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Abstract: To realize high-precision and high-frequency unattended site calibration and detection
of satellites, automatic direction adjustment must be implemented in mirror arrays. This paper
proposes a high-precision automatic calibration model based on a novel point light source tracking
system for mirror arrays. A camera automatically observes the solar vector, and an observation
equation coupling the image space and local coordinate systems is established. High-precision
calibration of the system is realized through geometric error calculation of multipoint observation
data. Moreover, model error analysis and solar tracking verification experiments are conducted. The
standard deviations of the pitch angle and azimuth angle errors are 0.0176◦ and 0.0305◦, respectively.
The root mean square errors of the image centroid contrast are 2.0995 and 0.8689 pixels along the x-
and y-axes, respectively. The corresponding pixel angular resolution errors are 0.0377◦ and 0.0144◦,
and the comprehensive angle resolution error is 0.0403◦. The calculated model values are consistent
with the measured data, validating the model. The proposed point light source tracking system
can satisfy the requirements of high-resolution, high-precision, high-frequency on-orbit satellite
radiometric calibration and modulation transfer function detection.

Keywords: radiometric calibration; modeling; geometric error; high-precision calibration

1. Introduction

With the rapid development of remote-sensing technology, China’s satellite remote-
sensing technology can realize global and multisatellite network observations, thereby
enabling comprehensive global observation with three-dimensional and high-, medium-,
and low-resolution imaging, which has gradually penetrated all aspects of the national
economy, social life, and national security [1]. Radiometric calibration is the process of
establishing the functional response relationship between the absolute value of the radiance
at the entrance pupil of the remote sensor and the digital number of the output image of
the remote sensor and determining the radiometric calibration coefficient of the remote
sensor data [2,3]. With the development of global remote-sensing quantitative applications,
it has become increasingly urgent to improve the level of quantitation in remote-sensing
applications of satellite data. On-orbit radiometric calibration and modulation transfer
function (MTF) detection by satellite remote sensors are the basis of satellite remote-
sensing quantitative applications. Therefore, higher requirements are put forward for the
accuracy of remote sensor radiometric calibration and MTF detection [4–7]. Vicarious
calibration, which is not affected by the space environment or satellite state, can account
for atmospheric transmission and environmental impacts. This approach, which can
help facilitate authenticity and model accuracy tests of on-orbit remote sensors, has been
developed rapidly [8]. As a kind of high-spatial resolution satellite site for vicarious
calibration equipment, point light sources are light-weight and small and exhibit excellent
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optical characteristics. Their layout is flexible, and they can be moved easily. The aperture
of the convex mirror depends on the pointing accuracy of the system. To ensure reliability,
it is desirable to increase the pointing accuracy, reduce the aperture size, and reduce the
volume and weight of the point light source. Furthermore, it is desirable to change the
number of mirrors to realize on-orbit radiometric calibration and MTF detection of point
light sources with different energy levels [9,10]. Point light source radiometric calibration
mainly uses the point light source equipment to reflect sunlight into the entrance pupil
of the satellite. Upon calculating the equivalent entrance pupil radiance of the satellite
combined with the target response value of the remote-sensing image, the calibration
coefficient is calculated according to the remote sensor calibration equation. Because this
procedure simplifies the radiative transfer process, it has been widely used [11–15].

According to literature research, so far, few countries have carried out on-orbit ra-
diation calibration and MTF detection of point light sources. The United States was the
first to carry out this work, followed by France and China. France has adopted active
point light source equipment, mainly using high-energy spotlight for on-orbit MTF detec-
tion of SPOT5 [16]. The United States and China mainly use reflective point light source
equipment to carry out the corresponding experiments [17–23]. The key to high-resolution
satellite on-orbit radiation calibration based on point light sources is to control the direction
of the central optical axis of the point light source reflector. When the central optical axis
of the reflector points to the sun, the sunlight enters the convex mirror perpendicularly,
the reflected light spot is in a divergent state, and the direction points toward the sun.
When the central optical axis of the reflector points toward the position of the bisector of
the angle between the satellite and the sun, the reflected light spot is reflected toward the
satellite direction in a divergent state. If the pointing position of the optical axis at the edge
is reflected toward the direction of the satellite due to low pointing accuracy, the satellite
may not observe the point light source or may observe only part of the reflected light spot,
which may cause the radiation calibration to fail. Therefore, the success or failure of the
point light source on-orbit experiment depends on the pointing accuracy, and the pointing
accuracy depends on the tracking accuracy of the system. To improve the pointing accuracy
of the system, it is necessary to improve the tracking accuracy of the system. The pointing
accuracy of the reflector equipment used by American researchers Schiller et al. [24] to
implement the SPARC method (specular array radiometric calibration) of radiation calibra-
tion is better than ± 0.5◦. In particular, a large convex mirror is used to compensate for the
lack of pointing accuracy to ensure that the reflection spot enters the pupil of the satellite.
However, the processing accuracy of large convex mirrors is difficult to ensure, and this
approach is not convenient for engineering practice and application promotion. In China,
the Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, succes-
sively conducted on-orbit radiometric calibration experiments and MTF detection based
on point light sources [7,12,13,22]. Initially, a large plane mirror was used as the reflection
point light source to perform experiments involving medium- and high-orbit satellites on
orbit [22,23]. At present, we mainly carry out on-orbit experiments of point light sources
based on convex mirrors. Compared with existing foreign point light source systems, the
difference is that we use a smaller convex mirror to overcome the disadvantages associated
with larger convex mirrors. The advantage of this approach is that it is easy to change the
number of mirrors to produce different energy levels of reflected light, which is suitable for
different resolutions in satellite radiometric calibration and MTF detection [13]. However,
the disadvantage is that the reflection spot decreases due to the reduction of the aperture
of the convex mirror, which increases the difficulty of the satellite reliably receiving the
reflected spot. Therefore, to ensure that the reflected light spot is reliably incident on the
entrance pupil of the satellite, the key technological improvement that needs to be ad-
dressed when using a smaller convex mirror is improving the pointing accuracy. Therefore,
to improve the pointing accuracy of the system, a high-precision calibration modeling
method for a point light turntable based on a solar vector was established [9]. Compared
with previous-generation equipment [22], the integrated pointing accuracy of the system



Sensors 2021, 21, 2270 3 of 20

could be enhanced; however, a camera with an automatic observation ability was not
introduced in the modeling process. Consequently, the system cannot realize automatic cal-
ibration, and it is difficult to realize the high-precision calibration of large-scale automatic
cooperative work. To realize automatic calibration, the literature [10] proposed a mirror
normal calibration method based on the centroid of the solar image; however, in the initial
stage of the model, the influencing factors such as equipment placement errors and camera
distortion corrections are not considered. Consequently, the calibration accuracy is affected
by single-point calibration and the solar image, and the calibration accuracy needs to be
further increased.

The abovementioned calibration techniques based on convex mirrors can achieve
satisfactory results in radiometric calibration and MTF detection; however, such approaches
cannot meet the requirements of high precision, high frequency and use of existing high-
resolution satellites. Nevertheless, unattended multipoint automatic and high-precision
pointing adjustment technology can satisfy these requirements. Therefore, in this study,
based on the development of a point light source turntable tracking system, an automatic
calibration modeling method is developed. Moreover, a high-precision automatic geometric
calibration model is established. The system can realize network-based remote control,
achieve high-precision pointing of the point light source array tracking system, and realize
high-frequency and high-efficiency orbit radiation calibration and MTF detection of high-
spatial resolution satellites.

The tracking accuracy described in this paper is the basic guaranteed accuracy required
to achieve a comprehensive system design accuracy better than 0.1◦; therefore, the design
accuracy of our system needs to be better than 0.1◦. To realize automatic calibration of the
point light source array and achieve the purpose of high-precision tracking of the point light
source system, this paper focuses on the establishment of a high-precision calibration model
of the point light source system. Starting from the composition of the point light source
system, the establishment of a coordinate system and the principle of geometric calibration
modeling, this paper studies the establishment of a simplified calibration model of the
point light source system. On the basis of the simplified calibration model, considering the
geometric error parameters and camera lens distortion parameters that affect the tracking
accuracy of the system, the automatic high-precision geometric calibration model is further
established. Based on the theoretical verification and solution of the model, the inverse
solution algorithm of the calibration model is proposed for experimental verification of
the calibrated model. Finally, the experimental verification and system tracking accuracy
analysis are carried out.

2. Principle of Geometric Calibration Modeling
2.1. Equipment System Composition and Coordinate System Establishment

The turntable system of the point light source is composed mainly of a posture control
module, mirror assembly, camera and electric control system. The posture control module
includes a pitching component and an azimuth component. The pitching component
adopts a “U”-shaped forked arm structure. The pitch motor drives a pitching turbine
through a two-stage reduction device to drive a mirror to rotate around the pitch axis.
The azimuth component is driven by an azimuth motor through the two-stage reduction
mechanism to cause the rotary table to rotate around the azimuth axis. The reduction ratio
of the second reduction device is 1:360. The pitch and azimuth terminals of the equipment
are equipped with an encoder detection device to feed back the rotation angle of the rotary
table terminal. The detection accuracy of the encoder is 0.02◦. The mirror assembly is
arranged between the “U”-shaped forked arms to form a pitching rotation axis. The camera
is fixed to the top of the mirror assembly to maintain the camera plane parallel to the mirror
plane. The field of view is 23◦ × 17◦. The image resolution is 1280 × 1024 pixels. The
resolutions of the azimuth and pitch pixel angles are 0.018◦ and 0.0166◦, respectively. The
electric control system is arranged at the base and two fork arms. The abovementioned
components compose a point light turntable system, as shown in Figure 1a.
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Figure 1. (a) Composition of the point light source system; (b) coordinate system establishment.

To conveniently describe the coordinate position of the sun and a satellite observed
from a certain point on Earth’s surface, a coordinate system is established based on the
position of the point light source on Earth’s surface. This system is named the north-
east upper coordinate system, which is expressed as loc and described as [ E N Up ].
E points due east in the positive direction. N points due north in the positive direction. Up
points in the vertical upward direction against the geocenter in the positive direction. The
mirror coordinate system is fixed on the turntable. The right-hand rectangular coordinate
system is composed of the z-axis of the central light axis of the mirror, which is described
as [ xmir ymir zmir ]. In addition, xmir is based on the pitch axis of the turntable and
points to the east, and ymir takes the azimuth axis of the turntable as the baseline, which is
consistent with the Up direction, with zmir pointing to the north. The camera coordinate
system is established in accordance with the mirror coordinate system, which is described
as [ xcam ycam zcam ]. The establishment of the coordinate system is shown in Figure 1b.

2.2. Principle of Geometric calibration Modeling

Based on the principle of central projection and perspective transformation [25,26], in
the same coordinate system, a collinear condition equation is established using the collinear
condition, and a geometric calibration model is established based on this equation. A
rotation transformation relationship between the image plane of the image space coordinate
system and object plane of the local coordinate system is established by using the camera to
observe the solar vector. Moreover, considering the angle readings of the pitch and azimuth
encoders, centroid coordinates of the solar image and solar position parameters at different
positions at different times, a multipoint observation equation is established, and the least
squares method is used to solve the model. Geometric calibration of the equipment is
conducted to determine the initial positions of the azimuth and pitch encoders. The mirror
normal vector diagram is shown in Figure 2.

Sensors 2021, 21, x FOR PROOF 5 of 22 
 

 

 
Figure 2. Mirror normal vector diagram. 

Assuming that the point light source is placed horizontally in the initial position, the 
pitch axis is orthogonal to the azimuth axis, and the central light axis of the reflector points 

to the north. This configuration is expressed as [ ]T

loc0 1 0  and [ ]T

mir0 0 1  in the 
northeast upper coordinate system and reflector coordinate system, respectively. At a cer-
tain moment, if the azimuth and altitude angles of the incident sunlight are azimutha  and 

altitudea , respectively, the turntable rotates anticlockwise and clockwise around the pitch 
X-axis and azimuth axis, respectively. At this time, the central optical axis vector of the 
reflector coincides with the solar vector in the northeast upper coordinate system. In this 
case, in the local coordinate system, the transformation process from the optical axis vec-
tor of the mirror center to the coordinate rotation consistent with the solar vector can be 
expressed as 

0 0

0 0

loc loc

cos( ) sin( ) 0 1 0 0
sin( ) cos( ) 0 0 cos( ) sin( )

0 0 1 0 sin( ) cos(

0
1
0)

0 0

0 0

X α -α α -α
Y α -α α -α β - β β - β
Z β - β β - β

     
     = − −     
   

 
 
 
       

 (1)

where α  and β  are the readings of the azimuth and elevation encoders at a certain 
time, respectively; 0α  and 0β  are the initial position readings. 

According to the definition of the coordinate system, if the mirror coordinate system 
is rotated anticlockwise by 90° around the axis, the local coordinate system coincides with 
the mirror coordinate system. According to the rotation matrix relationship of the coordi-
nate transformation, the coordinate transformation relationship can be established at any 
point as follows: 

1

loc mir

( )
2x

X x
Y y
Z z

π−

   
   =   
      

R . (2)

Combining the coordinate rotation relation expressed in Equation (1) with the coor-
dinate transformation and rotation relation expressed in Equation (2) yields 

0 0

0 0

l

1

m roc i

cos( ) sin( ) 0 1 0 0
sin( ) cos( ) 0 0 cos( ) sin( )

0 0 1 0 sin( ) cos(
)

)
(
20 0

0 0

x

X α -α α -α
Y α -α α -α β - β β - β
Z β - β β - β

x
y
z

π−

     
     = − −     

 
 
 
            

R

. 

(3)

In particular, when the optical axis vector of the mirror center is consistent with the 
solar vector, the coordinates of the solar vector in the mirror coordinate system are 

[ ]T

mir0 0 1 , and the unit vector coordinates in the local coordinate system are 

[ ]T

loc
X Y Z . According to Equation (3), the solar vector under the reflector can be 

specular
normal

pitch

azimuth

Figure 2. Mirror normal vector diagram.

Assuming that the point light source is placed horizontally in the initial position, the
pitch axis is orthogonal to the azimuth axis, and the central light axis of the reflector points
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to the north. This configuration is expressed as
[

0 1 0
]T

loc and
[

0 0 1
]T

mir in the
northeast upper coordinate system and reflector coordinate system, respectively. At a
certain moment, if the azimuth and altitude angles of the incident sunlight are aazimuth
and aaltitude, respectively, the turntable rotates anticlockwise and clockwise around the
pitch X-axis and azimuth axis, respectively. At this time, the central optical axis vector of
the reflector coincides with the solar vector in the northeast upper coordinate system. In
this case, in the local coordinate system, the transformation process from the optical axis
vector of the mirror center to the coordinate rotation consistent with the solar vector can be
expressed as X

Y
Z


loc

=

 cos(α− α0) sin(α− α0) 0
− sin(α− α0) cos(α− α0) 0

0 0 1

 1 0 0
0 cos(β− β0) − sin(β− β0)
0 sin(β− β0) cos(β− β0)

 0
1
0


loc

(1)

where α and β are the readings of the azimuth and elevation encoders at a certain time,
respectively; α0 and β0 are the initial position readings.

According to the definition of the coordinate system, if the mirror coordinate system is
rotated anticlockwise by 90◦ around the axis, the local coordinate system coincides with the
mirror coordinate system. According to the rotation matrix relationship of the coordinate
transformation, the coordinate transformation relationship can be established at any point
as follows:  X

Y
Z


loc

= R−1
X (

π

2
)

 x
y
z


mir

. (2)

Combining the coordinate rotation relation expressed in Equation (1) with the coordi-
nate transformation and rotation relation expressed in Equation (2) yields X

Y
Z


loc

=

 cos(α− α0) sin(α− α0) 0
− sin(α− α0) cos(α− α0) 0

0 0 1

 1 0 0
0 cos(β− β0) − sin(β− β0)
0 sin(β− β0) cos(β− β0)

R−1
X (

π

2
)

 x
y
z


mir

. (3)

In particular, when the optical axis vector of the mirror center is consistent with
the solar vector, the coordinates of the solar vector in the mirror coordinate system
are

[
0 0 1

]T
mir, and the unit vector coordinates in the local coordinate system are[

X Y Z
]T

loc. According to Equation (3), the solar vector under the reflector can be
transformed to the vector in the local coordinate system. Based on this aspect, the coor-
dinate transformation relationship between the mirror and local coordinate systems is
established based on the solar vector.

3. Geometric Calibration Modeling of the Turntable
3.1. Basic Calibration Model of the Turntable

In terms of the initial position of the point light source in the basic calibration model
of the turntable, the X- and Z-axes in the mirror coordinate system coincide with the E- and
N-axes in the local coordinate system, respectively. The central optical axis of the reflector
points true north. The camera is affixed to the mirror assembly bracket, and the definition
of its coordinate system is consistent with the mirror coordinate system. Therefore, the
central optical axis vector of the reflector is replaced by the camera center optical axis
vector. When the camera coordinate system is transformed to the local coordinate system,
the relationship between the two coordinate systems must be established by multiplying
the left side by the rotation matrix R−1

X (π
2 ), as follows: X

Y
Z


loc

= R−1
X (

π

2
)

 x− x0
y− y0

f


cam

. (4)
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By combining Equations (3) and (4), the relationship between the camera and local
coordinate systems can be established as Xi

Yi
Zi


loc

= RZ(αi − α0)RX(βi − β0)R−1
X (

π

2
)λ

 xi − x0
yi − y0

f

 (5)

where

RZ(αi − α0) =

 cos(αi − α0) sin(αi − α0) 0
− sin(αi − α0) cos(αi − α0) 0

0 0 1

, RX(βi − β0) =

 1 0 0
0 cos(βi − β0) − sin(βi − β0)
0 sin(βi − β0) cos(βi − β0)

.

αi and βi are the azimuth and pitch encoder values corresponding to the encoder at
a certain moment, respectively; xi and yi are the coordinates of the centroid of the solar
image in the pixel coordinate system at a certain moment; and λ is the imaging scale factor.
Moreover, x0 and y0 are the camera main point coordinates, and i represents the camera
imaging time serial number or the solar position serial number at different times, with
i = 1 · · · n.

We define Rloc
cam = RZ(αi − α0)RX(βi − β0)R−1

X (π
2 ). Consequently, Equation (5) can

be rewritten as

(Rloc
cam)

−1

 Xi
Yi
Zi

 = λ

 xi − x0
yi − y0

f

 (6)

where

 Xi
Yi
Zi

 =

 sin aazimuth cos aaltitude
cos aazimuth cos aaltitude

sin aaltitude

, Xi represents the east (E) component of the

sun in the local coordinate system, Yi represents the component of the sun due north (N)
in the local coordinate system, and Zi represents the upward (Up) component of the sun
perpendicular to the earth plane in the local coordinate system.

Equation (6) represents the rotation transformation relationship between the image
plane in the image space coordinate system and object plane in the local coordinate system.
By dividing the first and second expressions of Equation (6) by the third expression,
xi − x0 = a(nxi − nx0) and yi − y0 = a(nyi − ny0), where a is the pixel size and n is the
number of pixels. Upon substituting this content into Equation (6), the basic calibration
model of the turntable can be expressed as

a
f (nxi − nx0) =

cos(α−α0)Xi−sin(α−α0)Yi
sin(α−α0) cos(β−β0)Xi+cos(α−α0) cos(β−β0)Yi+sin(β−β0)Zi

a
f (nyi − ny0) =

sin(α−α0) sin(β−β0)Xi+cos(α−α0) sin(β−β0)Yi−cos(β−β0)Zi
sin(α−α0) cos(β−β0)Xi+cos(α−α0) cos(β−β0)Yi+sin(β−β0)Zi

(7)

The right and left sides of the equation represent the calculation formula of the solar
vector and optical axis vector of the turntable mirror center, respectively. When x = x0
and y = y0, the optical axis vector of the reflector points toward the sun. In this case,
aaltitude = β− β0 and aazimuth = α− α0. When x 6= x0 and y 6= y0, the optical axis vector
of the reflector points toward a certain angle in space. In this case, θaltitude = β− β0 and
ϕazimuth = α− α0.

In this manner, the relationship between the camera coordinate system and local
coordinate system can be established by using the camera to observe the solar vector.
Thus, any vector in the image space coordinate system can be transformed to the local
coordinate system through the coordinate rotation transformation relationship. The solar
vector observed by the camera represents the optical axis vector of the reflector. The control
turntable uses the camera to realize data acquisition and automatic calibration in the local
coordinate system.
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3.2. High-Precision Geometric Calibration Model of the Turntable

The basic calibration model of the turntable is based on the assumption that the
turntable is placed horizontally, the pitch axis is orthogonal to the azimuth axis, and the
camera is positioned vertically. However, regardless of whether the actual turntable is
horizontal, the pitch axis is vertical to the azimuth axis, and the camera is vertical. The
levelness error, perpendicularity error, and camera placement perpendicularity error must
be considered in the high-precision control system. In particular, to realize high-precision
automatic calibration control of the turntable, it is necessary to establish a high-precision
calibration model of the turntable and examine the geometric error parameters of the
turntable obtained considering the basic calibration model. We consider that the error
matrix of the turntable placement levelness is RL, the orthogonal error matrix of the pitch
and azimuth axes is RS, and the vertical error matrix of the camera placement is RC. In this
case, the high-precision calibration model can be expressed as Xi

Yi
Zi


loc

= λRLRZ(αi − α0)RSRX(βi − β0)RCR−1
X (

π

2
)

 xi − x0
yi − y0

f

 (8)

where RL=RL
XRL

YRL
Z, RS = RS

ZRS
YRS

X , and RC = RC
XRC

YRC
Z.

According to the rotation matrix, the same kind of rotation can be combined in the
same direction. Equation (8) can be simplified to obtain a high-precision calibration model
of the turntable as Xi

Yi
Zi


loc

= λRL
XRL

YRZ(αi − α0)RS
YRX(βi − β0)RC

YR−1
X (

π

2
)

 xi − x0
yi − y0

f

 (9)

where RL
X, RL

Y, and RL
Z represent the rotation matrix around the X, Y, and Z axes from

the mirror coordinate system to the local coordinate system, respectively; RS
Z, RS

Y, and RS
X

represent the rotation matrix around the Z, X, and Y axes from the pitch axis coordinate
system to the azimuth axis coordinate system, respectively; and RC

X , RC
Y , and RC

Z represent
the rotation matrix around the X, Y, and Z axes from the camera coordinate system to the
mirror coordinate system, respectively. Consequently,

RL
XRL

Y =

 1 0 0
0 cos µ0 − sin µ0
0 sin µ0 cos µ0

 cos ν0 0 sin ν0
0 1 0

− sin ν0 0 cos ν0

RS
Y =

 cos ω0 0 sin ω0
0 1 0

− sin ω0 0 cos ω0


RC

Y =

 cos γ0 0 sin γ0
0 1 0

− sin γ0 0 cos γ0


where µ0 and ν0 represent the level offset error of the turntable installation, ω0 represents
the geometric error of the verticality of the pitch axis and azimuth axis of the turntable,
and γ0 represents the verticality offset error of the camera placement.

We define Rloc
cam = RL

XRL
YRZ(αi − α0)RS

YRX(βi − β0)RC
YR−1

X (π
2 ) =

 a1 b1 c1
a2 b2 c2
a3 b3 c3

.

By inserting Equation (9), we obtain{
a
f (nxi − nx0) =

Xia1+Yia2+Zia3
Xic1+Yic2+Zic3

a
f (nyi − ny0) =

Xib1+Yib2+Zib3
Xic1+Yic2+Zic3

. (10)

Thus, a high-precision calibration model considering the geometric error of the system
is established. However, in the process of automatic system calibration, camera lens
distortion may produce errors, which may limit the increase in the calibration accuracy.
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Therefore, it is necessary to correct the lens distortion to further reduce the error sources.
Considering the calibration model expressed in Equation (10), the chessboard calibration
results are incorporated [27], and the lens distortion correction term is added. The first term
approximation of the Taylor series expansion is adopted to correct the radial distortion
error of the lens {

(xi − x0) + ∆x = fx
X
Z

(yi − y0) + ∆y = fy
Y
Z

(11)

where xi and yi are the coordinates of the image centroid in the pixel coordinate system; x0
and y0 are the camera main point coordinates; ∆x and ∆y are the radial distortion errors of
the camera; fx and fy are the focal lengths of the camera in the x and y directions, respectively;
and X = Xia1 +Yia2 + Zia3, Y = Xib1 +Yib2 + Zib3, and Z = Xic1 +Yic2 + Zic3.

According to the camera physical calibration model [28,29], the radial distortion error
of the camera can be defined as follows:

∆x = xk1r2, ∆y = yk1r2 (12)

where x = (xi − x0), y = (yi − y0), and r2 = (xi − x0)
2 + (yi − y0)

2. Here, k1 is the radial
distortion coefficient of the camera, and r is the radial distance of the actual image point.

Substituting Equation (12) into Equation (11) yields a high-precision geometric error
calibration model with camera distortion correction, as follows:

a
fx
(nxi − nx0)

{
1 + a2k1

[
(nxi − nx0)

2 + (nyi − ny0)
2
]}

= X
Z

a
fy
(nyi − ny0)

{
1 + a2k1

[
(nxi − nx0)

2 + (nyi − ny0)
2
]}

= Y
Z

. (13)

Equation (13) represents the conversion of the solar vector in the local coordinate
system to the representation in the image space coordinate system. Thus, the relationship
between the solar vector observed by the camera in the image space coordinate system
is established, and transformation from any vector in the image space system to the local
coordinate system is realized. Finally, through actual camera observations, multipoint
data are collected to establish multipoint observation equations to achieve high-precision
calibration of the system installation geometric errors and verify the corresponding error
parameters µ0, ν0, ω0, and γ0, encoder initial positions α0 and β0, and camera principal
point and principal distance values x0, y0, fx, and fy, among other factors. In this manner,
high-precision calibration of the turntable system in the local coordinate system can be
realized, leading to increased pointing accuracy.

4. Model Verification and Solution
4.1. Verification of the Model Coordinate Rotation Transformation Relationship

When the central light axis of the reflector points toward the sun, the coordinates of
the solar vector in the mirror coordinate system are

[
0 0 1

]T
mir, and the unit vector

coordinates in the local coordinate system are
[

X Y Z
]T

loc. First, forward verification

is conducted according to Equation (3). By substituting
[

0 0 1
]T

mir and multiplying
the three terms on the right side, we can obtain the vector representation of the sun in the
local coordinate system, as follows: X

Y
Z


loc

=

 cos(α− α0) sin(α− α0) sin(β− β0) sin(α− α0) cos(β− β0)
− sin(α− α0) cos(α− α0) sin(β− β0) cos(α− α0) cos(β− β0)

0 − cos(β− β0) sin(β− β0)

 0
0
1


mir

=

 sin(α− α0) cos(β− β0)
cos(α− α0) cos(β− β0)

sin(β− β0)

 (14)

where aazimuth = α − α0, and aaltitude = β − β0. The result is the same as that of the

solar unit vector

 X
Y
Z


loc

=

 sin aazimuth cos aaltitude
cos aazimuth cos aaltitude

sin aaltitude

 in the local coordinate system.
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Thus, the accuracy of the rotation matrix is preliminarily verified. Second, the vector
representation of the sun in the local coordinate system is substituted into Equation (3) to
calculate the vector representation of the sun in the mirror coordinate system, as follows:

(Rloc
cam)

−1

 Xloc
Yloc
Zloc

 =

 cos(α− α0) − sin(α− α0) 0
sin(α− α0) sin(β− β0) cos(α− α0) sin(β− β0) − cos(β− β0)
sin(α− α0) cos(β− β0) cos(α− α0) cos(β− β0) sin(β− β0)

 sin(α− α0) cos(β− β0)
cos(α− α0) cos(β− β0)

sin(β− β0)

 =

 0
0
1

 (15)

The calculation result for Equation (15) is the same as the vector representation[
0 0 1

]T
mir of the sun in the mirror coordinate system when the optical axis of the

reflector is aligned with the sun. Both the forward and reverse verification calculation
results are the same as the predicted results, which demonstrates the accuracy of the
coordinate rotation transformation matrix of the basic calibration model. The coordinate
rotation transformation verification diagram for the calibration model is shown in Figure 3.
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4.2. Model Solution

According to Equation (13), the geometric error parameters of the system to be cali-
brated are (µ0, ν0, ω0, and γ0), the initial position parameters of the encoder are (α0 and
β0), and the camera parameters are (x0, y0, fx, fy, and k1). In total, 11 parameters exist. To
solve the model, multipoint observations are needed. To this end, the multipoint observa-
tion equation is established, and the least squares method is used to solve the unknown
parameters iteratively until the accuracy requirements are met. The solution process is
as follows:

wx = a
fx
(nxi − nx0)

{
1 + a2k1

[
(nxi − nx0)

2 + (nyi − ny0)
2
]}
− X

Z

wy = a
fy
(nyi − ny0)

{
1 + a2k1

[
(nxi − nx0)

2 + (nyi − ny0)
2
]}
− Y

Z

. (16)
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The first-order Taylor linearization expansion of Equation (16) is carried out at the
initial value

[
µ0 ν0 ω0 γ0 x0 y0 fx fy k1 α0 β0

]T
i , and the error equation

is established:

w′x = ∂wx
∂µ0

∆µ0 +
∂wx
∂ν0

∆ν0 +
∂wx
∂ω0

∆ω0 +
∂wx
∂γ0

∆γ0 +
∂wx
∂x0

∆x0 +
∂wx
∂y0

∆y0

+ ∂wx
∂ fx

∆ fx +
∂wx
∂ fy

∆ fy +
∂wx
∂k1

∆k1 +
∂wx
∂α0

∆α0 +
∂wx
∂β0

∆β0

w′y =
∂wy
∂µ0

∆µ0 +
∂wy
∂ν0

∆ν0 +
∂wy
∂ω0

∆ω0 +
∂wy
∂γ0

∆γ0 +
∂wy
∂x0

∆x0 +
∂wy
∂y0

∆y0

+
∂wy
∂ fx

∆ fx +
∂wy
∂ fy

∆ fy +
∂wy
∂k1

∆k1 +
∂wy
∂α0

∆α0 +
∂wy
∂β0

∆β0

. (17)

This equation is expressed in matrix form as

[
w′x
w′y

]
=

[ ∂wx
∂µ0

· · · ∂wx
∂β0

∂wy
∂µ0

· · · ∂wy
∂β0

]
∆µ0

...

...
∆β0

. (18)

By using the camera multipoint observation, the multipoint observation equation is
established as follows:

L1 =

[
w′x,1
w′y,1

]0

, Ln =

[
w′x,n
w′y,n

]0

, x0 =


∆µ0

...

...
∆β0


i

, A1 =

 ∂wx,1
∂µ0

· · · ∂wx,1
∂β0

∂wy,1
∂µ0

· · · ∂wy,1
∂β0

0

, An =

 ∂wx,n
∂µ0

· · · ∂wx,n
∂β0

∂wy,n
∂µ0

· · · ∂wy,n
∂β0

0

.

We define

L =

 L1
...

Ln

, A =

 A1
...

An

,

where
[...
]0

represents the value at
[

µ0 ν0 ω0 γ0 x0 y0 fx fy k1 α0 β0
]T

i .

L1 and Ln denote the difference matrix between the solar vector observed by the camera
and the calculated solar vector at the first and nth moment, respectively. In addition, w′x,1
and w′y,1 are the error components of the azimuth and pitch directions of the solar vector
observed by the camera and the calculated solar vector at the first moment, respectively;
w′x,n and w′y,n denote the error components of the azimuth and pitch directions of the
solar vector observed by the camera and calculated solar vector at the nth moment, re-
spectively; and x0 is the matrix of the difference between the values of each variable and
each corresponding expansion point. A1 and An denote the error equation at the first and
nth moments, respectively, which are used to calculate the partial derivative matrix of
each variable.

In this case, L = Ax0, and we perform double left multiplication of AT. After the posi-
tive definite treatment and matrix inversion, we obtain x0 =

(
ATA

)−1ATL. Subsequently,
x0 is substituted into the following expression to obtain the parameters to be solved:[

µ0 ν0 ω0 γ0 x0 y0 fx fy k1 α0 β0
]T

i+1 =[
µ0 ν0 ω0 γ0 x0 y0 fx fy k1 α0 β0

]T
i + x0

where
[

µ0 ν0 ω0 γ0 x0 y0 fx fy k1 α0 β0
]T

i is the first-order Taylor expan-
sion point value from the 0th to ith points (i = 0 · · · n).
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Next, the Taylor expansion point is moved to the latest solution point[
µ0 ν0 ω0 γ0 x0 y0 fx fy k1 α0 β0

]T
i+1 expansion, and x0

i+1 is solved again.
The solution is iteratively found until the accuracy requirements are met.

4.3. Inverse Calculation of the Calibration Model

After solving the model, it is necessary to verify the results. After applying the
calibration model, the encoder position coordinates α and β are calculated as the target
value when the mirror normal vector and solar vector point in the same direction. Next, the
servo motor is driven and controlled to move to the target position, and the camera collects
the data for further verification. The model inverse solution algorithm after calibration is
as follows.

According to the high-precision geometric calibration model, since the main point of
the camera coincides with the image centroid coordinates when the mirror normal vector
points toward the sun, that is, xi = x0 and yi = y0, the left term of the model is equal to
zero. The right side of the model has a denominator Xic1 + Yic2 + Zic3 6= 0. Therefore,
the following formula is established, and the inverse solution algorithm model can be
expressed as {

Xia1 + Yia2 + Zia3= 0
Xib1 + Yib2 + Zib3= 0

. (19)

According to Equation (19), the azimuth and pitch α and β of the encoder, respectively,
can be calculated by the least squares method when the normal of the reflector at different
positions points toward the sun at different times. We define{

Xre = Xia1 + Yia2 + Zia3
Yre = Xib1 + Yib2 + Zib3

.

In this case, the α and β values satisfying the accuracy requirement can be determined
using the following formula:

min
α, β

(
X2

re+Y2
re

)
. (20)

5. Experimental Results and Analysis
5.1. Reliability Analysis of Measured Data

Before obtaining the experimental data, the equipment is placed at the initial position,
and the central light axis direction of the reflector is initially determined to be due north.
To accelerate the calibration progress, reduce the calibration time, and test the encoder’s
large-scale and multiple-angle motion characteristics, solar images at different positions of
the camera array are collected. These images are used to perform the calibration model
calculation and provide basic data to ensure accurate calibration. Using three techniques,
three groups of data are collected to analyze the universality of the model solution. For
the first group, the system moves from the right end to the left and collects two relatively
irregular sets of pixel coordinate point data spread over the image plane of the detector.
For the second group, the system moves from the right end to the left and collects a group
of pixel coordinate points evenly distributed in the image plane of the detector. For the
third group, the system moves from the left end to the right and collects a group of pixel
coordinate points that are evenly distributed in the image plane of the detector. Moreover,
the corresponding pitch, azimuth encoder readings and solar position parameters are
recorded. The data acquisition path is shown in Figure 4.

Before the model is solved, the reliability of the experimental data is analyzed. The ge-
ometric parameters µ0, ν0, ω0, and γ0 to be calibrated are set as 0, the calculated solar vector
value of the three groups of data is considered the ordinate, the actual observation value of
the optical axis vector of the mirror center is considered the abscissa for fitting analysis,
and the calculated value of the solar vector is compared with the actual observation value.
The comparison results are shown in Figures 5–7, where xi − x0 and yi − y0 represent the
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actual solar vector pitch and azimuth components observed by the camera, respectively.
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Figure 4. (a) First set of data; (b) second set of data; (c) third set of data.
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Figure 5. Fitting between the calculated solar vectors of the first group of data and actual observation values of the optical
axis vector of the mirror center.
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Figure 6. Fitting between the calculated values of the second group of data and actual observation values of the pointing
mirror center optical axis.
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Figure 7. Fitting between the calculated values of the third group of data and actual observation values of the pointing
mirror center optical axis.

It can be seen from Figures 5–7 that the data fitting results for the three groups of
different paths indicate that the linear fitting correlation coefficient values between the
calculated value of the solar vector and optical axis vector value of the mirror center
observed by the camera are greater than 0.99. The linear fitting results are ideal, which
further verifies the reliability of the experimental data and provides reliable basic data to
solve the model.

5.2. Model Calculation and Theoretical Verification

The verified data solution model is used. The data of the model are shown in Table 1.
Only 8 sets of data are listed in the table. The first row indicates the time of data collection.
The second row indicates the corresponding pitch and azimuth encoder readings when the
solar image is located at a certain position of the camera array. The third row indicates the
altitude and azimuth of the sun in the local coordinate system corresponding to the data
acquisition time.

In total, 105 sets of data are extracted from 221 sets of data to calculate the cal-
ibration model parameters. When the initial values of

[
u0 ν0 ω0 γ0 α0 β0

]
,[

x0 y0 k1
]
, and

[
fx fy

]
are [0 0 0 0 76 310] (unit:degree), [724 471 0.1063] pix-

els, and [15.6 mm 15.6 mm], respectively, the system parameters are [−0.1625 −0.178
0.10614 0.0345 77.19 310.49] (unit:degree), [719.03 470 −0.0009] pixels, and [15.614 mm
15.65 mm].

After the model is solved, it is necessary to evaluate the accuracy of the model
parameters. First, the reliability of the results of the model is analyzed theoretically. The
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image centroid coordinates are used to represent the optical axis vector of the mirror as the
X-axis, and the calculated solar vector value is considered the Y-axis in the fitting analysis.
The linear fitting correlation coefficients of the two groups of values are considered to
perform the reliability analysis of the evaluation model solution results. The fitting results
of the two groups of data are shown in Figure 8.

Table 1. Data to solve the model.

Time hh:mm:ss 9:06:53 9:09:09 9:11:46 9:14:33 9:17:14 9:21:06 9:24:12 9:27:23
Encoder angle

value/(◦)
Pitch 103.667 103.271 102.524 102.524 103.579 104.7 105.952 107.029

Azimuth 167.563 167.256 167.278 167.256 167.585 167.278 166.663 166.355
Sun

position/(◦)
Altitude 29.041 29.397 29.804 30.234 30.644 31.227 31.688 32.156
Azimuth 131.971 132.452 133.012 133.615 134.202 135.059 135.756 136.48

Sun cen-
troid/(pixel)

Pixel x 206.383 216.259 244.145 273.59 317.017 345.299 351.167 372.528
Pixel y 324.101 285.591 225.422 205.229 242.376 273.299 314.541 349.653
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Figure 8. Fitting of the image centroid and solar vector.

It can be seen from the fitting results in Figure 8 that the image centroid coordinate
represents the mirror normal direction consistent with the solar vector, and the fitting
correlation coefficient R2 is greater than 0.99998, which indicates a high linear correlation.
Therefore, the reliability of the model results can be analyzed considering the theoretical
data. Second, we analyze the error of the system calculation model. The system error
caused by multipoint data optimization is used to analyze the pixel difference caused by
the camera observation and angle difference caused by the encoder elevation and azimuth.
The pixel, pitch, and azimuth error distributions corresponding to the systematic error
distribution generated by the solution model are shown in Figure 9.

The error distribution data in Figure 9 show that the pixel error corresponds to the
system model solution error, and the pixel average error and standard deviation in the
X-axis direction are 1.253 pixels and 1.014 pixels, respectively. The average error and
standard deviation in the Y-axis direction are 0.61 pixels and 0.45 pixels, respectively. The
average error and standard deviation of the azimuth axis are 0.024◦ and 0.019◦, respec-
tively. The average error and standard deviation in the pitch axis direction are 0.012◦ and
0.0085◦, respectively. According to the standard deviation data, these results are within
the allowable error range. Therefore, from the theoretical error data, the reliability of the
calculation model results is further verified.
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Figure 9. (a) Error distribution of the solution model corresponding to X and Y pixels; (b) pitch and azimuth angle error.

5.3. Model Experiment Verification

In this step, we further verify the accuracy of the model parameters. Through the
experiment, using the model inverse solution algorithm after calibration, the corresponding
encoder pitch and azimuth target positions corresponding to the sun at different times are
inversely solved, and the motor is driven to the target position. Finally, the accuracy of
the model is verified by the actual observation of the camera. Part of the test data of the
validated model is shown in Table 2, where only 8 sets of data are presented.

Table 2. Data used to solve the model.

Sun position/(◦) Altitude 29.811 32.342 34.575 37.129 39.697 39.58 37.73 30.35
Azimuth 141.002 145.701 150.732 158.317 172.518 188.583 199.285 217.961

Encoder target angle of
inverse solution/(◦)

Pitch 106.787 109.314 111.555 114.126 116.719 116.653 114.829 107.534
Azimuth 169.585 164.905 159.895 152.336 138.186 122.168 111.467 92.747

Encoder measurement
angle/(◦)

Pitch 106.831 109.292 111.577 114.17 116.741 116.697 114.807 107.512
Azimuth 169.629 164.927 159.873 152.292 138.164 122.212 111.489 92.703

Error target and
measurement/(◦)

Pitch 0.044 −0.022 0.022 0.044 0.022 0.044 −0.022 −0.022
Azimuth 0.044 0.022 −0.022 −0.044 −0.022 0.044 0.022 −0.044

The first row in Table 2 indicates the solar altitude and azimuth angles when the
central light axis of the reflector is aligned with the sun at different times. The second
row indicates the target positions of the pitch and azimuth encoders, as calculated with
the model inverse solution algorithm after calibration. The third row indicates the actual
position measurement values of the encoder. The device considers the data presented in
the second row as the target position, rotates the motor to the target position, and uses the
encoder to detect the actual position as the feedback signal to further ensure the motion
control accuracy of the turntable. The fourth row of data is the difference between the third
row of data and the second row of data, which represents the pitch and azimuth control
deviation. Figure 10 shows that the standard deviations of the pitch and azimuth angle
control errors are 0.0176◦ and 0.0305◦, respectively. The comparison and analysis of the
pitch and azimuth encoder test data indicate that the model calculations are consistent
with the measured values. The error range is approximately 0.04◦, and the accuracy is
better than 0.1◦, which satisfies the verification requirements of the calibration model.
The accuracy of the model is thus preliminarily verified by analyzing the motion control
accuracy of the turntable and through actual observations by the solar observer.
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Figure 10. Pitch and azimuth control error.

Through the inverse calibration model, the motor is driven and controlled, and the
model is preliminarily verified. To further verify the accuracy of the model parameters, by
considering the actual observation of the camera after calibration, the solar image is tracked
and collected, and the centroid coordinates of the solar image are used for verification. The
centroid coordinates of the solar image at different times are compared with the camera
main point coordinates to reflect the deviation degree of the center light axis of the reflector
pointing toward the sun. The root mean square error (RMSE) of the two groups of data is
calculated by Equation (21) to quantitatively evaluate the correctness of the model solving
parameters and the tracking control accuracy of the system.

σ(θ) =

√
∑ (x− x0)

2

n− 1
σ(ϕ) =

√
∑ (y− y0)

2

n− 1
(21)

Here, σ(θ) and σ(ϕ) are the RMSEs of the pitch and azimuth respectively; x0 and y0 are
the coordinates of the principal point of the camera after calibration; x and y are the image
centroid coordinates.

The centroid test data of the experimental verification model are presented in Table 3,
where only 8 sets of data are listed.

Table 3. Partial centroid test data of the validated model.

Sun centroid/(pixel) Pixel x 722.355 723.784 723.463 721.453 721.31 720.256 720.454 719.536
Pixel y 474.071 472.398 473.061 469.46 472.441 469.79 471.393 470.585

Camera main point/(pixel) Pixel x 719.000 719.000 719.000 719.000 719.000 719.000 719.000 719.000
Pixel y 470.000 470.000 470.000 470.000 470.000 470.000 470.000 470.000

Error centroid and main
point/(pixel)

Pixel x 3.355 4.784 4.463 2.453 2.31 1.256 1.454 0.536
Pixel y 4.071 2.398 3.061 -0.54 2.441 -0.21 1.393 0.585

The first row in Table 3 indicates the measured image centroid coordinates when the
reflector centroid axis is aligned with the sun according to the target value of the inverse
calibration model. The second row of data pertains to the use of a checkerboard to calibrate
the camera’s main point coordinates. The third row shows the deviation between the
measured image centroid and camera main point. The two sets of data and deviations are
shown in Figure 11.

According to the two sets of data in Figure 9a,b, it can be determined by formula
(21) that the RMSE values of the X- and Y-axis pixels are 2.0995 pixels and 0.8689 pixels,
respectively, and the corresponding pixel angle resolution errors are 0.0377◦ and 0.0144◦.
The synthetic angular resolution error is calculated by formula (22) combined with the
standard uncertainty formula [30], and the synthetic angular resolution error is 0.0403◦.
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2 (22)

Here, ui is the component of error uncertainty.
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Figure 11. (a) Measured image centroid; (b) camera main point; (c) deviation.

It can be determined from the above analysis data that a small deviation exists between
the centroid coordinates of the solar image obtained by the actual observation of the camera
as the observation value and the coordinates of the main point of the camera as the real
value. Nevertheless, the two sets of data are consistent, which demonstrates the accuracy
of the calibration model. At the same time, the tracking control accuracy of the system is
also measured through the RMSE. Because the tracking accuracy of the system represents
the normal pointing accuracy of the mirror, the tracking control accuracy of the system is
also the pointing accuracy of the system.

5.4. Accuracy Analysis of System Tracking

Through the experimental verification and analysis of the calibration model, the ac-
curacy of system tracking using the model is evaluated. The tracking accuracy of the
system mainly includes the motion control accuracy, external image processing algorithm
accuracy and calibration model calculation accuracy. The accuracy of the motion control
pertains to the accuracy (0.0003◦) of the solar position calculated with the astronomical
algorithm [31] and detection accuracy of the encoder (0.02◦). The accuracy of the external
image processing algorithm pertains to the accuracy of the image centroid extraction algo-
rithm (0.032◦) [32–36], average reprojection error of the camera calibration (0.1299 pixels),
interference of the solar image noise and accuracy of the calibration model calculation. The
uncertainty sources affecting the tracking accuracy of the system are presented in Table 4.
The system tracking accuracy summarizes all the factors. The RMSE of the solar image
obtained by the actual observation of the camera as the observation value and camera
principal point coordinate as the real value is comprehensively evaluated as 0.0403◦, and
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the tracking accuracy is noted to be better than 0.1◦, which meets the requirements of the
comprehensive pointing control accuracy of the system [37–40].

Table 4. Uncertainty analysis of system calibration.

Uncertainty Sources in System Tracking Control Uncertainty and Error

Internal source

Motion control error 0.02◦

Astronomical algorithm accuracy 0.0003◦

Encoder detection accuracy 0.02◦

External source

Image processing algorithm accuracy 0.030◦

Image centroid extraction algorithm accuracy 0.0204◦

Camera calibration average reprojection error 0.0021◦

Solar image noise interference 0.0219◦

Calibration model solution accuracy 0.180◦

Comprehensive evaluation accuracy 0.0403◦

According to the data in Table 4, the uncertainty of the system calibration is approx-
imately 0.0403◦. That is, the tracking control accuracy of the system is 0.0403◦, which is
greatly improved compared with the tracking accuracy of the tracking equipment in the so-
lar photovoltaic industry and the tracking accuracy of foreign point light sources [24,41–46].
This finding demonstrates the effectiveness of the calibration model in this paper.

Overall, the motion control error, encoder detection accuracy and image centroid
extraction algorithm accuracy are the main error sources in the system control accuracy.
Therefore, it is necessary to enhance the detection accuracy of the encoder, overcome the
interference caused by the mechanical transmission error and unbalanced force in the
motion processes, and optimize the image quality and image centroid extraction algorithm.
Moreover, by enhancing the accuracy of the calibration camera and reducing the influence
of the error caused by the model, the tracking accuracy of the system can be further in-
creased to enhance the comprehensive pointing accuracy of the system and more effectively
realize radiometric calibration and MTF detection of high-spatial resolution satellites.

6. Conclusions

A high-precision automatic geometric calibration modeling method for a point light
turntable is proposed. Based on the principle of geometric calibration modeling, a high-
precision automatic calibration model is established. By analyzing the reliability of the
experimental data and solving the model, the feasibility and effectiveness of the method
are demonstrated theoretically and experimentally. This approach can overcome the
problem of the low precision of normal and single-point calibration, which limits the
enhancement of the pointing accuracy. Moreover, the approach can reduce the calibration
time, accelerate the calibration progress and increase the work efficiency, which facilitates
high-frequency and high-efficiency networking automation to carry out the calibration of
point light sources with different energy levels and increase the pointing accuracy of the
system, achieve high-precision control of the central optical axis of the point light source
reflector to point toward the target position, and reflect the light spot toward the satellite
entrance pupil. Finally, this work lays a foundation for the high-precision, high-frequency,
operational on-orbit radiometric calibration and MTF detection of high-resolution satellites.
In addition, this system modeling method provides a theoretical basis for heliostat and
solar photovoltaic equipment calibration.
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