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Abstract: Wireless sensor networks are used in many location-dependent applications.
The location of sensor nodes is commonly carried out in a distributed way for energy saving and
network robustness, where the handling of these characteristics is still a great challenge. It is very
desirable that distributed algorithms invest as few iterations as possible with the highest accuracy on
position estimates. This research proposes a range-based and robust localization method, derived
from the Newton scheme, that can be applied over isotropic and anisotropic networks in presence
of outliers in the pair-wise distance measurements. The algorithm minimizes the error of position
estimates using a hop-weighted function and a scaling factor that allows a significant improvement
on position estimates in only few iterations. Simulations demonstrate that our proposed algorithm
outperforms other similar algorithms under anisotropic networks.

Keywords: wireless sensor networks; multi-hop weighted localization; robustness

1. Introduction

Nowadays, Wireless Sensor Networks (WSNs) have gained relevance in many aspects
of our lives because they have the capacity to innovate our environment including body
sensor networks, smart houses, automation, transportation, business, security, agriculture
to military applications, to mention a few. A WSN is typically composed of a large
number of tiny devices called sensor nodes. Due to the characteristics of a sensor node,
which contains constrained resources in processing, memory, sensing, and non-renewable
with low-power batteries, wireless transmissions must be used efficiently to save energy.
Furthermore, even though RF transmissions are around 10 times more energy-expensive
than processing, all aspects of energy saving must be carefully taken into account (e.g.,
leaking energy) to preserve the autonomy of the entire network [1–4].

Commonly, WSNs are randomly deployed in large geographical areas with the aim of
detecting environmental events on sensor nodes. Such events must be reported to other
nodes using short-range wireless transmissions until reaching one or more sink nodes
for reporting data. Clearly, routing protocols play an important function in multi-hop
networks, that is to say, the shortest route from one sensor node to another sensor
node allows the entire network to save energy [5,6]. However, it is imperative for data
reporting to know where the detected event comes from. In other words, for a broadcast
event the time-location parameter is more important than the sensor identity itself.
Thus, positions of sensor nodes should be known a priori before to run a WSN application,
and so the background stage in most WSN applications is the localization process. In this
stage, the geographic-location must be discovered using RF transmissions with neighboring
sensors and specific algorithms [7–11]. An interesting research dealing with multi-hop
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localization is presented in [12]. It manages an hybrid approach where the DV-Hop scheme
is improved by promoting unknown sensor as anchor nodes, where these virtual anchors
are one-hop neighboring sensor of the real anchors, and their localization are obtained
using the estimated distances from the RSSI technique. The authors claim that this scheme
can be employed when the density of anchors in the network is low.

In distributed localization algorithms dealing with realistic multi-hop WSN scenarios,
estimating among neighboring sensors can suffer from hardware imperfections, changing
environments, network topologies, and node densities, which consequently can affect the
estimation of the sensor positions [13–17]. For instance, the work in [18] addresses the
multi-hop localization problem in severe multi-path scenarios deriving from changing
environments. It integrates the non-line-of-sight (NLOS) path information to maximize
a reduced-complexity pseudo-maximum likelihood scheme to estimate the position of
unknown sensors.

Another interesting approach is proposed in [19] addressing hardware imperfections
called wireless ad hoc system for position (WASP). It handles complex radio propagation
signals coming from beacons to determine localization of unknown sensors by using
novel extensions for ToA measurements. This approach provides high accuracy at
minimum hardware and processing cost. It uses a robust least squares algorithm (RLS) for
localization that removes iteratively suspicious bad range measurements by recomputing
node positions. However, in our work, we pursuit a different approach where the
outlierness level of each measurement is controlled by weights that could attenuate the
possible influence of atypical observations on the solution of the optimization problem.
In [20], the localization problem is addressed using a robust statistic, which reduces the
influence of outliers in the estimation process.

The last reasons imply that the accuracy and rate of convergence of range-based
iterative algorithms for multi-hop network localization are highly dependent of
topologies; therefore, robust approaches must be applied in order to minimize errors
in position estimates. Moreover, it is well known that the mathematical formulation of the
localization scheme typically requires solving a nonlinear and non-convex optimization
problem [21–25].

In this research, a robust and weighted localization algorithm is proposed based
on the Newton method approach (RWNM). The algorithm presents the flexibility that
any unknown sensor, in a distributed way, can use a dynamic scaling parameter that
weights neighboring sensors with the goal of reducing errors in position estimates.
Such a scaling parameter is dependent on distance errors with neighboring sensors and the
hop-proximity of them towards anchor nodes. Results demonstrated that our approach has
a good performance in multi-hop networks with irregular distributions on sensor nodes.
It overcomes similar approaches in accuracy on position estimates and requires fewer
iterations than others, which is essential in distributed schemes to save energy.

Summarizing, the main contributions of the work are as follows:

• A novel localization method is introduced that is robust to outliers. To remove or
mitigate the influence of possible atypical measurements, the proposed method uses
two kind of weights: one is based on the average hop-proximity to the anchors, and
the other is based on the determination of the degree of outlierness degree in the noisy
distances.

• The proposed method is based on the Newton method, which improves the unknown
sensors’ positions in a few iterations, even though when rough initial estimates are
given.

• The method demonstrates good performance under both isotropic and anisotropic
topologies.

The rest of this paper is structured as follows. Section 2 describes the effect of large
errors and outliers that could be present in the position estimation process. Section 3 details
the problem formulation for multi-hop network scenarios. Section 4 describes the proposed
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algorithm. Section 5 determines the computational complexity of the algorithm. Section 6
shows some experimental results using isotropic and anisotropic networks, and finally
Section 7 draws the main conclusions.

2. Reducing the Impact of Outliers in the Estimation Process

Commonly when data X = {x1, x2, · · · , xn} are analyzed and processed, they are
assumed as iid (independent and identically distributed) with normal distribution, where
the estimation of a statistical parameter µ can be carried out under the Maximum Likelihood
Estimator (MLE) technique as

µ̂ = arg min
µ

f (X, µ), (1)

where

f (X, µ) =
n

∏
i=1

exp−
(xi−µ)2

2σ2 , (2)

represents the joint density function for the data set X, µ denotes the mean, and σ2

the variance. For the estimation of µ̂, the − ln f (X, µ) is applied, which results in the
minimization of the sum of square errors as the data have the same dispersion σ2:

µ̂ = arg min
µ

− ln f (X, µ) = arg min
µ

n

∑
i=1

e2
i , (3)

where ei = xi − µ. However, by using the quadratic loss function in (3), a noticeable
amplification of atypical errors (i.e., outliers) is obtained, leading to a bad estimation of
µ. The outliers effect can be exemplified with the next case: Assume that {xa, xb} ⊂ X are
atypical measurements; thus, (3) can be rewritten as

µ̂ = arg min
µ

f (X, µ) = arg min
µ

 n

∑
i 6∈{a,b}

e2
i + e2

a + e2
b

. (4)

Then, the higher the error values on xa and xb, the larger the bias in the estimation of µ.
To mitigate this effect, a technique commonly used is to modify the minus log Gaussian
likelihood with variances ci depending on each particular regression point as follows:

f (X, µ) =
n

∏
i=1

exp
− (xi−µ)2

2ci
2 , (5)

which implies the following quadratic loss:

µ̂ = arg min
µ

− ln f (X, µ) = arg min
µ

 n

∑
i 6∈{a,b}

e2
i

2ci
2 +

e2
a

2ca2 +
e2

b
2cb

2

, (6)

this means that taking ca y cb large enough, then e2
a

2ca2 +
e2

b
2cb

2 << e2
a + e2

b; consequently, the
outliers at the point a and b will have less effect in (6) than in (4) in the estimation of µ.

3. The Range-Based Localization Problem

Consider a set of unknown sensor nodes S = {s1, s2, . . . , sN} randomly distributed
over a certain large area with 2-D true positions u1 = [x1, y1]

T , u2 = [x2, y2]
T , . . . , uN =

[xN , yN ]
T and estimated positions p1 = [x̃1, ỹ1]

T , p2 = [x̃2, ỹ2]
T , . . . , pN = [x̃N , ỹN ]

T ,
respectively. It is known that there is a set A = {a1, a2, . . . , aM} of sensor nodes called
anchor nodes that are randomly deployed in the same area with a special-hardware
to self-localize (i.e., GPS). The anchor nodes have the known positions qN+1 =
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[xN+1, yN+1]
T , qN+2 = [xN+2, yN+2]

T , . . . , qN+M = [xN+M, yN+M]T . It is considered
hardware-homogeneity among all N + M deployed sensor nodes with limited radio range
R and M� N.

Under this scenario, a sensor node could require more than one hop to reach
neighboring sensors for communications. Then, the set of one-hop neighboring sensors of
an unknown sensor si can be stated as

Ωi = {j :
∥∥ui − uj

∥∥ < R, i 6= j, and j = 1, . . . , N}, (7)

where ‖·‖ denotes the Euclidean norm. This research assumes that all unknown sensors
have n-hops connectivity to anchor nodes in the network, where the distance estimates,
rik (for k = 1, · · · , M), between an unknown sensor si and any anchor ak can be easily
calculated by the DV-Hop scheme [13]. Thus, the set of anchor indexes is denoted as
B = {N + 1, N + 2, . . . , N + M}.

The set of noisy distances between si and its neighboring sensors is described as

rij = dij + eij ∀ j ∈ Ωi, (8)

where dij =
∥∥ui − uj

∥∥, rij represents the noisy distance between sensors si and sj, dij is
the true distance between them, and the term eij provides the biasing of the estimated
distance introduced by environmental conditions and the measurement technique [26].
Distance estimates among sensor nodes can be carried out by techniques like RSS, TDoA,
ToA, AoA, or a combination of them [27–29]. The localization problem can be formulated
as follows:

min
p1,p2,...,pN

N

∑
i=1

(
∑

j∈Ωi

f
(
rij −

∥∥pi − pj
∥∥)+ ∑

k∈B
f (rik − ‖pi − qk‖)

)
, (9)

which stands for an unconstrained and nonlinear equation where the function f (·) plays a
fundamental role to find position estimates that minimize (9).

4. A Robust and Distributed Localization Algorithm Based on the Newton Method

Due to the high cost in processing data, energy consumption in wireless transmissions,
and security of collected data, Equation (9) tends to be programmed in a distributed way
instead of being solved in a central node [30]. The robust-weighted Newton method
(RWNM) algorithm, proposed here, breaks down (9) into subproblems that can be
implemented in unknown sensors of a distributed manner [25]. Thus, each sensor si
can minimize its distance error with one-hop neighboring sensors and n-hops anchors by
solving the following optimization problem:

min
pi

F(pi) (10)

with F(pi) defined as

F(pi) := ∑
j∈Ωi

f
((

rij −
∥∥pi − pj

∥∥)wj

)
+ ∑

k∈B
f
(
(rik − ‖pi − qk‖)wk

)
. (11)

Here, each distance error sensor–sensor is multiplied by a weighted value wj, which
represents the inverse of the average of the minimum number of hops between the sensor
sj and each anchor, stated as

wj =
1

1
|B| ∑

k∈B
hops(j, k)

, (12)
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where hops(j, k) represents the minimum number of hops between the sensor si and the
anchor ak. It is easy to define the set of weights corresponding to the neighbors of the
sensor si as

Wi = {wj : j ∈ Ωi}. (13)

On the other hand, for sensor–anchor distance errors, the weighted value wk is set
to one.

To minimize (11) in a distributed way, a sensor si employs the Newton method using
the `2 norm as

f (e, c) =
1
2

( e
c

)2
, (14)

where e = eih ·wh, ∀ h ∈ Ωi ∪ B stands for either the distance error between sensor–sensor
or sensor–anchor, c is a scaling factor which controls the broadness of the function shape
around the origin and mitigates the effect of large errors as explained in Section 2.

On the other hand, any sensor si that minimizes position estimates with neighboring
sensors must first calculate the scaling parameter ci as described next.

First, using distance errors with neighboring sensors, the median is calculated as

ẽi = med
(
EΩi

)
, (15)

where the set of errors EΩi is defined as

EΩi = {|rij − ‖pi − pj‖| : j ∈ Ωi}, (16)

then, a new set of neighboring sensor of si that presents less error in distance estimates
than ẽi is obtained as

Ω̃i =
{

j ∈ Ωi :
∣∣rij −

∥∥pi − pj
∥∥∣∣ ≤ ẽi

}
. (17)

Next, using (13) with the new set of neighbors of (17), W̃i = {wj : j ∈ Ω̃i}, the
maximum weight value is obtained in Equation (18):

wmaxi = max
w∈W̃i

w. (18)

Finally, the scaling parameter vector for neighboring sensors of si and anchor nodes is
computed according to Equation (19):

cj =


wmaxi , j ∈ Ω̃i,
∞, j ∈ Ωi\Ω̃i,

1, j ∈ B.

(19)

It is remarkable to mention that cj = ∞, which implies that the sensor sj will be
discarded in the minimization process.

The Hessian and the gradient for the Newton method process are described as follows.
For clarity, consider that the position pr can be used indistinctly for both anchor and

unknown sensor positions. The gradient of (11), ∇F(pi) =
(

∂F(pi)
∂xi

, ∂F(pi)
∂yi

)T
is stated as

∂F(pi)

∂xi
= − ∑

r∈Ωi∪B

(
∂ f
∂eir

)
(xi − xr)

‖pi−pr‖
, (20)

∂F(pi)

∂yi
= − ∑

r∈Ωi∪B

(
∂ f
∂eir

)
(yi − yr)

‖pi−pr‖
(21)
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where
∂ f
∂eir

=
eir · w2

r
c2

r
. (22)

The Hessian of (11) is described as

H(pi) =

 ∂F(pi)
∂2xi

∂F(pi)
∂xi∂yi

∂F(pi)
∂yi∂xi

∂F(pi)
∂2yi

, (23)

∂F(pi)

∂2xi
= ∑

r∈Ωi∪B

[(
∂ f
∂eir

)[
(xi−xr)

2

[(xi−xr)
2+(yi−yr)

2]
3/2−

1

[(xi−xr)
2+(yi−yr)

2]
1/2

]
+(

∂2 f
∂e2

ir

)[
(xi − xr)

2

(xi − xr)
2 + (yi − yr)

2

]]
, (24)

∂F(pi)

∂2yi
= ∑

r∈Ωi∪B

[(
∂ f
∂eir

)[
(yi−yr)

2

[(xi−xr)
2+(yi−yr)

2]
3/2−

1

[(xi−xr)
2+(yi−yr)

2]
1/2

]
+(

∂2 f
∂e2

ir

)[
(yi − yr)

2

(xi − xr)
2 + (yi − yr)

2

]]
, (25)

∂F(pi)

∂xi∂yi
= ∑

r∈Ωi∪B

[(
∂ f
∂eir

)[
(xi−xr)(yi−yr)

[(xi−xr)
2+(yi−yr)

2]
3/2

]
+

(
∂2 f
∂e2

ir

)[
(xi − xr)(yi − yr)

(xi − xr)
2 + (yi − yr)

2

]]
, (26)

∂F(pi)

∂yi∂xi
= ∑

r∈Ωi∪B

[(
∂ f
∂eir

)[
(yi−yr)(xi−xr)

[(xi−xr)
2+(yi−yr)

2]
3/2

]
+

(
∂2 f
∂e2

ir

)[
(yi − yr)(xi − xr)

(xi − xr)
2 + (yi − yr)

2

]]
, (27)

where
∂2 f
∂e2

ir
=

w2
r

c2
r

. (28)

Assuming that rough initial estimates for all unknown sensor nodes are obtained by
standard methods such as Least-Squares and Min-Max, among others [11], the distributed
localization process for a sensor si follows the process shown in Algorithm 1.

Algorithm 1 Sensor si refining its position estimates.

Input: pi, Wi, Niter, Ωi, B

Output: Refined version of pi

1: Initialize: ρ = 0.05, τ = 10−2

2: Compute: cr for all r ∈ Ωi ∪ B from (19)
3: n = 0
4: repeat
5: p̃i = pi
6: Compute: ∇F(p̃i) from (20) and (21)
7: Compute: H(p̃i) from (23)
8: µ = ‖∇F(p̃i)‖ρ
9: Solve:

(
H(p̃i) + µI

)
∆ = −∇F(p̃i)

10: pi = p̃i + α∆
11: n = n + 1
12: until

(
n ≤ Niter or ‖pi − p̃i‖ ≤ τ

)
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As is well known, the optimal step length α in line 10 of Algorithm 1 can be found
using both the Armijo and Wolfe conditions at expenses of more computational cost [31,32].
For practical purposes, α was set to one. The updated position pi of si is broadcast to its
neighboring sensors starting a new refining position process.

5. Computational Complexity

The Algorithm 1 is run for each sensor si and requires as input the
set Wi = {wj : j ∈ Ωi} and the set of weights Ci = {cj : j ∈ Ωi ∪ B} computed in
Equation (19). First, the computational cost incurred in the computation of the Wi and Ci
will be determined.

As each wj ∈Wi is computed as the average of the number of hops hops(j, k) between
the sensor sj and each anchor k, then computing wj takes O(|B|) operations. On the other
hand, the set Wi consists of |Ωi| elements, therefore the cost to determine the set Wi is

cost(Wi) = O(|Ωi| × |B|). (29)

Each weight cj ∈ Ci is calculated by Equation (19) which depends on (17)
corresponding to the median of a set EΩi of size at most |Ωi|. It is well known [33]
that the median of a set of size n can be computed in linear time O(n). Therefore, the
computational cost to determine Ci is

cost(Ci) = O(|Ωi|+ |B|) = O(|Ωi|), (30)

assuming that |B| ≤ |Ωi|.
In the following, the computational cost of one iteration of the repeat/until block

(from line 5 to 11) will be addressed. The most expensive steps are the calculus of the
gradient ∇F(p̃i) and the Hessian H(p̃i), where each of them are computed in at most
O(|Ωi| + |B|) = O(|Ωi|). This is due to both the first and second partial derivatives
(equations from (20) to (27)) are expressed as summation over the set Ωi ∪ B. Note that
line 9 corresponds to solving a 2× 2 linear system with a positive definite matrix with cost
O(1). Summarizing, the cost of this loop block is

cost(repeat/until) = O(ni|Ωi|), (31)

where ni is the number of iterations that the algorithm needed to convergence. Therefore,
the total cost of the Algorithm 1 per sensor si is calculate as

cost(Wi) + cost(Ci) + cost(repeat/until) = O(|Ωi| × |B|) + O(ni|Ωi|). (32)

Because Algorithm 1 is executed once for each sensor, it is obtained that

final cost = ∑
i : si∈S

[O(|Ωi| × |B|) + O(ni|Ωi|)]. (33)

Based on the experimental analysis, |B| = 5 and the body of the repeat until block
is executed in 6 iterations (ni = 6) on average. Consequently, Equation (33) can be
simplified to

final cost = ∑
i : si∈S

[O(5|Ωi|) + O(6|Ωi|)] = ∑
i : si∈S

O(|Ωi|). (34)

As ∑i : si∈S |Ωi| = 2|E|, with |E| denoting the number of wireless connections, the final
cost is a big-O of the number of connections in the network, implying that the algorithm
scales linearly with respect to the total number of connections.
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6. Range-Based Multi-Hop Network Performance

In large deployment scenarios with constrained radio range on sensor nodes, forming
multi-hop networks, and unknown sensors far outnumber anchor nodes, the DV-Hop
scheme represents a good approach to estimate distances among sensor nodes in a
distributed manner [11,13]. As is well known, a distance estimation between an anchor
node and unknown sensor, at some hops of each other, normally could suffer from
several error sources: the environmental itself, the ranging technique, and the localization
algorithm, to name a few. Furthermore, the network topology, integrated to the other
aforementioned factors, can generate abnormal errors (i.e., outliers) on distance estimates;
the latter can bring with them large errors on distance estimates where most localization
algorithms do not behave well.

To evaluate the accuracy iterations performance of algorithms, two kind of topologies
are recreated as shown Figure 1. As can be observed, both networks are connected
(i.e., non-isolated sensor nodes), and anchor nodes are distributed around a circle shape
Figure 1a (anisotropic network) or inside of a square area Figure 1b (isotropic network).
It must be remarked that anchor nodes are located in a non-collinear pattern distribution.

Figure 1. Multi-hop WSN topologies, where each connected network contains 95 unlocalized sensors and five anchor nodes.
(a) Anisotropic circular connected network with sensor and anchor nodes randomly distributed in a circular shape. (b) Isotropic
uniform distributed network with sensor and anchor nodes randomly distributed over a square area of 40,000 m2.

The system test has 10 setup networks for each topology with fixed positions of
sensor and anchor nodes, and the degree of network connectivity is given by the radio
range in sensor and anchor nodes, assumed homogeneous. There are two levels of degree
connectivity given by different radio ranges (R = 35 m and R = 45 m). Therefore, for each
radio range, 10 networks are created for each topology.

As proposed in [34], the noisy distances between a sensor si and its neighbors are
computed as

rij =
∥∥ui − uj

∥∥ ·max{0, 1 + χ · n f e}, ∀j ∈ Ωi, (35)
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where χ ∼ N (0, 1) represents a normal distributed random variable and n f e ∈ [0, 1] is the
standard deviation of the distance error. This is equivalent to

rij = max{0,
∥∥ui − uj

∥∥+ ∥∥ui − uj
∥∥χ · n f e}, ∀j ∈ Ωi, (36)

that can be rewritten as
rij = max{0, dij + eij}, ∀j ∈ Ωi, (37)

which is similar to the additive noise model in (8).
In order to obtain noisy distances contaminated with outliers, a parameter Θ

(percentage of outliers) is used to randomly select a subset of distances. Each distance in
the subset is modified by a scalar parameter ρ as follows:

rij =
∥∥ui − uj

∥∥ ·max{0, 1 + χ · n f e} · ρ, ∀j ∈ Ωi. (38)

where the parameter ρ is defined as

ρ =

{
5, if max[0, 1 + χ · n f e] ≥ 1,
1
5 , if max[0, 1 + χ · n f e] < 1,

(39)

For each sensor si an initial estimated position is calculated as the average of the M
anchor positions plus a random perturbation as follows:

1
M

M

∑
k=1

(xN+k + υi,k, yN+k + υi,k), (40)

where υi,k, i = 1, . . . , N, k = 1, . . . , M is a N×M sample of a random variable with Gaussian
distribution N (0, 1).

The root mean square error (RMSE) metric is employed to evaluate errors on position
estimates of the unknown sensors for the network t, where t = 1, . . . , 10, and finally the
average RMSE (RMSEavg) is calculated as follows:

RMSEavg =
1
10

10

∑
t=1


√√√√ 1

N

N

∑
i=1

∥∥pt
i − ut

i

∥∥2

. (41)

In Equation (41), ‖·‖ is the two-norm, pt
i and ut

i represent the position estimate of
sensor si and its true position for the network t, respectively, and N is the number of
unknown sensors.

Figure 2 shows the methodology used for the algorithms to evaluate accuracy and
number of iterations. There are two ranges of connectivity for testing (R = 35 m and
R = 45 m), two levels of noise (n f e = 0.1 and n f e = 0.3), and six scales of outliers
(Θ ∈ {0%, 10%, 20%, 30%, 40%, 50%}). The box on the left side, in Figure 2, has four
possible combinations between R and n f e values. For each one of the four combinations,
30 evaluation processes are generated as shown the box on the right side. For instance,
the remarked arrows, left side, imply that the combination R = 35 m with n f e = 0.1 will
be applied to all distance measurements on an entire network. Using this combination
(R = 35 m and n f e = 0.1), without outliers (Θ = 0%), all iterative algorithms are tested
using the 10 independent networks. For each one of the 10 networks, the algorithm is run
until one of the stopping criteria is satisfied (i.e., 100 iterations or ‖pi − p̃i‖ ≤ τ). Then, the
number of iterations in which the algorithm stopped is registered. Finally, Equation (41) is
used to calculate the average RMSE (RMSEavg) of the 10 networks and also the average
of the numbers of iterations (Iter_avg) is obtained. The next step consists of testing the
same combination (R = 35 m and n f e = 0.1), but now adding 10% of outliers to noisy
distances with (38). This process is repeated until reaching 50% of outliers in noisy distances.
Therefore, for each outlier step there will be two parameters (i.e., RMSEavg and Iter_avg)
for each evaluated algorithm. The last process is repeated for R = 35 m with n f e = 0.3,
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R = 45 m with n f e = 0.1 and finally for R = 45 m with n f e = 0.3. Table 1 summarizes the
parameters used in the experimental simulations.

Range Noisy Outliers Algorithms
(meters) (nfe)

35 0.1 0 % RELM   LM

45

0.3

10 %

20 %

30 %

40 %

50 %

SOCP

Figure 2. Methodology followed to test RMSEavg and Iter_avg spent by algorithms using a setup of
10 networks for both circular and uniform node distributions.

Table 1. Simulation parameters of the experiments.

Parameters Description\Values
Standard-deviation of the distance error (nfe) 0.1 , 0.3
Outlier levels (Θ) 0%, 10%, 20%, 30%, 40%, 50%
Radio Range 35 m, 45 m
Number of Networks 10
Network Topologies isotropic: square-shape

anisotropic: circular-shape
Sensor Nodes Distribution uniformly random distributed
Anchor Nodes 5
Unknown Sensors 95
Deployment Area 200 × 200 m2

Performance Metrics RMSE, Iterations

6.1. Range-Based Multi-Hop Localization over Randomly and Uniformly Distributed
Sensor Networks

In this section, we test the proposed RWNM algorithm under isotropic WSN
topologies. Here, sensor nodes are uniformly and randomly distributed over an area
of 200× 200 m2. Ten multi-hop networks similar to that one presented in Figure 1b are
created. The ratio between the number of unknown sensors and anchors is 0.95. Each
network has 100 sensor nodes. First, it is assumed that each sensor node has a partial set of
neighboring sensors according to Equation (7). Furthermore, anchors and unknown sensors
are assumed with the same circular radio range R. Each pairwise distance is affected with
a noise factor of n f e = 0.1 using Equation (35). This benchmark network, with n f e = 0.1
and Θ = 0, is used as a basis to create other five networks, affected with different levels of
outliers Θ = 10%, Θ = 20%, Θ = 30%, Θ = 40%, and Θ = 50%. Finally, each one of the six
networks is run in every iterative algorithm to evaluate its accuracy and rate of convergence
(or iterations) at different levels of outliers. It must be remarked that DV-hop [13] and
RELM [35] algorithms modify distances between anchors and unknown sensors, where
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such distances are unaffected by noise or by outliers as they depend on hop counts between
them. Initial estimates average of the 10 networks is around 86.33 m.

It is known that there is at least one path between any pair of sensor nodes in each
network. Initial position estimates for the iterative algorithms are simply calculated as
the average positions of anchor nodes. The refinement stage is run in a distributed way
as second localization process in each unknown sensor to improve position estimates.
Figure 3 shows the accuracy iteration behavior of the evaluated algorithms considering
n f e = 0.1 and R = 35 m at different levels of outliers.

Clearly, the accuracy performance of the combination algorithms RELM [35]
+LM [36] and DV-Hop+LM are linearly affected with the increase of outliers on the
range measurements among sensor nodes. However, without presence of outliers, the
best accuracy on position estimates is obtained by the DV-Hop+LM algorithm with
a RMSEavg = 21.83 m. The worst RMSEavg-Iter_avg performance is carried out by
the combination RELM [35] +SOCP [34,37] algorithms. This is because the SOCP
algorithm is highly dependent on the number and location of the anchors. On average,
the DV-Hop+DWDSCL [38] obtains the best accuracy performance with 23.36 m followed
by the combination DV-Hop-RWNM with 24.04 m. Moreover, this last combination
outperforms others in rate of convergence with only 4.25 iterations, in average, which
implies more saving energy for the entire network as shown Table 2.
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Figure 3. (a) RMSEavg and (b) Iter_avg after running five iterative algorithms over 10 multi-hop isotropic networks with
R = 35 m and n f e = 0.1. Outliers levels are increased by steps of 10% from 0% to 50%.

Table 2. RMSEavg and Iter_avg at different outliers values using R = 35 m and n f e = 0.1, the best
performances in RMSE average and iteration average are denoted in bold face.

Algorithms RMSEavg (m) Iter_avg
RELM+SOCP 42.15 15.63

RELM+LM 33.98 8.7
DV-HOP+DWDSCL 23.36 12.81

DV-HOP+LM 30.70 9.01
DV-HOP+RWNM 24.04 4.25
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Now, keeping both the position set of unknown sensors and anchors positions for each
one of the 10 benchmark networks and also taking the same set of range connections (i.e.,
R = 35 m), the distance errors among neighboring sensors are now affected with n f e = 0.3,
and the results are depicted in Figure 4.
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Figure 4. (a) RMSEavg and (b) Iter_avg after running five iterative algorithms over 10 multi-hop isotropic networks with
R = 35 m and n f e = 0.3. Outliers levels are increased by steps of 10% from 0% to 50%.

The results show a RMSEavg-Iter_avg behavior very similar to the previous one.
The DV-HOP+RWNM scheme still manages to be lower in iterations with 4.06, in average.
The average results are shown in Table 3.

Table 3. RMSEavg and Iter_avg at different outliers values using R = 35 m and n f e = 0.3, the best
performances in RMSE average and iteration average are denoted in bold face.

Algorithms RMSEavg (m) Iter_avg
RELM+SOCP 42.25 16.01

RELM+LM 36.33 9.1
DV-HOP+DWDSCL 24.04 9.7

DV-HOP+LM 33.17 10.16
DV-HOP+RWNM 24.84 4.06

On the other hand, increasing the radio range from R = 35 m to R = 45 m, in each sensor
node, produces more gathered information of neighboring sensors, and it also presents a
reduction in the number of hops between anchors and unknown sensors. Both last effects
tend to reduce error on position estimates. Figure 5 shows results with n f e = 0.1 and
R = 45 m.

It is clear that algorithms reduce the error on position estimates, on average, as shown
in Table 4. Figure 5 demonstrates how errors on position estimates tend to increase when the
quantity of outliers also increase, as expected. Without outliers (i.e., Θ = 0%) on distance
estimates, the DV-Hop+LM has the best accuracy performance with RMSEavg = 9.72 m,
but it increases its error as outliers do. On the other hand, due to the weighted function in
the their minimization process, the DV-HOP+DWDSCL and DV-HOP+RWNM schemes
are less affected in the RMSEavg, and the RWNM approach requires around 5.05 iterations,
on average, to obtain the best RMSEavg result of 14.78 m.
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Figure 5. (a) RMSEavg and (b) Iter_avg after running five iterative algorithms over 10 multi-hop isotropic networks with
R = 45 m and n f e = 0.1. Outliers levels are increased by steps of 10% from 0% to 50%.

Table 4. RMSEavg and Iter_avg at different outliers values using R = 45 m and n f e = 0.1, the best
performances in RMSE average and iteration average are denoted in bold face.

Algorithms RMSEavg (m) Iter_avg
RELM+SOCP 42.57 14.66

RELM+LM 35.05 10.53
DV-HOP+DWDSCL 14.80 10.98

DV-HOP+LM 27.31 9.75
DV-HOP+RWNM 14.78 5.05

When the range distance errors among neighboring sensor are increased from
n f e = 0.1 to n f e = 0.3, errors on position estimates are also slightly increased as shown
Figure 6 and Table 5. It must remarked that the combination DV-Hop-RWNM still hold the
best performance in accuracy and iterations with 15.22 m and 5.45, respectively.

Table 5. RMSEavg and Iter_avg at different outliers values using R = 45 m and n f e = 0.3, the best
performances in RMSE average and iteration average are denoted in bold face.

Algorithms RMSEavg (m) Iter_avg
RELM+SOCP 42.86 14.33

RELM+LM 39.03 10.01
DV-HOP+DWDSCL 16.13 12.93

DV-HOP+LM 32.12 10.33
DV-HOP+RWNM 15.22 5.45
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Figure 6. (a) RMSEavg and (b) Iter_avg after running five iterative algorithms over 10 multi-hop isotropic networks with
R = 45 m and n f e = 0.3. Outliers levels are increased by steps of 10% from 0% to 50%.

Figure 7 illustrates the behavior of the RMSEavg versus number of iterations
considering two radio ranges. It can be remarked that the proposed scheme shows a
good performance through iterations. It reaches an average RMSE of 23.15 m in 3 iterations
for R = 35 m and an average RMSE of 14.29 m also in 3 iterations for R = 45 m.
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Figure 7. RMSEavg vs. Iterations of algorithms using Θ = 20% and n f e = 0.1 considering the average of 10 independent
isotropic networks. (a) Corresponds to R = 35 m and (b) R = 45 m.

6.2. Range-Based Multi-Hop Localization over Irregular Topologies of Sensor Networks

This section analyzes the accuracy and iterations performance of the proposed RWNM
scheme under anisotropic networks. A benchmark of 10 independent multi-hop networks
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like that presented in Figure 1a is considered for testing. In all networks, it is known that
there is at least one path between every pair of nodes around the circle shape.

The analysis and tests for this section run also in the same way as that analyzed
in Section 6.1. The first test consists of evaluating the error on position estimates and
the number of iterations spent by the distributed algorithms. The stopping criterion
is assumed equal in all algorithms (i.e., τ = 10−2). Initial estimates average of the 10
networks is around 102.1 m. Using the combination n f e and R, 10 independent networks
are created, and each one is run in the distributed algorithms to finally averaging the results
(i.e., RMSEavg and Iter_avg). Figure 8 shows the results for n f e = 0.1 and R = 35 m.

0 5 10 15 20 25 30 35 40 45 50

Outliers Percentage

(a)

0

5

10

15

20

25

30

35

40

R
M

S
E

a
v
g
 (

m
)

RELM+LM Algorithms

RELM+SOCP Algorithm

DV-Hop+RWNM Algorithms

DV-Hop+DWDSCL Algorithms

DV-Hop+LM Algorithms

 nfe =0.1  and  R =35 m

0 5 10 15 20 25 30 35 40 45 50

Outliers Percentage

(b)

0

2

4

6

8

10

12

14

16

It
e
r_

a
v
g

RELM+LM Algorithms

RELM+SOCP Algorithm

DV-Hop+RWNM Algorithms

DV-Hop+DWDSCL Algorithms

DV-Hop+LM Algorithms

Figure 8. (a) RMSEavg and (b) Iter_avg after running five iterative algorithms over 10 multi-hop anisotropic networks with
R = 35 m and n f e = 0.1. Outliers levels are increased by steps of 10% from 0% to 50%..

Despite having a large initial error on position estimates (i.e., ~102.1 m), most
algorithms (except the SOCP scheme) end up with a RMSEavg below to 22 m of error on
position estimates without presence of outliers (i.e., Θ = 0%). The combinations RELM+LM
and DV-Hop+LM are linearly affected with increasing outliers. The combination
RELM+SOCP is unaffected by outliers, but its RMSEavg is too high compared with the
remaining four combinations. For example, when there are not outliers (i.e., Θ = 0%)
in the estimated distances between sensors, the best result of the estimated positions is
obtained by the combination DV-Hop+LM reaching a RMSEavg = 15.24 m followed by the
DV-Hop+RWNM scheme with 16.25 m. However, the accuracy on position estimates affects
the former method linearly with the increase of outliers, providing a RMSEavg = 31.06 m
at Θ = 50%. On the other hand, the combination DV-Hop+RWNM is less affected by the
presence of outliers. It ends up with a RMSEavg = 16.94 m for a Θ = 50%. It should also be
recognized that the best RMSEavg-Iter_avg performance is obtained by this combination,
as shown the Table 6 with only 4.15 iterations and a RMSE = 16.49 m, on average.
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Table 6. RMSEavg and Iter_avg at different levels of outliers Θ from 0% to 50%, R = 35 m and
n f e = 0.1 under anisotropic networks, the best performances in RMSE average and iteration average
are denoted in bold face.

Algorithms RMSEavg (m) Iter_avg
RELM+SOCP 37.89 15.35

RELM+LM 28.33 10.06
DV-HOP+DWDSCL 19.26 11

DV-HOP+LM 23.65 8.08
DV-HOP+RWNM 16.49 4.15

The next step is to increase the noise level on distance estimates from n f e = 0.1
to n f e = 0.3 in each one of the 10 benchmark networks and carry out the test like in
the previous step. Figure 9 shows that all combinations almost have the same behavior.
The RMSEavg of the combination DV-Hop+RWNM slightly increases as the quantity
of outliers also does. It starts with a RMSEavg = 16.47 m at Θ = 0% and finishes with
RMSEavg = 17.19 m at Θ = 50%. Furthermore, this combination gets the best trade-off
between RMSEavg and Iter_avg as summarized in Table 7.
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Figure 9. (a) RMSEavg and (b) Iter_avg after running five iterative algorithms over 10 multi-hop anisotropic networks with
R = 35 m and n f e = 0.3. Outliers levels are increased by steps of 10% from 0% to 50%.

Table 7. RMSEavg and Iter_avg at different levels of outliers Θ from 0% to 50%, R = 35 m and
n f e = 0.3 under anisotropic networks, the best performances in RMSE average and iteration average
are denoted in bold face.

Algorithms RMSEavg (m) Iter_avg
RELM+SOCP 38.23 15.53

RELM+LM 30.34 10.1
DV-HOP+DWDSCL 19.62 11.83

DV-HOP+LM 25.73 8.08
DV-HOP+RWNM 16.76 4.48
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Another interesting test to analyze consists of increasing the radio range in sensor
nodes; so the radio range is set to R = 45 m with n f e = 0.1 in all sensor nodes in the
10 independent benchmark networks. Figure 10a shows the accuracy of the estimated
positions for this case.
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Figure 10. (a) RMSEavg and (b) Iter_avg after running five iterative algorithms over 10 multi-hop anisotropic networks
with R = 45 m and n f e = 0.1. Outliers levels are increased by steps of 10% from 0% to 50%.

As expected, increasing the radio range improves the accuracy of most algorithms at
Θ = 0%. However, as an outlier could be present in a range measurement, it will affect
more neighboring sensors in the estimation process, and most algorithms tend to increase
their errors as outliers do. The proposed scheme RWNM starts with a RMSEavg = 16.29 m
at Θ = 0% and finishes with a RMSEavg = 16.39 m at Θ = 50%. Table 8 shows that the
combination DV-Hop+RWNM continues with the best results for accuracy and iterations
with a RMSEavg = 16.24 m and 5.33 iterations on average.

Table 8. RMSEavg and Iter_avg at different levels of outliers Θ from 0% to 50%, R = 45 m and
n f e = 0.1 under anisotropic networks, the best performances in RMSE average and iteration average
are denoted in bold face.

Algorithms RMSEavg (m) Iter_avg
RELM+SOCP 45.41 13.75

RELM+LM 31.87 11.03
DV-HOP+DWDSCL 19.37 10.56

DV-HOP+LM 26.85 9.40
DV-HOP+RWNM 16.24 5.33

The final step uses the 10 benchmark networks with R = 45 m and n f e = 0.3.
Even though the noise level has increased in distance measurements, the final results
in both analyzed parameters (i.e., RMSEavg and Iter_avg) remain close similar to the last
step as depicted Figure 11. The combinations DV-Hop+RWNM continue with the best
accuracy performance with the minimum number of iterations as depicted in Table 9.
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Figure 11. (a) RMSEavg and (b) Iter_avg after running five iterative algorithms over 10 multi-hop anisotropic networks
with R = 45 m and n f e = 0.3. Outliers levels are increased by steps of 10% from 0% to 50%.

Table 9. RMSEavg and Iter_avg at different levels of outliers Θ from 0% to 50%, R = 45 m and
n f e = 0.3 under anisotropic networks, the best performances in RMSE average and iteration average
are denoted in bold face.

Algorithms RMSEavg (m) Iter_avg
RELM+SOCP 46.22 14.01

RELM+LM 34.68 11.30
DV-HOP+DWDSCL 19.90 13.53

DV-HOP+LM 29.65 9.96
DV-HOP+RWNM 16.75 5.2

Figure 12 depicts the relation between the RMSEavg and number of iterations
considering two radio ranges for anisotropic networks. It can be observed that the proposed
scheme provides the best accuracy and iterations performance. It can be appreciate that the
DV-Hop+RWNM algorithms spends only three iterations to reach a RMSEavg of 17.01 m
and 16.2 m for R = 35 m and R = 45 m, respectively.
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Figure 12. RMSEavg vs. Iterations of algorithms using Θ = 20% and n f e = 0.1 considering the average of 10 independent
anisotropic networks. (a) Corresponds to R = 35 m and (b) R = 45 m.

7. Conclusions

This research has investigated a range-based and distributed algorithm suitable for
multi-hop network localization. The proposed scheme employs a weighted Newton
method approach that minimizes errors in position estimates under anomalous pairwise
range measurements between sensor nodes. Unknown sensors categorize neighboring
nodes with specific weights based on the closeness to an anchor node and error distances.
The algorithm has been tested at different radio ranges and noise levels in distance
estimates, demonstrating robustness in presence of outliers with a small number of
iterations to reach good results in accuracy. In fact, in isotropic networks, the proposed
method practically matches the localization performance of the DV-HOP+DWDSCL
method using far fewer iterations to converge. The best performance is carried out under
anisotropic networks where the proposed scheme outperforms others providing the best
accuracy in position estimates with the minimum number of iterations.
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Acronyms and Symbols

Acronym Description Symbol Description
AoA Angle of Arrival S Set of unknown sensors
DV’Hop Distance Vector-Hop N Number of unknown sensors in the network
DWDSCL Distributed Weighted DSCL algorithm M Number of anchor nodes in the network
GPS Global Positioning System A Set of M anchor nodes
LM Levenberg-Marquardt pi Position estimate for the unknown sensor si
ln Natural Logarithm X Data set of measurements
MLE Maximum Likelihood Estimation B Set of anchor indexes
min Minimize si Unknown sensor i
NLOS Non Line of Sight ui True position of si
RF Radio Frequency ak Anchor node k
RELM Regularised Extreme Learning Machine Ωi Set of neighboring sensors of si
RLS Robust Least Squares Wi Set of weights corresponding to the neighbors of sensor si
RMSE Root Mean Square Error qk True position of ak
RSS Receive Signal Strength min Minimize
RWNM Robust weighted Newton Method ‖·‖ Norm 2
SOCP Second-Order Cone Programming τ Threshold for the stopping criterion
TDoA Time Difference of Arrival EΩi Distance errors with neighboring sensors of si
ToA Time of Arrival ẽi The median of distance errors of EΩi
WSN Wireless Sensor Network cj Scaling or weighted parameter for sj

RMSEavg Root Mean Square Error average
Iter_avg Iterations average
rik Noisy distance between the sensor si and the anchor ak
dij True distance between the sensor si and the sensor sj
rij Noisy distance between two sensors si and sj
wj Weighted value for sj
wk Weighted value for ak
W̃i Subset of Wi
Ω̃i Subset of Ωi
χ Random variable with standard Gaussian distribution
n f e Standard-deviation of the distance error
ρ Scalar parameter
Θ Outlier level
| · | Cardinality
O(·) Big-O
ni Number of iterations
Ci Set of scaling parameters
Niter Maximum number of iterations to stop the algorithm
υi,k Random variable with standard Gaussian distribution
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