
sensors

Article

Automated Keratoconus Detection by 3D Corneal
Images Reconstruction

Hanan A. Hosni Mahmoud 1 and Hanan Abdullah Mengash 2,*

����������
�������

Citation: Mahmoud, H.A.H.;

Mengash, H.A. Automated

Keratoconus Detection by 3D Corneal

Images Reconstruction. Sensors 2021,

21, 2326. https://doi.org/10.3390/

s21072326

Academic Editors:

Anastasios Doulamis and

Ansar-Ul-Haque Yasar

Received: 12 January 2021

Accepted: 24 March 2021

Published: 26 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint
Abdulrahman University, Riyadh 11351, Saudi Arabia; HAhosni@pnu.edu.sa

2 Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint
Abdulrahman University, Riyadh 11351, Saudi Arabia

* Correspondence: hamengash@pnu.edu.sa; Tel.: +966-11-823-8415

Abstract: This paper presents a technique for the detection of keratoconus via the construction of
a 3D eye images from 2D frontal and lateral eye images. Keratoconus is a disease that affects the
cornea. Normal case eyes have a round-shaped cornea, while patients who suffer from keratoconus
have a cone-shaped cornea. Early diagnosis can decrease the risk of eyesight loss. Our aim is to
create a method of fully automated keratoconus detection using digital-camera frontal and lateral
eye images. The presented technique accurately determines case severity. Geometric features are
extracted from 2D images to estimate depth information used to build 3D images of the cornea. The
proposed methodology is easy to implement and time-efficient. 2D images of the eyes (frontal and
lateral) are used as input, and 3D images from which the curvature of the cornea can be detected are
produced as output. Our method involves two main steps: feature extraction and depth calculation.
Machine learning from the 3D images dataset Dataverse, specifically taken by the Cornea/Anterior
Segment OCT SS-1000 (CASIA), was performed. Results show that the method diagnosed the four
stages of keratoconus (severe, moderate, mild, and normal) with an accuracy of 97.8%, as compared
to manual diagnosis done by medical experts.

Keywords: keratoconus detection; 3D eye construction; cornea; depth calculation; machine learning

1. Introduction

Keratoconus describes non-inflammatory disease usually depicted by progressive
thinning, which cause cornea deformation. Affected patients will incur some extent of
distorted vision and photophobia (light sensitivity) [1,2]. Keratoconus causes corneal cone
shaping deformation, which leads to abnormalities, such as diverging of light on the retina
that might lead to loss of vision. Recently, it has been noted that an increased number of
people are being diagnosed with keratoconus [1]. Keratoconus affects 1 in 1500 individuals
as prevailing from many epitomic reports [1–3].

With this high occurrence percentage needing medical attention in detection and
timely treatment, automated rapid detection has become necessary.

Keratoconus is detected clinically using many signs, such as the Vogt striae and
Fleischer signs. Keratoconus patients also display Munson and scissoring reflex signs.
Medical examinations are usually done in a clinical setting using slit lamp examination
techniques [1,2]. Imaging tools that implement Scheimpflug and corneal topography are
also usually used. All of these examination methods are expensive and are performed by
only experienced optometrists. Automated rapid detection has become necessary due to
the increased number of keratoconus sufferers, as it is estimated that 1 in 1500 people in
the population are affected.

Some computerized techniques have been proposed to detect keratoconus using
corneal topography maps. These methods utilize machine learning, deep learning, and
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neural networks. Most perform keratoconus detection by using topography maps of
both eyes [2,3].

Other approaches of 3-D Cornea construction from Microscopy Images have been
introduced [4]. In Reference [5], the authors introduced automated measurement of corneal
haze in optical tomography images. In addition, feature fusion techniques have been
utilized for Keratoconus diagnosis 2-D photographed images [6].

In this paper, we propose an automated detection of Keratoconus by constructing 3-D
images from the frontal and lateral 2-D images of the eye.

The rest of this paper is organized as follows. The background and literature survey
are presented in Section 2. Section 3 presents the proposed features-extraction algorithm,
depth calculation, and 3D corneal image construction. It also delineates the proposed
keratoconus detection method. Results are discussed in Section 4 by comparing existing
methods. Finally, the paper concludes in Section 5.

2. Background and Literature Survey

An automated keratoconus detection method can provide a solution for needed medi-
cal attention and timely treatment for Keratoconus diagnosis. Digital image processing
can provide a solution for automated keratoconus detection, especially in rural areas.
In Reference [6], Daud et al. devised a keratoconus detection method via digital image
analysis processing. They tested their method on 140 cases captured by a smartphone, and
achieved an average accuracy of 96.03%. Ali et al., in Reference [7], developed a technique
that utilizes specific details from topographic maps. They used image analysis and pro-
cessing to detect keratoconus in a computerized manner, identifying 12 features from the
topographic maps. They collected data from 40 patients, and attained an accuracy of 90%.
In Reference [8], the authors proposed a depth optimization method for 2D-to-3D conver-
sion based on RGB-D images. These measurements can aid a great deal in keratoconus
correction procedures. In Reference [9], the authors presented an affordable method of
keratoconus detection using a smartphone. Experimental results of their proposed method
show detection of severe and moderate keratoconus cases with accuracies of 93% and 67%,
respectively. The authors in Reference [10] present a depth optimization technique for
2D-to-3D reconstruction based on RGB images that can be used in ocular disease detection.

Table 1 compares automated keratoconus detection methods according to the method-
ology used, the dataset, and the accuracy attained in experimental results.

Table 1. Automated keratoconus detection methods.

Reference Achievement Method Dataset Results

[5] Dhaini, A.R.;
et al., 2018

Corneal haze and
demarcation line

measurement.

Image analysis and
machine learning

140 Keratoconus eyes
for actual patients

The mean demarcation line is
295.9 ± 59.8 microns, and it
is 314.5 ± 48.4 microns by

medical personal.
[6] Daud, M.M.;

et al., 2020
Keratoconus

detection method
Digital image analysis

processing
140 cases captured by

smartphone Accuracy of 96.03%

[7] Ali, A.H.; et al.,
2018

Keratoconus
supervised learning

and detection

Support vector
machine using image
processing techniques

240 cases were attained
from Al-Amal Eye
Clinic in Baghdad

utilizing a Pentacam

Accuracy of 90%

[9] Askarian, B.;
et al., 2018

Diagnostic method for
keratoconus detection Usage of a smartphone 175 images of

keratoconus cases

Accuracies of 93%, 67% in
severe, and moderate cases,

respectively.

The proposed
method

Automated
keratoconus

detection

Depth calculation
from 3D corneal image
and machine learning

268 Corneal images of
Keratoconus and

normal cases
Accuracy is 97.8%

3D eye-image construction is of great importance in the field of eye disease detection.
3D imagery has had a major impact in fields such as lateral disease detection and machine
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vision. 3D images incorporate depth information that can aid in different applications.
For example, depth information can help diagnose many diseases that require depth
calculations such as brain tumors and Cornea diseases [11,12]. However, 3D images are
not always available. Thus, 3D image construction is usually utilized for such applications.

Many researchers have introduced techniques to reproduce 3D images from 2D images.
The authors in Reference [11] presented 3D edge reconstruction from 2D images

utilizing a correlation algorithm with very high accuracy. The authors in Reference [12]
recently proposed a novel 3D imaging approach for reconstructing 3D surfaces of a moving
particle by recording its rolling motion through a digital microscope. The project discussed
in Reference [13] constructed 3D images from 2D X-ray images of patients’ bones. They
generated 3D images utilizing a machine learning method that is independent of the X-ray
imaging setup. The authors in Reference [14] achieved depth-finding in real time utilizing
statistical-based learning techniques, concluding that accuracy grew with an increased
number of images in the training set. In Reference [15], Scarpa et al. obtained a 3D cornea
reconstruction utilizing image sequences from a confocal microscope. They proved that it
is possible to examine the cornea as a 3D complex and obtain imaging along the x, y, and
z-axes. Table 2 describes some 3D image construction techniques that can aid in corneal
disease detection.

Table 2. 3D Image construction.

Reference Achievement Method Dataset Results
[11] Patoom. K.,

et al., 2019.
Reconstruction of 3D
edge from 2D image

Correlation based
algorithm

Images are a real object
taken by a camera Attains 100% accuracy

[12] Wang, S., et al.,
2020.

3-D particle
reconstruction

Utilizing multi-view
2-D motion and shape

shading

3D camera images of
moving wear particles

The performance
undergoes degradation if
occlusion occurs between

particles

[13] Dixit, S., et al.,
2019.

3D image-building
from 2D X-Ray images

Conversion machine
learning

Thirty samples of patient
data (femur bones) have

been acquired

Moderate accuracy with
less processing time

[14] Jeni, A.L., et al.,
2017.

Depth finding in real
time

Statistical-based
learning techniques 512 images of vertices

Accuracy increases by
the number of images in

the training set

[15] Scarpa, F., et al.,
2007

3D Corneal image
reconstruction

Fusion of confocal
microscopy images

Images covering the
whole corneal thickness
in normal subjects with
the Confoscan4 confocal

microscope

Failed in 3% of images

The contributions of our proposed paper are explained below.
We emphasize on the 3D construction of corneal images to diagnose keratoconus

and its stages by computing the curvature inclination angle of the cornea. Images of the
structure of the eye, both normal and affected by keratoconus, are shown in Figures 1 and 2.
A lateral view of two images, a normal eye and an eye that has keratoconus, is seen. It is
apparent from Figure 2 that the affected cornea forms a cone-shaped figure (Images used
with permission [16,17]).

The presented method proposes the utilization of only two images of the eye, frontal
and lateral, to efficiently generate a 3D image of the cornea. We utilized the Dataverse
dataset found in Reference [16] for training. In total, 450 corneal images (250 keratoconus
and 200 normal), including Ectasia Screening Index (ESI) keratoconus indices, curvature
angle, and elevation, are provided by the dataset.

The second contribution is the utilization of scale-invariant feature transform (SIFT)
features, which are invariant to the scale and orientation of the images. They are also
invariant to illumination differences and robust to noise. SIFT can make it feasible to match
inputs against other images with local features. This aids the training phase to a large
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extent. It has to be noted that Gaussian multivariate distribution is utilized to compute
in-depth information.

Sensors 2021, 21, x FOR PEER REVIEW 4 of 15 
 

 

and 200 normal), including Ectasia Screening Index (ESI) keratoconus indices, curvature 
angle, and elevation, are provided by the dataset. 

 
Figure 1. Normal eye. 

 
Figure 2. Keratoconus eye. 

The second contribution is the utilization of scale-invariant feature transform (SIFT) 
features, which are invariant to the scale and orientation of the images. They are also 
invariant to illumination differences and robust to noise. SIFT can make it feasible to 
match inputs against other images with local features. This aids the training phase to a 
large extent. It has to be noted that Gaussian multivariate distribution is utilized to 
compute in-depth information. 

The third contribution is that the proposed technique can achieve rotation of the 
cornea at any side view angle. This feature can help in the measurement of the stage of 
keratoconus and can compute the angle of curvature efficiently. 

The block diagram of the structure of the proposed technique is presented in Figure 
3. 

 
Figure 3. Block diagram of the proposed method. 

In the first step, two 2D frontal view and side view images of the eye are captured 
and used as input. Then, SIFT feature extraction is employed on the input images to 
identify image landmarks from local geometric deformations in multi-oriented and mul-
ti-scaled planes. Depth information is then extracted from the lateral view image of the 
eye to determine the points of interest. A 3D reconstruction of the cornea is built from 
two 2D segmented images imaged in orthogonal directions (frontal and lateral). Then, 
the training stage using the proposed Convolutional Neural Network (CNN), which 
takes 3D images as input and produce keratoconus detection. Detailed description of the 
steps in the block diagram are depicted in the following subsections. 

Figure 1. Normal eye.

Sensors 2021, 21, x FOR PEER REVIEW 4 of 15 
 

 

and 200 normal), including Ectasia Screening Index (ESI) keratoconus indices, curvature 
angle, and elevation, are provided by the dataset. 

 
Figure 1. Normal eye. 

 
Figure 2. Keratoconus eye. 

The second contribution is the utilization of scale-invariant feature transform (SIFT) 
features, which are invariant to the scale and orientation of the images. They are also 
invariant to illumination differences and robust to noise. SIFT can make it feasible to 
match inputs against other images with local features. This aids the training phase to a 
large extent. It has to be noted that Gaussian multivariate distribution is utilized to 
compute in-depth information. 

The third contribution is that the proposed technique can achieve rotation of the 
cornea at any side view angle. This feature can help in the measurement of the stage of 
keratoconus and can compute the angle of curvature efficiently. 

The block diagram of the structure of the proposed technique is presented in Figure 
3. 

 
Figure 3. Block diagram of the proposed method. 

In the first step, two 2D frontal view and side view images of the eye are captured 
and used as input. Then, SIFT feature extraction is employed on the input images to 
identify image landmarks from local geometric deformations in multi-oriented and mul-
ti-scaled planes. Depth information is then extracted from the lateral view image of the 
eye to determine the points of interest. A 3D reconstruction of the cornea is built from 
two 2D segmented images imaged in orthogonal directions (frontal and lateral). Then, 
the training stage using the proposed Convolutional Neural Network (CNN), which 
takes 3D images as input and produce keratoconus detection. Detailed description of the 
steps in the block diagram are depicted in the following subsections. 

Figure 2. Keratoconus eye.

The third contribution is that the proposed technique can achieve rotation of the
cornea at any side view angle. This feature can help in the measurement of the stage of
keratoconus and can compute the angle of curvature efficiently.

The block diagram of the structure of the proposed technique is presented in Figure 3.
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Figure 3. Block diagram of the proposed method.

In the first step, two 2D frontal view and side view images of the eye are captured and
used as input. Then, SIFT feature extraction is employed on the input images to identify
image landmarks from local geometric deformations in multi-oriented and multi-scaled
planes. Depth information is then extracted from the lateral view image of the eye to
determine the points of interest. A 3D reconstruction of the cornea is built from two 2D
segmented images imaged in orthogonal directions (frontal and lateral). Then, the training
stage using the proposed Convolutional Neural Network (CNN), which takes 3D images
as input and produce keratoconus detection. Detailed description of the steps in the block
diagram are depicted in the following subsections.

3. The Proposed Method

In this section, we describe the proposed method in detail. The complete technique
starts with cornea detection and feature extraction from 2D images, which is followed by
an in-depth calculations’ algorithm leading to the reconstruction of the 3D image.
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3.1. Cornea Detection and Features Extraction

In the first step, two 2D images of each eye are captured as input: a frontal view and
one side view. The images are then scanned to detect the cornea and encompass specific
marks on the eye region. Frontal and side view corneal images from the Harvard Dataverse
database [16] were utilized for experimental purposes. The method uses circular Hough
transform to detect the iris from the frontal image [17,18].

Hough transform can detect a circular Iris shape in the eye image.
For a circle with radius r, the characteristic equation of a circle at center (m, n) is

given by:
(x−m)2 + (y− n)2 = r2 (1)

This circle is described by Equations (2) and (3).

x = m + r cos(∝) (2)

y = n + r cos(∝) (3)

where x cos(∝) + y sin(∝) = r
Hough transform searches for the parameters (m, n, r), which leads to the points xi

and yi. Those points lie on the circumference of the required circle.
The center and radius of the iris are computed from the detected iris circle. These

features will be utilized in the side view image of the eye to compute landmarks on the
iris area, which will then be used to generate a 3D image of the eye. Input images pass
through a preprocessing phase that detects the eye area to be used for further processing.
Multiple 2D images can be utilized to recover 3D information by cracking a pixel-wise
correspondence that can be extracted from the SIFT algorithm on two frontal and lateral
views of the cornea.

3.2. Features Extraction and Depth Calculation
3.2.1. Features Extraction

Finding distinct features of the eye area is crucial for detecting the iris and its dimen-
sions. To this end, we employ the infamous scale-invariant feature transform [17,18]. SIFT
has been used in feature selection in corneal images [19]. Keratoconus detection using
curvature-based topography and SIFT feature extraction are well-used methodologies [20–22].

Other feature extraction methods, comparable to SIFT, are Speeded Up Robust Features
(SURF) and Oriented FAST and Rotated BRIEF (ORB) [23,24]. The computational cost of
ORB is lower than SIFT and SURF [25]. However, the problem with ORB is that it produces
huge quantity of features, which leads to an enlarged time for matching and will increase
the overall image matching computational cost. In the comparison results published
in Reference [26], in image matching applications, SIFT and SURF are the best in scale
invariant feature indicators on the foundation of scale variations. On the other hand, ORB
is the least scale invariant. However, other variations of ORB, namely ORB (1000), is the
best with respect to the rotation invariant. ORB is the best affine invariant as compared
to the other algorithms. The algorithm SIFT has better accuracy for rotational variations.
Although ORB is very efficient in detecting a very large number of features, it was found
that it requires prolonged matching time. The huge number of features increases the total
image matching computational time with respect to SIFT [24].

Local features are identified through a staged filtering technique detecting the points
in scale space that are stable and identifying image landmarks from local geometric defor-
mations in multi-oriented and multi-scaled planes. Reconstructing the 3D shape of the eye
relies heavily on these features. The stages of the feature extraction method are described
in Figure 4.
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The SIFT technique identifies locally distributed extreme points by relating pixel
points in the Gaussian space with adjacent points in the domain region. The extreme points
establish all feature points.

Key points of the two images are identified by finding the nearest neighbor-points. It
is often the case that the second match is very close to the first. It can happen because of
noise or, in such a case, the ratio between the first and second closest-distance is computed
and considered.

This approach is effective in producing several dense features. Figure 5a presents
the output of the implementation of the SIFT algorithm between frontal and side views
of an eye image where key point features are matched between the two views. Figure 5b
presents outputs of the SIFT algorithm in side view images of normal and affected eyes.
Black circles show the positions of feature points of the eyes and iris regions. Black lines
are added by the algorithm to convey depth information, which can be calculated to aid in
the 3D construction of the eye.
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3.2.2. Depth Calculation

Depth information is collected from the lateral view image of the eye, as illustrated
in Figure 6.
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Figure 6. Lateral view of the cornea.

Hough transform will detect the curvature of the cornea from the frontal view and
will be aligned to the side view, where points on the circumference of the cornea will be
detected. Tangents to the rightest point are drawn. The highest point on the curve and the
lowest points, namely p1, p2, p3, are determined. From this point, a right-angled triangle
is drawn, where p1 is the vertex of the triangle and p2 is the other vertex. The length of the
side d is calculated and it is the depth of the cornea from its highest point.

The steps are as follows:

1. Determine points p1, p2, and p3 using Hough transform
2. Calculate C: the mid-point between p2 and p3
3. Calculate d using the Pythagoras theorem

3.3. Reconstruction of the 3D Image

After calculating depth information, 3D data of the cornea regions are now available.
A 3D reconstruction of the cornea is built from two 2D segmented images imaged in
orthogonal directions (frontal and lateral). An orthogonal plane can be fused without
assuming prior knowledge. The intersections of the images in the orthogonal planes can be
used to recognize alignment reference points, using homogenous translational transform
T by factors x, y, and z. Points in the orthogonal images in 2D can be converted into 3D
points in the 3D plane using Equations (4) and (5).

The local points in the frontal image, the local point in the lateral orthogonal plane,
and the global corresponding point in the 3D plane are, respectively:

x1
y1
0
1

,


x2
y2
0
1

and


x3
y3
z3
1

 Where,


x3
y3
z3
1

 = [T] ∗


x1
y1
0
1

 and


x3
y3
z3
1

 = [T] ∗


x2
y2
0
1

 (4)


x1
y1
0
1

 =


0 0 1 z3− x1
0 1 0 y3− y1
1 0 0 x3− x2
0 0 0 1

 ∗


x2
y2
0
1

 (5)

where x1, y1 and x2, y2 are the points in the 2D plane to be fused into the 3D point
x3, y3, z3.

The problem in Equation (5) is formulated as an optimization problem to minimize
the total Euclidean distance, in 3D space, between all of the corresponding points.
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We tested our alignment procedure on data from the Dataverse dataset [16], which is
available online. The data consist of 200 normal cornea cases and 250 keratoconus cases in
which each have a frontal and lateral RGB image and a 3D image of the cornea. The testing
procedure is to choose a patient case from the Dataverse dataset (normal or keratoconus),
and to use the frontal and lateral images to generate a 3D reconstruction of the cornea. We
established point-to-point correspondence with our proposed geometrical method. The
objective of the testing was to minimize the sum of square differences of pixels between the
processed 3D image and the Dataverse’s stored 3D image to establish a match. The error
function is shown in Equation (6).

min∀(stored)

(
E = ∑ x, y, z(Iconstruct(x, y, z)− Istored(x, y, z)) 2

)
(6)

where Iconstruct (x, y, z) is the intensity level of the constructed image at point x, y, z and
Istored (x, y, z) is the intensity level of the stored image at point x, y, z.

Evaluation of the construction of 3D corneal images from two frontal and lateral
images is presented in Section 4.

3.4. Keratoconus Detection Algorithm
3.4.1. Implementation of the Convolutional Neural Network (CNN)

There are few studies utilizing neural networks in keratoconus automated detection.
Researchers in Reference [21] presented keratoconus detection methods using a neural
network approach. Scheimpflug tomography in topographically normal patients and
keratoconus cases was used as described in Reference [22].

In this section, we present our proposed CNN methodology for automated kerato-
conus detection. The keratoconus-detection algorithm, using 3D reconstructed corneal
images, was implemented and tested utilizing a convolutional neural network. 3D RGB
corneal images were the inputs to the proposed algorithm. This section presents the
learning process related to the convolutional neural network.

The implemented CNN processes the 3D images as input data, utilizing weights on
neurons’ inner connections. Continuous tuning of these weights in the learning process is
performed to decrease an error in the classification process as well the learning process.

3.4.2. The Proposed CNN for Keratoconus Classification from the 3D Constructed
Cornea Images

The proposed CNN is used to extract features in an automated way. The CNN consists
of four convolutional, four max pooling, and two fully connected layers. The kernels
sizes are: 3 × 3 × 3 in the convolutional layers, and 2 × 2 × 2 in the pooling layers.
The feature kernels are 96, 128, 256, and 512 in the convolutional layers, respectively. In
the first convolutional layer, 3 × 3 × 3 ninety-six filters are applied to 227 × 227 × 227
input images. The max pooling layer applies 2 × 2 × 2 filters to reduce the size of the
preceding convolutional layer output. The reduced images are handled by the following
convolutional layers after applying the second and third pooling layer. The model applies
the rest of the layers until finally reaching the two fully connected layers with all neurons
connected to neurons of the previous fully connected layer. A SoftMax classifier is utilized
to classify the 3D cornea images. The output of the last fully connected layer is fed to the
Softmax classifiers as an input. The number of samples in each training cycle is set to 32
with a learning rate of 0.01.

The architecture of the proposed CNN is demonstrated in Figure 7, and the description
of the CNN layers is described in Table 3. The proposed CNN is trained in 30 epochs.
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Figure 7. Architecture of the proposed convolutional neural network (CNN).

Table 3. Summary of the proposed convolutional neural network (CNN) architecture.

Layer Number of Kernels Kernel Size Output Size
Convolutional layer 96 3 × 3 × 3 96 × 114 × 114 × 114

Pooling layer 2 × 2 × 2 96 × 113 × 113 × 113
Convolutional layer 128 3 × 3 × 3 128 × 111 × 111 × 111

Pooling layer 2 × 2 × 2 128 × 56 × 56 × 56
Convolutional layer 256 3 × 3 × 3 256 × 50 × 50 × 50

Pooling layer 2 × 2 × 2 256 × 25 × 25 × 25
Convolutional layer 512 3 × 3 × 3 512 × 12 × 12 × 12

Pooling layer 2 × 2 × 2 512 × 6 × 6 × 6
FC 1000 × 1 × 1 × 1
FC 1000 × 1 × 1 × 1

Feature extraction is performed through the convolution layer by using the 3D image
of the cornea as an input and generating the image matrix as an output. The image matrix
is a representation of the pixels’ relationship through machine learning techniques, which
capture the characteristics of the images through filters.

In the 3D corneal images, corneal gray scale intensities are utilized. If the cornea is
affected by keratoconus, the gray scale intensity levels exhibit a larger area and an elevation
factor. Dark grey intensity levels specify high elevation. Light intensity levels specify a flat
elevation level.

Preprocessing of the input images is performed to obtain the same resolution. Images
are then divided into three sets: the training set for the CNN, the validation set, and the
testing set. The complete algorithm is depicted in Figure 8.
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Preprocessing is a necessary step to normalize input images to a unique space. All
images are normalized to a unique spatial space by resampling, which is followed by
extraction of the ROI that encloses the cornea area. The 3D images are filtered utilizing 3D
Gaussian filter to reduce high-frequency noise.

3.4.3. Geometrical Features Extraction

The proposed method utilizes geometric measurements to compute corneal curvature
slopes and angles. Curved, steep areas are characterized by an increased slope (with respect
to the vertical axis), while flat corneal areas are of much lesser slope, as shown in Figure 9.
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After classifying the image as keratoconus-affected, we use the feature extraction
algorithm to identify the stage of keratoconus.

The slopes are normalized according to the relative scale of the cornea-enclosed rect-
angle and give a perspective of the corneal curvature. The method performs classification
of the 3D corneal images, according to the slope of the curvature in three dimensions. This
enables the identification of keratoconus stages.

There are three stages that characterize keratoconus. These stages are detected through
geometrical metrics of the outer shape of the affected cornea, or by measuring its thickness.
In our research, we used the geometry of the outer shape of the cornea by measuring the
steepness of the greatest corneal curvature from the reconstructed 3D corneal images.

The angle of curvature = 1800− θ, where θ is calculated from the three displacements
d1, d2, and d3, as in Equation (7).

θ = cos−1((d22 + d32− d12)/(2× d2× d3)) (7)

The steepness of the greatest curvature is measured as angles of the slope of straight
lines drawn adjacent to the cornea. If the degree of steepness is less than 45◦, the instance
is diagnosed as a mild case of keratoconus. From 45◦ to 52◦, it is classified as an advanced
case. If greater than 52◦, it is a severe case.

4. Experimental Results
4.1. Simulation Results for Computing the Angle of Curvature of Keratoconus

In this subsection, we present simulation results for computing the angle of curvature
of keratoconus by computing the correlation between the actual angle of curvature of
keratoconus in patients from a physician’s diagnosis, and the angle of curvature extracted
from 3D corneal images of the patients.

Figure 10 is a presentation of the simulation results of the correlation between the ac-
tual angle of curvature of keratoconus in patients with an actual physician’s diagnosis, and
the angle of curvature of keratoconus extracted from the 3D corneal images of the patients.

Figure 11 is a presentation of the Bland-Altman plot of the actual angle of curvature of
keratoconus in patients from an actual physician diagnosis versus the angle of curvature of
keratoconus extracted from the 3D corneal images of the patients.

The correlation plot in Figure 10 depicts the positive correlation between the actual
angle of curvature diagnosed by a physician, and the angle of curvature measured by our
algorithm. The experiment shows a strong linear relationship between the physician’s
diagnosis and our predicted detection.

A strong positive correlation using Pearson’s r (Equation (8)) is indicated, as r is
greater than 0 and approaches 1.

r =
1

n− 1

n

∑
i=1

(
xi − x
SDx

) (
yi − y
SDy

)
(8)
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We computed r in Equation (7) to be 0.95, which implies a high positive rate between
the actual angle of curvature of keratoconus in patients, and the angle of curvature of
keratoconus predicted by our algorithm using the data in Figure 10.

It should be noted that the Bland-Altman metric depicts the agreement of two measure-
ments. The Bland-Altman metric is usually used in comparing a predicted computerized
medical diagnosis (P) with actual diagnosis by medical personnel (A). The two mea-
surements are the predicted angle of curvature and the actual angle of curvature of the
keratoconus. The difference between P and A is where the upper and lower dotted lines
denote 1.96 SD, which is the 95% limit of agreement. The difference between P and A is
plotted against the mean of the manual P and A. The Bland-Altman metric between A and
P indicates that the trend of the values of the two tests are of high similarity.

4.2. CNN Training Process Accuracy and Error

The proposed CNN has four convolutional and pooling layers with completely full
connected layers, and a SoftMax layer. The proposed algorithm measures the slope of
corneal curvature geometrically and calculates the angle of curvature.

Results: We extracted the medical diagnoses done by a physician for 250 cases. Medical
evaluations were found fully in the dataset Dataverse.

Test validation was performed utilizing k-Fold cross validation and hold out testing.

K-Fold Cross-Validation:
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The performance of the proposed CNN is measured using a k-fold cross-validation.
The data is distributed into k partitions of nearly equal sizes. CNN training as well as
validation are executed in k iterations. Each fold is employed for testing per iteration,
while k-1 folds are employed for training. The model accuracy is computed as the average
accuracy over all iterations. The results of the first experiments of the CNN utilizing 3D
Cornea image results are depicted in Table 4.

Table 4. Cross-validation for keratoconus detection.

K-Fold Testing Accuracy Precision Recall F1-Score

K = 8 93.30% 92.71% 93.17% 92.83%
K = 10 97.8% 96.41% 97.23% 97.01%
K = 12 92.45% 91.80% 91.90% 90.86%
K = 14 88.98% 88.66% 88.72% 88.55%

The results show an enhanced accuracy in the 3D Cornea images, especially in the
10-fold. We separated the data into 10 equal folds. Each fold contains cases from each
Keratoconus cases (normal, severe, moderate, and mild). Experiments established that
k-fold testing with k = 10 has the higher accuracy. The cross-validation testing for different
k is depicted in Table 4 for 3D constructed Cornea images.

For the 10-fold validation, the classification has an average of 2.2% error approxi-
mately, which is considered a very low classification error rate, especially when mild cases
are included.

The confusion matrix for k = 10 is illustrated in Table 5. The database includes 58 images
of mild cases, and 70 images of moderate cases. It contains 40 3D Cornea images of severe
cases. Another 100 of normal 3D Cornea images are included.

Table 5. Keratoconus detection confusion matrix.

Predicted Cases

Mild Moderate Severe Normal Total TP FN TN FP

A
ct

ua
lC

as
es Mild 48 2 0 8 58 48 10

Moderate 2 66 2 0 70 70 0
Severe 0 0 40 0 40 40 0

Normal 2 2 0 96 100 96 4 96 4

The confusion matrix for k = 10 is illustrated in Table 5, where comparisons of the
results of actual medical diagnoses with our proposed method is depicted. Our CNN
demonstrates the ability to predict correct diagnoses of the four stages of keratoconus
(severe, moderate, and mild) as well as normal, keratoconus-free cases, as indicated in
Tables 5 and 6.

Table 6. Accuracy, sensitivity, and specificity of the proposed system.

Metric Computation

Accuracy 97.80%
Sensitivity 98.45%
Specificity 96.00%

The classifier is evaluated according to accuracy, sensitivity, and specificity, as defined
in Equations (9)–(11) respectively.

Accuracy =
TP + TN

TP + FP + FN + TN
(9)
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Sensitivity =
TP

TP + FP
(10)

Specificity =
TN

TN + FN
(11)

where TP indicates true positive cases, TN indicates true negative cases, FP indicates a false
positive detection, and FN indicates false negative cases.

The accuracy is defined as the percentage of correctly predicted cases in the test set, the
sensitivity is defined as true positives rate, and the specificity is defined as a true negatives
rate. These measures are computed and illustrated in Table 6.

Table 7 illustrates the comparison of results of The CNN for Keratoconus classification
in the literature and our proposed CNN using k-Fold Cross-Validation, k = 10: training set
(80%) and testing set (20%).

Table 7. Comparison of results of the convolutional neural network (CNN) for Keratoconus classi-
fication and our proposed CNN, using k-Fold Cross-Validation, k = 10: training set (80%), testing
set (20%).

Method Accuracy Sensitivity Specificity

[5] Dhaini, A.R., et al., 2018 93.68% 94.60% 91.43%
[6] Daud, M.M., et al., 2020 96.03% 95.18% 94.44%

[7] Ali, A.H., et al., 2018 90.68% 92.10% 93.52%
[9] Askarian, B., et al., 2018 93.68% 94.60% 91.43%
The proposed methodology 97.80% 98.45% 96.00%

5. Conclusions

This paper presents an automated technique that reconstructs 3D corneal images
from two 2D frontal and lateral corneal digital images. The 3D reconstructed images are
used to detect keratoconus in an automated way. The proposed technique consists of
four main steps: cornea detection in the 2D images of the eye and features extraction,
features extraction and depth calculation, construction of the corneal 3D images, and
automated detection of keratoconus and determination of its severity using the angle
of curvature of the 3D reconstructed corneal images. Our experimental results show
that the proposed method identifies keratoconus and its stages efficiently. The proposed
method was validated by performing experiments and making comparisons with manual
methods performed by professional medical experts, which are presumed to be ground
truth. Quantitative results are compared with ground truth to prove the accuracy of
this method.

By examining its accuracy, it can be seen that the proposed method can detect kerato-
conus comparably to the results of an actual medical diagnosis. The technique shows the
ability to predict correct diagnoses of the four stages of keratoconus (severe, moderate, and
mild) as well as normal keratoconus-free cases, with an accuracy of 97.8% in a total of 268
cases. These results are shown to be better than those achieved by the systems using image
processing in References [6,9]. 3D reconstruction of the cornea can also be utilized to detect
other diseases of the cornea and in educational paradigms.

For future work, we will concentrate on the computational cost of the proposed scheme.
The complexity of the proposed scheme can leave many opportunities for enhancing speed-
up of the individual steps. In this paper, we concentrated more on accuracy and precision
rather than exploiting time complexity especially when the application does not have a
real time requirement.

The proposed scheme can be utilized as an aid for ophthalmology personnel. Mass
screening can be done using an automated system based on this scheme, since the specificity
of the proposed method is relatively high at around 96%, which is the percentage of the true
negatives that are correctly recognized by the proposed scheme. Therefore, the proposed
system can identify a normal condition in an automated way and will not be needed for
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further investigation by medical experts. Ophthalmologists will concentrate on the positive
cases that are detected by the proposed method.
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