion
function is now the sum of two components, while the optimal value of iN-1 is such that it
corresponds to the minimum criterion function of a two-stage process:

f2(tN−1)
=

N

∏
iN−1

min
{

n(tN−1, iN−1) + f1(tN)

}
= min

{
n(tN−1, iN−1) + f1(tN−1−iN−1hN−1)

}
, (13)

The procedure is analogous in the subsequent stages of tree searching: there is a
recursive relationship of the N-stage decision-making process:

fN−i+1(ti)
=

N

∏
iN−1

min{n(ti, ii) + fN−iT[(ti, ii)}, (14)

where N, N−1, ..., 1.
These dependencies allow building a search tree to generate a common database.
The use of the decision tree for backward inference, including the inductive classi-

fication system taking the form of the verification of a given hypothesis, runs from the
hypothesis (goal) through the rules to the actual occurrence of the fault. In practice, it is
done in such a way that the system tries to agree the hypothesis with a fact or a rule. In the
case of disagreement, the algorithm searches for the next fact or rule and repeats the opera-
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tion of finding whether the given value is in the area of diagnostics of the sought defect
or its absence. Table 4 shows the probability of finding certain faults based on induction
trees in terms of fault or its absence in the selected range of the internal combustion engine
speed, i.e., t1 = 1250 rpm.

Table 4. Probability ranges for the diagnosis of the failure data for 1250 rpm, where C—efficient
engine, NI—injection inefficient, UC—pressure inefficient, and VR—value range.

Rot.
Speed
[rpm]

Frequency
Range

Fault C Fault NI Fault UC

VR Prob.
[%] VR Prob.

[%] VR Prob.
[%]

1250

0.5f 0
<0.011–
0.018> 44.47 >0.043 33.33 <0.018 22.23

1f 0 >0.021 27.55 >0.034 44.90 <0.021 27.55

1.5f 0
<0.095–
0.373> 44.90 >0.372 27.55 >0.095 27.55

2f 0 >0.019 27.55 >0.044 44.90 <0.019 27.55

2.5f 0 <0.156 27.55 <0.073–
0.156> 72.45 - 0

3f 0
<0.012–
0.033> 44.47 >0.061 33.33 >0.012 22.23

The analysis of the obtained results (Table 4) indicates which spectrum frequency
range is most likely to identify engine malfunctions. For the analyzed speed of 1250 rpm,
the highest probability of indicating the engine malfunction (Fault C) was obtained in the
frequency range 1.5f 0 at 44.9% (i.e., with 0.45 probability). A similar result is visible for
frequencies 0.5f 0 (44.47%) and 3f 0 (44.47%). However, the probability of detecting the type
of failure in these ranges is difficult to determine. For the frequency of 1.5 Hz, both signaled
faults are within the same probability of detection of 27.55 (27%). The highest probability of
detecting the fuel injection failure for one of the cylinders was obtained for the 2.5f 0 range
at 72.45%. The occurrence of compression pressure losses based on the presented method
for 1250 rpm is very difficult. The highest probability of detecting a UC fault was obtained
at the level of 27.55%, which proves the low effectiveness of UC fault identification.

For the analyzed speed of 3500 rpm, the highest probability of indicating the engine
malfunction (Fault C) was obtained in the frequency range 1.5f 0 at 44.9% and 3f 0 at 44.9%.
Similar to 1250 rpm, the probability of detecting the type of malfunction in these ranges is
difficult to determine. The probability of indicating the occurrence of one of the faults is
indicated by the algorithm at the level of 22.55% for each of the cases considered (Table 5).
The highest probability of indicating the fuel injection failure for one of the cylinders was
obtained for 0.5f 0, 1f 0 and 2.5 f 0 at the level of 44.9%. The highest probability of indicating
the abnormal pressure (UC) failure was obtained for 2f 0 at 44.9%.

Table 5. Probability ranges for the diagnosis of the defect data for 3500 rpm, where C—efficient
engine, NI—injection inefficient, UC—pressure inefficient, and VR—value range.

Rot.
Speed
[rpm]

Frequency
Range

Fault C Fault NI Fault UC

VR Prob.
[%] VR Prob.

[%] VR Prob.
[%]

3500

0.5f 0 >0.066 27.55 >0.079 44.90 <0.066 22.55
1f 0 <0.284 27.55 >0.119 44.90 >0.284 22.55

1.5f 0 <0.022 44.90 >0.041 22.55 <0.041 22.55
2f 0 <0.063 22.55 >0.063 22.55 >0.035 44.90

2.5f 0 <0.012 22.55 >0.020 44.90 >0.012 22.55
3f 0 >0.030 44.90 >0.180 22.55 <0.018 22.55
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4. Conclusions

On the basis of a multicriteria analysis using decision trees to identify the technical
condition of the internal combustion engine for the occurring malfunctions in the combus-
tion process, it is possible to detect an ignition and injection system fault. The analysis of
the data table, using the created compatibility path of the tested engine block vibration
signal, allowed for the following conclusions.

The proposed method of diagnosing selected engine faults based on advanced analysis
of the engine block vibration signal allowed the determination of the technical condition
using an intermediate signal.

The occurrence of faults in the ignition and injection system generates different paths
of the engine block vibration signal analyzed in the developed decision tree algorithm.

The engine block vibration signal analyzed in X, Y, and Z domain has deterministic
properties, so there are no simple methods of its analysis. Therefore, the applied method-
ology of engine block vibration signal analysis is divided into phases. In the first stage,
FFT analysis was performed, and amplitude spectra were determined for subsequent
dominant frequencies referring to the basic frequency as its harmonic components. These
data constitute a learning and testing set for an efficient internal combustion engine. Then,
using the algorithm for generating inductive decision trees, it is possible to analyze the
distribution of harmonic frequency spectrum values.

The use of expert knowledge for the developed algorithm of decision trees for the
engine block vibration signal allows for the comparison between the nodes of the decision
tree and for conclusions to be drawn on the technical condition of the examined object.
In the analysis of the internal combustion engine operation under no-load conditions at
a selected speed, it indicates that for each of the considered failures, there are dominant
harmonics in the amplitude spectrum. The induction analysis allowed generating a forest
of trees for 1250 speed and 3500 speed. The most important parameter selected during
engine diagnostics is the fault “NI” pressure inefficient, occurring most often on the lowest
floors of induction trees. Optimal analysis and classification should be made in the 3500
speed range. The classification process (generation) using trees is regular—the same height
of all trees in the drawing at 3500 speed. Based on machine learning, it is possible to create
a comprehensive diagnostic system. Comprehensive tree structures as the final result of
the analysis of distribution allow for the presentation of direct operations of searching for
the best variant in a completely formal way.

As a result of the analysis, the probability to detect an injection system malfunction
amounts up to about 72% in the frequency spectrum for the next harmonic 2.5f 0.
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