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Abstract: This study is focused on applying genetic algorithms (GAs) to model and band selection in
hyperspectral image classification. We use a forensic-inspired data set of seven hyperspectral images
with blood and five visually similar substances to test GA-optimised classifiers in two scenarios:
when the training and test data come from the same image and when they come from different
images, which is a more challenging task due to significant spectral differences. In our experiments,
we compare GA with a classic model optimisation through a grid search. Our results show that
GA-based model optimisation can reduce the number of bands and create an accurate classifier that
outperforms the GS-based reference models, provided that, during model optimisation, it has access
to examples similar to test data. We illustrate this with experiments highlighting the importance of a
validation set.

Keywords: hyperspectral classification; blood; SVM; genetic algorithm; machine learning

1. Introduction

Genetic optimisation, inspired by natural evolution, is a well-known heuristic opti-
misation and search procedure that can be used for both feature and model selection in
machine learning (ML). The focus of this paper is the use of genetic algorithms (GA) to train
accurate ML algorithms; i.e., hyperspectral classifiers. A hyperspectral classifier aims to
assign pixels in a hyperspectral image to predefined classes; e.g., different types of crops in
an image of agricultural area. A hyperspectral pixel is a vector of measurements (typically,
reflectance values) corresponding to a specific band: a narrow wavelength range of the
electromagnetic spectrum. Since materials in the imaged scene uniquely reflect, absorb
and emit electromagnetic radiation based on their molecular composition and texture,
hyperspectral classification allows them to be accurately distinguished [1]. However, there
are several challenges related to the task, such as the huge volume of images, their high
dimensionality, the redundancy of information in hyperspectral bands and the presence of
noise introduced by acquisition process and calibration procedures [2]. In addition, the
observed spectra are mixtures (e.g., linear combinations) of material spectra in the imaged
scene [3].

One particular challenge lies in the availability and quality of training data; i.e., the
selection of a training set. Typically, due to the high cost of generating hyperspectral training
examples [4], training sets in hyperspectral classification are small. However, when training
pixels are randomly and uniformly sampled from the classified image itself, it is possible to
achieve high accuracy even for very small training sets of 5–15 examples per class; e.g., by
exploiting the spatial–spectral structure of the image and using semi-supervised learning [5].
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This is because hyperspectral images provide highly distinctive features and because classes
are usually relatively large in the image. In such problems, we may be more interested in
finding the best assignment of pixels to classes than in finding the classification function
itself. Therefore, referring to the concept of transductive learning proposed by Vapnik [6],
we call such scenario a hyperspectral transductive classification (HTC) problem.

The challenge is elevated when training pixels come from a different image than test pixels.
In such a case, differences in the acquisition environment (e.g., light intensity, time differences)
and in-class spectra (e.g., different background materials in spectral mixtures) may be perceived
as a complex noise. In such a scenario, the classifier is expected to generalise and compensate
for the differences between the training set and classified data. In contrast to the HTC scenario,
which treats the image as a “closed world”, we call this scenario a hyperspectral inductive
classification (HIC), emphasising the importance of finding the best classification function.
The HIC scenario shares similarities with the hyperspectral target detection problem [7], where
spectra to be found in an image commonly come from spectral libraries.

Genetic algorithms [8,9] are well-established techniques for the selection of features
and optimisation of classifier parameters. GAs are based on natural selection, inheritance
and the evolutionary principle of the survival of the best-adapted individuals. Their
advantages compared to the classic feature and model selection procedures such as grid
search (GS) are, e.g., (a) their resistance to local extremes, (b) the ability to control selective
pressure (exploration and exploitation) from global to local search and (c) ease of application
due to feature selection being combined with parameter optimization. These advantages
have resulted in GAs being frequently used for hyperspectral band selection [10] and the
classification of multispectral [11] and hyperspectral data [12]. However, in most reference
works, GAs are applied for a problem corresponding to the HTC scenario, typically using
well-known hyperspectral datasets such as the “Indian Pines” or the “University of Pavia”
images. Under such conditions, the simultaneous optimisation of classifier parameters
with band selection allows researchers to achieve high classification accuracy [13]. To test
both the HTC and HIC scenarios, in our experiments, we use a dataset described in [14] that
consists of multiple hyperspectral images with blood and blood-like substances. The dataset
is inspired by problems related to forensic analysis; e.g., the detection of blood. However, we
focus on the problem of classification; i.e., distinguishing between classes corresponding to
visually similar blood-like substances in the images. We use multiple images with the same
classes but with significant spectral differences to compare the HTC and the HIC scenarios.
We analyse the impact of GAs on the classification accuracy in comparison to the grid-search
parameter selection using multiple state-of-the-art hyperspectral classifiers.

Our thesis is that hyperspectral classification with a GA-based model and band selec-
tion would allow more accurate classifiers to be obtained compared to the approach when
parameters are selected with GS. To test this, we compare the accuracy of classifiers opti-
mised with GA and GS in both the transductive and inductive hyperspectral classification
scenarios. Our main contribution is the identification and experimental verification of the
conditions under which GA outperforms GS in hyperspectral classification. We show that
in order for this advantage to be significant, the classification problem must be sufficiently
complex, such as in the HIC scenario, which is more difficult compared to the HTC. In
addition, the data in the validation set used for model selection must be sufficiently similar
to data in the test set, which is not always the case in the HIC. Since the use of GA can
be time consuming compared to GS, our conclusions allow for a more informed choice of
model selection method in various hyperspectral classification problems.

2. State of the Art

Machine learning algorithms are currently popular and widely used in medical imag-
ing [15]. Some of the main areas of ML application are image segmentation—e.g., for
melanin [16] or epidermis [17]—and segmentation and classification—e.g., for the detec-
tion of pigment network in dermoscopic images [18]. Due to the visibility of haemoglobin
in the spectra, hyperspectral imaging (HSI) has become useful in areas related to medical



Sensors 2021, 21, 2293 3 of 18

diagnosis [19]. In addition, the detection and estimation of blood age in hyperspectral
images [20] can be applied to forensic analysis [14]. However, the complexity of hyper-
spectral data makes the development of dedicated ML methods, especially classification
algorithms, particularly important. Genetic algorithms are promising for the construction
of hyperspectral classifiers as they enable simultaneous model selection and the reduction
of data dimensionality.

2.1. Hyperspectral Classification

In this paper, we focus on spectral classification [1] which uses only spectral vectors.
The leading approaches involve the use of Support Vector Machines (SVMs) [21], Extreme
Learning Machines and their Kernel-based variants [22] or Multinomial Logistic Regres-
sion [23]. In order to further improve classification accuracy, spectral–spatial approaches [24]
are employed. They make use of both pixel spectra and their spatial position in the image.
In particular, a combination of spatial–spectral and semi-supervised approaches allows a
high classification accuracy to be obtained, even for a small training set [5]. Recently, deep
learning methods [25] are popular, although their limiting factor is the fact that they usually
require relatively large training sets. However, some works, such as the approach presented
in [26], based on residual networks, seem to be able to significantly reduce this dependency.

2.2. Evolutionary Computation and Genetic Algorithms

The advantages of techniques based on computational intelligence [27] methods lie
in the properties inherited from their biological counterparts: the learning and general-
ization of knowledge (artificial neural networks [28]), global optimization (evolutionary
computation [29]) and the use of imprecise terms (fuzzy systems [30]). The inspiration to
undertake research on evolutionary computation (EC) [29] was the imitation of nature in its
mechanism of natural selection, inheritance and functioning. Genetic algorithms (GAs) [31]
are a part of evolutionary computation techniques, which have been used with success
in fields such as the vehicle routing problem [32], feature selection [33], optimization [34],
heart sound segmentation [35] or traveling salesman problem [36].

Genetic algorithms are one of the leading approaches to solve optimisation prob-
lems [9]. Due to the fact that they are computationally complex, they are often solved
with heuristic methods, which make it possible to find a near-optimal solution faster. GA
works by creating a population consisting of a selected number of individuals, each of them
representing one solution to the problem. Then, from among all the individuals, those with
the best results are selected and then subjected to genetic operators, which then create a
new population. In particular, this technique can be applied for model selection to find
parameters of a machine learning model and simultaneously perform feature selection,
such as in works on heart arrhythmia detection [37,38], early diagnosis of hepatocellular
cancer [39] or the prediction of credit scoring [40].

2.3. Hyperspectral Classification and Band Selection with GAs

GAs have been used many times for the classification and selection of characteristic
wavelengths in hyperspectral data. For example, in [10], the authors use GA to find small
subsets of the most distinctive bands. In [12], GAs are applied for band selection in prepro-
cessed hyperspectral images in order to classify them. In [41], GA optimization is used to
divide hyperspectral bands into three classes related to their discriminative power in the clas-
sification task. Authors verify their results using three standard hyperspectral datasets; i.e.,
the “University of Pavia”, “Indian Pines” and “Hekla”. The use of GAs for the simultaneous
optimization of SVM parameters and band selection in HSI classification is presented in [13].
A similar scheme for multispectral data is used in [11], in which the authors emphasize the
advantage of genetic algorithms over parameter optimization using a grid search. A very
interesting use of a GA is presented in [42]: the authors apply a GA to a large number of
hyperspectral cubes (111 images) in order to determine a subset of wavelengths characteristic
for the identification of charcoal rot disease in soybean stems.
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3. Materials and Methods
3.1. Dataset

We used the dataset described in [14], consisting of multiple hyperspectral images of
blood and blood-like substances such as artificial blood, tomato concentrate or poster paint.
Hyperspectral pixels in which these substances are visible were annotated by authors.

Images in the dataset were captured using a SOC710 hyperspectral camera operating
in the spectral range of 377–1046 nm with 128 bands. Two types of images were used in our
experiments: the “Frame” images, denoted as F in [14], which present classes on a uniform,
white background; and the “Comparison” images (denoted as E), which present classes on
diverse backgrounds consisting of multiple materials and fabrics.

We used images captured on days {1, 7, 21}. Following the convention from [14],
we denoted the day of acquisition after the scene name in brackets; e.g., F(1) for the
scene “Frame” from day 1. The visualisation of the dataset is presented in Figure 1.
Figure 1a,b presents the acquisition scenes for two selected images with marked pixels of
different substances used during further experiments. Their mean spectra are presented in
Figure 1c,d, while Figure 1e,f shows two components of the PCA projection. It is possible
to observe that pixels marked in the F(1) image as “uncertain blood” have similar values of
principal components to background pixels, while in the case of the E(1) image, “uncertain
blood” is more similar to “blood-like substances”. Furthermore, spectra of different classes
on the F(1) image are more diverse than in the case of the E(1) image, where pixels of
various substances overlap according to the PCA projection.

(a) Class GT for image F(1) (b) Class GT for image E(1)
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(c) Class spectra in the image F(1)
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Figure 1. Cont.
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(e) PCA visualisation for the image F(1) (f) PCA visualisation for the image E(1)

Figure 1. Visualisation of the dataset used in experiments. Upper panels present classes as a coloured ground truth on
RGB images created from hyperspectral cubes. Middle panels present mean class spectra. Bottom panels present the PCA
projection of data for the first two principal components. Images come from [14].

3.2. Data Preprocessing

The aim of the initial preprocessing applied to dataset images was to reduce noise and
compensate for uneven lighting. The following sequence of transformations was applied
to every image:

1. Median filter: Images were smoothed with a spatial median filter with a window size
of one pixel. This operation was intended to reduce the noise in spectra, using the
fact that classes were spatially significantly larger than a single pixel.

2. Spectra normalization: As suggested in [14], the spectrum of each pixel was divided by
its median. The purpose of this normalisation was to compensate for uneven lighting
in the image.

3. Removal of noisy bands: Following [14], noisy bands (0–4), (48–50) and (122–128)
were removed, leaving 113 bands.

3.3. Feature Extraction

In our experiments, we used derivative transformation to highlight important features
of spectra. Derivative analysis [43] is a well-known method for transforming spectral
signatures. Derivatives are sensitive to the shape of spectra; therefore, they are partic-
ularly effective in differentiating signals with characteristic spectral responses, such as
haemoglobin response in blood [44], visible as peaks in wavelengths∼542 nm and∼576 nm
(called α and β bands). We used first-order derivatives, computed as the difference between
neighbouring bands.

A visualisation of the impact of preprocessing and feature extraction on example
spectra is presented in Figure 2. Figure 2a,b presents the reflectance spectra of blood for
different days after spilling, without and with the division of each pixel by its median
value, respectively, while Figure 2c shows spectra after calculating first-order derivatives.

3.4. Classification Algorithms
3.4.1. Support Vector Machines

In this work, we focus on the Support Vector Machine [45] (SVM) classifier, which is
accurate in hyperspectral classification problems [1], including the classification of hyper-
spectral forensic data [46] and is well suited for optimisation with GA [13]. HSI classification
with SVM can be described as follows:
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(a) Raw spectra
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(b) Preprocessed spectra
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(c) Transformed spectra

Figure 2. Visualisation of the impact of preprocessing and feature extraction on example spectra of the “blood” class from
the dataset. Spectra in plot (a,b) were normalised by dividing each pixel by its median. Spectra in plot (c) were transformed
by computing their first order derivatives.

Given a training set of labelled examples

T = {(xi, yi), i = 1, . . . , n} xi ∈ X yi ∈ Y , (1)

where X denotes a set of examples (e.g., hyperspectral pixels) and Y = {−1, 1} denotes
the set of labels, the SVM classifies a hyperspectral example x ∈ X ⊂ Rd using a function:

f (x) = sgn
( n

∑
i=1

yiβiK(x, xi) + b
)

, (2)

where βi ≥ 0 and b are coefficients computed through Lagrangian optimisation (margin
maximisation on the training set). The kernel function K : X ×X → R is used to compute
the similarity measure between the classified example x and every training instance xi.

We use three kernel functions:

• Gaussian radial basis function (RBF) K(xi, xj) = exp(−γ||xi − xj||2), parameterised
with {γ},

• sigmoid kernel K(xi, xj) = tanh(γxT
i xj + c0) parametrised with {γ, c0}

• polynomial kernel K(xi, xj) = (γxT
i xj + co)d parametrised with {γ, c0, d} that can be

simplified to the linear kernel K(xi, xj) = xT
i xj when parameters d = c0 = 0.

In addition to parameters of a chosen kernel, the SVM has an additional regularisation
parameter, C, that controls the balance between the maximisation of the margin between
classes and missclassification of examples. The value of this parameter must be fitted to a
given problem, typically through cross-validation. However, the use of GA for selecting
parameters is complicated by the fact that the value of C is unbounded from the above.
Therefore, in our experiments, we used the classifier proposed in [47], namely the ν-SVM,
which uses a bounded regularisation parameter ν ∈ (0, 1〉, which is an upper bound on the
fraction of misclassified examples from the training set and a lower bound on the fraction
of support vectors.

3.4.2. K-Nearest Neighbour (KNN)

The K-nearest neighbour algorithm (KNN) [48] belongs to the family of non-parametric
models. The principle of operation of the algorithm is based on making predictions based
on the closest neighbourhood of an example. A new, unclassified sample is labelled through
a majority vote of a neighbourhood of a fixed size weighted by the distance of this sample
from the voting neighbors. In our experiments, we used the Euclidean, the Manhattan and
the Chebyshev distance measures.
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3.4.3. Multilayer Perceptron

A Multilayer Perceptron (MLP) [49] is a neural network composed of a combination
of individual perceptrons that together form a multilayer structure. The most frequently
distinguished layers are the input, hidden and output layer. Each layer may have a different
number of neurons. Advanced network models consist of multiple hidden layers. The
MLP is typically trained using a backpropagation algorithm. Despite its simplicity, the
MLP achieves high accuracy on hyperpsectral data and is often used as a reference method
for other algorithms [1].

3.5. Model and Feature Selection with Genetic Algorithms

We used genetic optimisation [9] to simultaneously select parameters of a machine
learning model and perform feature selection. The ν-SVM [45] classifier was chosen for this
type of optimisation due to its bounded parameterisation of the margin (see Section 3.4).

Taking advantage of the capabilities of the GA, which allow for the optimization
of many parameters at once, in our implementation, the type of kernel function, kernel
parameters, the regularization parameter and feature (hyperspectral band) selection were
performed simultaneously. Table 1 presents the structure of a single individual. In our
implementation, this individual consisted of one chromosome. The chromosome consisted
of five genes responsible for the kernel type and its parameters and 113 genes responsible
for hyperspectral bands.

Table 1. The structure of a chromosome corresponding to optimized parameters of the nu-SVM classifier
along with selected hyperspectral bands. RBF: radial basis function.

Parameter Range of Values

K a {RBF, polynomial, sigmoid}
ν 〈0.001, 0.4〉

d b 〈1, 5〉
γ c 〈0.001, 5〉
c0

d 〈0.01, 10〉
band 1 . . . 113 {selected, not selected}

a Kernel function; b parameter of the polynomial kernel; c parameter of the RBF kernel; d parameter of the
polynomial and sigmoid kernel.

Figure 3 shows an example crossover between two individuals (i.e., classifiers). We
observed that high probabilities of crossing and mutation had a positive effect on the search
space; i.e., they allowed the search space to be better explored and for more solutions to
be checked, reducing the chances of finding a locally optimal solution [50]. Thanks to
the elitist strategy, there is a certainty that the best individual found will not be lost. The
mutation of an individual consists in the modification of a single gene in the chromosome.
If it is a gene responsible for a parameter of the SVM, its value is replaced by the new
value of the given parameter from the set range (acceptable values are shown in Table 1).
If we draw a gene that represents a feature, its value is replaced by the opposite one; e.g.,
from “not selected” (0) to “selected” (1). Values of our genetic algorithm parameters are
presented in Table 2.
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rbf 25.4

Kernel C

7

Degree

0.4

Gamma

0.2

Coef0

1 ... 1

Feature 1 ... Feature 113

linear 16.7 3 0.7 0.5 0 ... 1

One-point
crossover

rbf 25.4 7 0.4 0.5 0 ... 1

linear 16.7 3 0.7 0.2 1 ... 1

Figure 3. Visualisation of a one-point crossover between two individuals.

Table 2. Parameters of the genetic algorithm (GA) used in experiments.

Parameter Value

Size of the population 200
Number of epochs 100

Fitness function Accuracy
Selection algorithm Tournament selection, size 3
Crossover method Uniform crossover
Mutation method One-point mutation a

Probability of crossover 0.8
Probability of mutation 0.8

Elitist strategy 1 individual
a Own implementation.

3.5.1. Model Selection with Grid Search

In our experiments, grid search (GS) was used as a reference method for model
selection. In many works, the SVM with the regularisation parameter C (denoted SVC)
with an RBF kernel function has been used as a reference algorithm; therefore, we used
this approach in addition to the ν-SVM. We also tested the KNN and MLP classifiers, as
described in Section 3.4. Parameters of model selection with the GS are provided in Table 3.
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Table 3. Grid-search (GS) parameters used in experiments.

Classifier Parameter Values

SVM

K a {RBF, polynomial, sigmoid}
C 〈0.001, 1000〉
d b 〈1, 5〉
γ c 〈0.001, 5〉
c0

d 〈0.01, 10〉

LSVM
e loss {hinge, squared}

C 〈0.001, 1000〉

ν-SVM

K a {RBF, polynomial, sigmoid}
ν 〈0.001, 0.4〉
d b 〈1, 5〉
γ c 〈0.001, 5〉
c0

d 〈0.01, 10〉

KNN
Dist. metric {Euclidean, Manhattan, Chebyshev}
Weights {Uniform, distance}
No. neighbors 〈1, 20〉

MLP

No. hidden layers 〈1, 3〉
Number of neurons on consecutive layers

{
{1000}, {30, 30}, {1000, 1000}, {1000, 1000, 1000}

}
Dropout {0, 0.5}
Learning rate {0.1, 0.01, 0.001}
Batch size {50, 100}
Number of iterations {50, 100, 150, . . . , 500}
Weights initialisation Glorot method [51] with normal distribution

a Kernel function; b parameter of the polynomial kernel; c parameter of the RBF kernel; d parameter of the polynomial and sigmoid kernel;
e linear Support Vector Machine (SVM), implemented in liblinear library. KNN: K-nearest neighbour; MLP: Multilayer Perceptron.

3.5.2. Implementation

All experiments were implemented in Python using the scikit-learn [52], PyTorch [53]
and DEAP [54] libraries.

3.5.3. Model Performance Metric

Because the number of examples in the classes of our dataset was similar, we used the
accuracy as a performance metric, defined as follows:

accuracy =
1
N

(
N

∑
i=1

TPi + TNi
TPi + FPi + TNi + FNi

)
× 100%, (3)

where N is the number of folds in cross validation, TPi denotes true positives, TNi denotes
true negatives, FPi denotes false positives and FNi denotes false negatives.

4. Experiments

The main idea behind our experiments was to perform model and feature selection
with GA and compare these results with a diverse set of classifiers trained classically;
i.e., with a grid-search. Referring to classification scenarios introduced in Section 1, we
considered three experimental scenarios:

1. Hyperspectral transductive classification (HTC)—training and test examples were
randomly, uniformly selected from a single hyperspectral image.

2. Hyperspectral inductive classification (HIC)—training and test examples were se-
lected from different images. Typically, training examples came from “Frame” images
and testing examples came from the “Comparison” images.

3. Hyperspectral inductive classification with a validation Set (HICVS)—this scenario
was similar to the HIC scenario: training examples came from “Frame” images and
testing examples came from the “Comparison” images. However, model selection
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was performed using a separate validation set that was randomly, uniformly sampled
from the “Comparison” scene. This scenario was designed to test the capabilities of
GA optimisation under different conditions to those in the HIC scenario, which is
discussed in detail in Section 6.

4.1. The Scheme of Experiments

The experiments can be divided into six stages:

1. Raw data—The data set consisted of seven hyperspectral images from the data set
described in Section 3.1. Every image had 128 hyperspectral bands. The images
represented two scenes—the “Frame” scene and the “Comparison” scene. Four of
the seven images showed the “Frame” scene, captured in days {1, 1a, 7, 21}, where
the value 1a represents the afternoon of the first day. The three “Comparison” images
were captured on days {1, 7, 21}.

2. Data preprocessing—Data were transformed in accordance with the methodology
described in Section 3.2: in order to reduce the effect of noise and uneven lighting,
spectra were smoothed with the median window, normalised and noisy bands were
removed. Background (unannotated pixels) and pixels from the class “beetroot juice”
(class 4) that was not present in all images were removed. Finally, the problem was
posed as a six-class classification with classes Y = {1, 2, 3, 5, 6, 7}.

3. Feature extraction—A derivative transformation was used, as described in Section 3.3.
4. Data split—Data were divided into training and test sets. A detailed description of

this stage is included in Sections 4.2–4.4.
5. Model optimization—Model and feature selection were performed as described in

detail in Section 3.5. The reference method used for comparison was a grid search.
In both cases, the accuracy was chosen as the evaluation criterion. The settings and
details of the cross-validation varied depending on the scenario of the experiment;
detailed descriptions are provided in descriptions of the individual scenarios.

6. Model evaluation—The final final results were expressed in terms of classification
accuracy. After finding the best model in stage 5, this model was trained on the entire
training set and tested on the test sets. The test sets were created from both scenes:
“Frame” and “Comparison”. The training and testing process was repeated five times
and the average accuracy with the standard deviation was calculated.

An overview schema of our experiments based on the above steps is presented in
Figure 4. Transitions between successive stages are also described with a short summary of
consecutive experiments phases.

4.2. Hyperspectral Transductive Classification (HTC)

In the HTC scenario training, pixels were randomly, uniformly sampled from the
same images as test pixels. This scenario bore resemblance to a common hyperspectral
classification setting, when classifiers are tested, e.g., using the “Indian Pines” data set [1].
The aim of this experiment was to test the capability of classifiers to model classes and
distinguish between them.

The training set was a combination of examples from all images; i.e., “Frame” and
“Comparison” scenes from all days. The training set consisted of an equal number of
examples from each class and each day. We used the size of the least numerous class among
all the images (989); therefore, the training set consisted of 41,538 hyperspectral pixels (989
pixels * six classes * seven images).

After selecting the best parameters and features using cross-validation on the training
set, classifiers were trained on the whole training set and tested on the remaining examples.
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Figure 4. The overview scheme of experiments.

4.3. Hyperspectral Inductive Classification (HIC)

In the HIC scenario, classifiers were trained on “Frame” images and tested on “Compar-
ison” images. This scenario simulated a potential forensic application, where the model was
prepared using laboratory samples and applied in the field in an unknown environment.

The training set size was 6000 examples (250 examples from each class, from four available
images). The test set consisted of a total of 82,097 examples from “Comparison” scenes.

Each model was optimized in the process of a 10-fold cross-validation as visualised
in Figure 5. Each time, one fold was used for training and the remaining ones for testing.
Additionally, only a subset of 10 randomly selected examples from each class in the training
set were used for training in a single cross-validation iteration. After the optimization
stage, the best model was trained on examples in the training set and tested on the test set.

4.4. Hyperspectral Inductive Classification with a Validation Set (HICVS)

In the HICVS scenario, classifiers were trained on “Frame” images and tested on
“Comparison” images, but in the model optimisation stage, a separate validation set
was used, consisting of a subset of randomly, uniformly sampled examples from the
“Comparison” images. The aim of this experiment was to determine and discuss the impact
of applying GA in the model optimisation stage. The purpose was to test a scenario in
which GA could perform the selection of features while maintaining model overfitting
control. A discussion of this scenario is presented in the Section 6.
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Figure 5. Visualisation of the model optimisation stage in the hyperspectral inductive classification
(HIC) scenario, using 10-fold cross-validation on a selected training set from “Frame” images.

In the experiment, all examples from tests scenes from all days were divided into a
test and a validation set in a ratio of 80% to 20%. Similarly to the HIC scenario, pixels from
test scenes were not used as training examples. However, during the model optimization
stage, models were tested on the validation set. The test set consisted of 65,676 examples
and the validation set consisted of 16,421 examples.

The training set contained 6000 examples (250 examples from each class, from four
available images). Models were trained using 10-fold cross-validation, as presented in
Figure 6. Nine folds formed a training subset, and the model was tested on a validation set.
The remaining fold was not involved in the validation process.

X
Training folds Test fold

Mean
accuracy

on
validation set

Validation set

16,421 samples

Validation
Set

X
X

X

#1

#2

#3

#10

Training set

6000 samples

Figure 6. Visualisation of the model optimisation stage in the hyperspectral inductive classification
with a validation set (HICVS) experiment with a small training set and 10-fold cross-validation.

After the optimisation process, the best model was tested on a test set that did not
contain examples from the validation set.
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5. Results

This section presents our results divided into the three scenarios corresponding to
experiments described in Section 4.

5.1. The HTC Scenario

The accuracies of all tested models on “Frame” images in the HTC scenario were close
to 100%. Results for the “Comparison” images are presented in Table 4. The accuracy of all
classifiers was the highest among the three tested scenarios (HTC, HIC and HICVS). Only
the KNN classifier did not achieve an accuracy higher than 90%. The model based on the
MLP classifier optimized with GS outperformed other classifiers in every case.

Interestingly, the accuracy for the image from the seventh day was higher than for the
remaining images. This may result from time-induced changes in spectra, in particular
from the oxidation of haemoglobin in the blood. On the first day, the spectra undergo
significant changes, which may translate into high data variance and lower class cohesion.
After a few days, the spectra (especially the blood) become more uniform, as can be seen in
Figure 2a. Lower accuracy for significantly aged data after 21 days may result from the
equalisation of spectral responses between classes as well as additional noise resulting, for
example, from the presence of deposited dust.

Table 4. Results of the HTC scenario for classification with GA and reference classifiers trained with a grid search (GS). The
highest result in each day is denoted with a bold font. SVC: SVM with the regularisation parameter C.

Model
Classifier

Accuracy/Day

Optimisation 1 7 21 All b

GS

SVC 97.65± 0.09 98.2± 0.07 95.66± 0.13 97.14± 0.04
LSVC a 91.19± 0.63 91.25± 0.54 87.89± 0.44 90.13± 0.52
nu-SVM 97.02± 0.1 97.87± 0.12 95.27± 0.15 96.66± 0.07

KNN 87.96± 0.17 90.3± 0.2 85.22± 0.21 87.65± 0.12
MLP 98.94 ± 0.10 99.32 ± 0.06 98.31 ± 0.12 98.83 ± 0.07

GA nu-SVM 98.05± 0.11 98.51± 0.07 96.48± 0.11 97.66± 0.05
a SVM with a linear kernel; b results for combined data from all days.

5.2. The HIC Scenario

Results of the HIC scenario are presented in Table 5. The classifier trained with GA
outperformed reference methods only on the first day, and even then, the ranges of standard
deviations overlapped. For the remaining days, the SVM with a linear kernel scored best.
Interestingly, the best kernel chosen by GA optimisation was also the linear kernel, and the
number of bands was reduced from 113 to 61. We noticed that the training accuracy—i.e.,
the accuracy measured on the training set during model optimisation—was close to 100%
for almost all models including the classifier trained with GA, which is consistent with the
results of the HTC experiment.

Table 5. Results of the HIC scenario for classification with GA and reference classifiers trained with a grid search (GS). The
highest result in each day is denoted with bold font.

Model
Classifier

Accuracy/Day

Optimisation 1 7 21 All b

GS

SVC 70.42± 0.94 62.42± 1.09 60.4± 0.63 65.06± 0.83
LSVC a 72.89± 0.33 67.79 ± 0.64 62.23 ± 0.85 68.08 ± 0.52
nu-SVM 69.69± 0.42 58.73± 0.55 56.93± 0.33 62.66± 0.39

KNN 66.29± 0.3 58.74± 0.13 55.11± 0.19 60.66± 0.06
MLP 67.64± 0.49 62.01± 0.94 59.69± 0.52 63.57± 0.60

GA nu-SVM 73.27 ± 0.55 63.42± 0.75 60.54± 0.48 66.54± 0.45
a SVM with a linear kernel; b results for combined data from all days.
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5.3. HIC Scenario with a Validation Set

Results of the HICVS scenario experiments are presented in Table 6. In this scenario,
the accuracy of almost all classifiers improved compared to the HIC scenario (see Table 5),
but the GA-optimised classifier outperformed other methods. However, we also noticed
an almost fourfold increase in standard deviation for the GA optimised model. Once again,
the linear kernel was the winning model for GA and the number of selected bands was 64.
Similarly to the HIC scenario, the training accuracy—i.e., the accuracy measured on the
training set during model optimisation—was close to 100% for almost all models including
the classifier trained with GA.

Table 6. Results of the HICVS scenario for classification with GA and reference classifiers trained with a grid search (GS).
The highest result in each day is denoted with bold font.

Model
Classifier

Accuracy/Day

Optimisation 1 7 21 All b

GS

SVC 71.29± 0.65 64.16± 1.21 62.85± 0.99 66.67± 0.88
LSVC a 72.79± 0.44 68.4± 0.81 62.8± 1.12 68.38± 0.66
nu-SVM 71.75± 0.95 63.86± 1.69 63.67± 1.24 67.04± 1.16

KNN 67.59± 0.47 60.36± 0.14 55.9± 0.38 61.88± 0.1
MLP 67.49± 0.44 62.14± 1.02 59.68± 0.83 63.54± 0.66

GA nu-SVM 75.17 ± 1.91 73.42 ± 2.11 69.99 ± 2.54 73.02 ± 2.14
a Denotes SVM with a linear kernel; b Results for combined data from all days.

5.4. Computation Time

The computation time depended on the size of the training set and the number of folds
in cross-validation. The computation in the HIC scenario took the least amount of time.
Optimisation with GA took 13 min and that with GS 15 min. Optimisation calculations in
the HICVS scenario took 2 h and 17 min for GA and 9 h and 54 min for GS. Optimisation
in the HTC scenario took the longest time, with GA optimisation taking 7 h 28 min and
GS optimisation taking 18 h and 12 min. Regarding the reference MLP architecture, the
average training time was about 92.4 s in the case of HTC experiments and about 93.6 s in
the case of the HIC scenario.

6. Discussion
6.1. The Impact of Preprocessing

The preprocessing described in Section 3.3 was done with the aim of extracting class
features that were similar in all images. In order to illustrate the impact of the proposed
preprocessing and data transformation on classification accuracy in the HTC and HIC
scenarios, we performed a simple experiment: we repeated the HIC scenario; i.e., we
trained the ν-SVM classifier obtained in the optimization process during the HIC scenario
(including feature selection) with examples from all “Frame” images. However, we omitted
step 3, “feature extraction”, from the procedure described in Section 4; i.e., the classifier
processed normalised spectra. The training set size was 6000 examples (250 examples
from each class, from four available images). The accuracy for the combined “Comparison”
images was acc′Comp. = 54.02± 0.21, which was lower than the corresponding value in
the Table 5; i.e., accComp = 66.54± 0.45. At the same time, the accuracy for the remaining
pixels of “Frame” images was acc′Frame = 99.61± 0.05, which was similar to the results of
HTC experiments.

We conclude that, in the HTC scenario, where training and testing examples came
from the same scene, the classifier was able to model classes and reach high classification
accuracy even without preprocessing. However, the proposed preprocessing improved the
accuracy in the HIC scenario, when the training and test were are more different.
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6.2. Model Optimisation with GA in Hyperspectral Classification

Reference works on hyperspectral GA-based classification described in Section 2 present
their advantages such as the reduction in data dimensionality through band selection, their
resistance to overfitting or their consistently higher accuracy than for the reference model
selected with GS [11]. However, most of the works consider only the HTC scenario, use
similar, airplane or satellite-based images and sometimes compare the method with a model
trained with preset parameters [13]. Therefore, to better assess the capability of GA-based
model selection, we compared GA and GS in two scenarios that differed in regards to the
complexity of the classification problem.

Our results show that in the HTC scenario, both model optimisation techniques resulted
in comparable, highly accurate models. We noticed that the accuracy measured on the training
set during the process of model optimisation was very similar to the final accuracy on the
test set. It seems that for training and test sets created by randomly, uniformly sampling a
hyperspectral image, spectra in both sets are similar enough that GA and GS-based model are
comparable in regards to their accuracy, and the major advantage of GA in this scenario is the
band selection, which more than halved the number of features in our experiments.

Compared to the HTC, the HIC scenario proved to be significantly more challenging.
The accuracy values in Table 5 are lower compared to values in Table 4, and it seems that
the GA-trained classifier was only slightly better than GS for images captured on the first
day and scored second for test images captured on other days (although the number of
features was once again halved). In the HIC scenario, training and test data came from
images that differed in regards to the lightning conditions, spectral mixtures of imaged
classes and the image background. We hypothesise that, despite the fact that both images
contained the same, precisely applied and clearly visible substances, differences between
the training and the test set were so significant that the selected model was overfitted. This
is supported by the fact that, similar to the HTC scenario, the accuracy measured on the
training set during the process of model optimisation was very high in the HIC. While GAs
allow local maxima to be avoided during model optimization, when all training data are
noisy in the same way, there is no global maximum that a GA could find. This hypothesis
is further supported by the higher accuracy of the method on the first-day images. Images
acquired on the first day were more similar since aging had a significant impact on spectra;
e.g., the “blood” class spectrum changed significantly [44] due to haemoglobin oxidation.

In order to better explore the capabilities of GA in HSI model optimisation, we proposed
one more experiment: the HICVS scenario described in detail in Section 4.4. In HICVS, the
classifier was trained on a similar training set as in the HIC scenario, but during the model
optimisation stage, the optimisation algorithm had access to examples in the validation set
that were similar to test data. We expect that in this situation GA should gain an observable
advantage over GS: since the algorithm can now control model overfitting through every
epoch, it should be able to create a better generalizing classifier. Results in Table 6 confirm
this hypothesis: while the results of the GS also improved, the improvement for GA was
higher, and it scored first for all images.

Referring to our initial hypothesis introduced in Section 1 that GAs allow more accurate
hyperspectral classifiers to bed obtained than GS, in our opinion, the presented results
support this hypothesis, provided that certain assumptions related to the nature of the
processed hyperspectral images are met. First, for a uniform data set, e.g., in the HTC
scenario, when the training set is sufficient and uniformly sampled, both model optimisation
methods can result in highly accurate, comparable classifiers. However, when spectra become
noisy, which results in differences between the training and test sets, GA can outperform
GS and avoid model overfitting, provided that a subset of examples similar to test data are
available during model optimisation. When the noise between training and test data becomes
too big, the advantage of GA over GS in terms of accuracy seems not significant. However,
compared to GS, in all scenarios, GA can produce similar or more accurate classifiers while at
the same time significantly reducing the dimensionality of the data through band selection.
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7. Conclusions and Future Works

We compared a GA-based model selection with the classic approach based on a
grid search in three different hyperspectral classification scenarios. In the hyperspectral
transductive classification (HTC) scenario, the training and test data were taken from a
single image, so they were similar. For this scenario, if a sufficiently large training set was
available, both methods of model selection achieved comparable, very high accuracy. In
the hyperspectral inductive classification (HIC) scenario, the training and test data came
from different images, which negatively affected the accuracy of all tested classifiers. In this
scenario, GAs only gained an advantage over GS for some images; e.g., day 1 image, where
the characteristic blood features associated with haemoglobin spectral response were most
visible. The third scenario, i.e., the hyperspectral inductive classification with a validation
set (HICVS), was created on the basis of the HIC scenario. In the HICVS scenario, the
model selection algorithm had access to examples similar to those in the test set, which
allowed the GA-based optimisation to outperform GS for all images.

Our results show that for noisy data, as in HIC, the advantage of GA over GS in terms of
accuracy is not significant and that in order to achieve this advantage, GA must have examples
representative of the test set at the model selection stage; e.g., in the HICVS scenario. On the
other hand, for a typical HTC scenario, existing approaches such as [5] or [25] allow very high
accuracy to be obtained without an extensive search of the parameter space. This suggests
that GA is a promising solution to challenging problems of hyperspectral classification, but its
effective use imposes certain requirements on the available training data. This problem shares
similarities with the problem of domain adaptation, described, e.g., in [55]. However, in all
tested scenarios, the GA was able to generate models that were similar to or more accurate
than GS while reducing the number of spectral bands by almost half.

We plan to apply the GA-based approach to different models, in particular recur-
rent neural networks, deep neural networks and ensemble learning. We would also like
to test different feature extraction methods dedicated to the GA-based classification of
hyperspectral images, especially in the HIC scenarios.
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