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Abstract: Creating an accurate awareness of the environment using laser scanners is a major challenge
in robotics and auto industries. LiDAR (light detection and ranging) is a powerful laser scanner
that provides a detailed map of the environment. However, efficient and accurate mapping of the
environment is yet to be obtained, as most modern environments contain glass, which is invisible
to LiDAR. In this paper, a method to effectively detect and localise glass using LiDAR sensors is
proposed. This new approach is based on the variation of range measurements between neighbouring
point clouds, using a two-step filter. The first filter examines the change in the standard deviation of
neighbouring clouds. The second filter uses a change in distance and intensity between neighbouring
pules to refine the results from the first filter and estimate the glass profile width before updating
the cartesian coordinate and range measurement by the instrument. Test results demonstrate the
detection and localisation of glass and the elimination of errors caused by glass in occupancy grid
maps. This novel method detects frameless glass from a long range and does not depend on intensity
peak with an accuracy of 96.2%.

Keywords: glass detection; occupancy grid mapping; LiDAR noise reduction; localisation

1. Introduction

Mapping, navigation, and path planning have been one of the major research focus
areas in robotics and auto industries in the past two decades [1–7]. Major contributions have
been introduced, particularly to increasing the perception and understanding of the robots’
surrounding environment. Perception of the environment is greatly affected by the types of
sensors used. Laser scanners are becoming common in many industries besides driverless
vehicles, including rescue operations, medicine, robotics, and unmanned air vehicles. LiDAR
(light detection and ranging) is the favoured laser sensor due to its high accuracy, wide and
long scanning range, and high stability [8]. However, LiDAR is expensive and has major
drawbacks when scanning in a transparent or specular reflective surface, such as glasses
and mirrors. Hence, LiDAR sensors only account for diffuse objects [9]. However, most
modern environments contain glass or other specular surface architectural features. Glass
dividers, panned doors, and full-height windows are an example of such features [10].

Precision in localisation and mapping algorithms for robotics and driverless platforms
is very critical. Using LiDAR sensors in a transparent environment causes the sensor to
report inaccurate range data, leading to a potential collision triggered by errors in the
map generated by the algorithm. Data collected by LiDAR sensors in an environment
with a transparent and reflective object is also subject to a significant amount of noise
caused by virtual cloud points created from the reflection of objects nearby the transparent
materials [9]. Such reflected data points degrade the quality of the map. Thus, detecting
glass and removing wrong range measures and point clouds generated by the reflection of
objects (virtual points) in a LiDAR is critically important for laser-based grid mapping and
the safety of autonomous robots.
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Occupancy grid mapping is a probabilistic method that maps the robot’s environment
as an array of cells. Each cell holds the likelihood value that the cell is occupied. The basic
assumption behind this method is that objects in the environment are detectable from any
angle. Figure 1 illustrates how conventional grid mapping algorithms work in a glass
environment. The orange square represents where the robot poses, and the blue rectangle
represents the presence of glass in the environment. Obstacles that are directly hit by the
LiDAR lasers are represented by black boxes, whereas the grey boxes represent obstacles
behind the glass. All grid areas found where the glass is located should be mapped as
occupied space to obtain an accurate representation of the environment and avoid potential
collisions. However, traditional occupancy grid mapping fails to detect glass and identify
its location.
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In this paper, we propose a novel method that uses the variation of range measure-
ments between neighbouring LiDAR point clouds to identify and localise the presence of
glass in an indoor environment. This study quantifies the disparity between successive
range measurements when the pulses pass through glass and hit objects and when the
pulses hit objects with no presence of glass. We use two complementary filters to compute
this variational difference. The first filter computes the rolling window standard deviation
to locate the presence of glass. The second filter uses the output of the first filter as its input
and combines measurements of distance and intensity to determine glass width profile
and location. The method has been tested using an occupancy grid mapping algorithm
to quantify and analyse its performance. As autonomous agents are becoming human
assistants in indoor environments, which more likely contain a glass environment, our
approach will have a great significant to identify and localise the presence of glass in
such environments.

2. Related Work

Most of the existing literature addresses reflection detection in LiDAR and mapping
glass using LiDAR intensity to try to overcome the challenges of reflection detection and
glass detection separately. Other works use data fusion to overcome the glass and reflection
detection problem. These works suffer from major reliability, precision, and generality
issues [10].

For clarity, we have organised the related literature into four categories. The first
category is literature that use intensity-based methods. The second category is publications
that use glass frame detection methods. The third category is those that use a data fusion
approach. The last category presents other approaches different than the above mentioned.

2.1. Studies Using Intensity-Based Methods

Shina et al. [11] proposed a glass detection mapping using state-based navigation
decision and the reflection character of glass. Wang et al. [12] used a specular intensity
profile around the normal incident angle to the glass panel surface and compared results
with other transparent and reflective materials. Then, these results were finally integrated
with a mapping algorithm. Jiang et al. [13] proposed a neural network algorithm that
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uses reflectivity, incident angle, and distance measurements to classify glass and non-glass
objects using a laser range finder. Awais [14] and Foster [10] modelled the probability of
receiving reflection back from the glass as a function of distance and an angle. [14] assumed
this function as a Gaussian and identical for all glass, which leads to a gross error detection
of glass. [10] used intensity peaks using similar assumptions. Kim et al. [15] used the
reflective characteristics of a laser beam to classify diffuse, specular, and 1st and 2nd laser
beam penetration. Results using this method show that the probability of occupied glass
wall in a cell is lower than opaque, which has a direct impact on the quality of the map.

All intensity-based methods suffer from low accuracy when the distance or incidence
angle of the laser beam increases [9,10]. Additionally, intensity peaks on a glass surface are
only detectable where the LiDAR laser beams are perpendicular to the glass surface. This
may be affected by the vibrations of the robot and elevation of the ground, consequently
decreasing the reliability of intensity-peak based methods. Intensity is also greatly affected
by the reflective properties of objects that the laser beams hit after specular reflection from
the glass surface. Consequently, solely intensity-based glass wall detection is difficult,
because there are a lot of factors affecting intensity.

2.2. Studies Using Glass Frame Detection Methods

Wang et al. [16] attempted to detect a window using LiDAR while driving in an
outdoor setting. Wang initially clustered the cloud points and then tried to detect the
facades of buildings. The surface normal was calculated using Principal Component
Analysis (PCA) to detect potential cloud points representing a window. Pu et al. [17]
also attempted to detect glass by using a reconstruction of building facade models from
terrestrial laser scanners. However, both glass frame detection methods will only be
applicable where a glass frame is present. Hence, this method fails in environments
containing frameless glass.

2.3. Studies Using Data Fusion Approaches

Singh et al. [18] proposed a Bayesian filter approach to fusion a laser scanner and
sonar to reduce mapping uncertainty caused by transparent objects. This approach was
affected by the short-range measurement reading from the sonar sensor. Yang et al. [19]
and Nagla et al. [20] also proposed a similar laser and sonar sensors fusion approach.
The accuracy of [19] in transparent objects is poor, and the algorithm used by [20] is
tested in a small experimental area. Data fusion approaches require additional sensors.
Depending on the type of sensor, data fusion approaches may lead to high computational
and financial cost.

2.4. Other Approaches

Singh et al. [21] proposed a concave shape sonar ring of multiple sonar sensors to
reduce the uncertainty in sonar-based occupancy grid mapping due to specular reflection.
This method only accounts for specular reflective objects. Yang et al. [22] used mirror
symmetry in 2D LiDAR to mitigate mirror reflection. Yang applies a Gaussian model
to predict the presence of a mirror following a Euclidean distance function to verify the
presence of the mirror. While this approach only works for mirror-like reflective objects,
it fails to detect transparent objects such as glass. Singh et al. [23] presented an error
analysis method in laser scanners due to varying scanning angles with respect to surface
refractivity or reflectivity and optical axis index of the target using a tilt mounting system.
The author stated that tilting of the laser scanner generates errors in sensory information.
Meng et al. [24] proposed an improved ray-casting Monte-Carlo localisation method to
reduce scan matching error in a transparent surface environment.

Most of the existing work relies on specular reflection to detect glass, mirror, or shiny
metal surfaces. However, the strength of a reflection varies among these different surfaces.
Hence, the accuracy of these algorithms is higher in mirror and shiny metal surfaces than



Sensors 2021, 21, 2263 4 of 16

in glass surfaces. Therefore, in this study, we propose a method to detect and localise glass
to improve occupancy map quality using LiDAR sensors.

3. Methods

Initially, we collected data using the Loughborough University London Autonomous
Testbed Figure 2. The testbed has six different sensors installed: three cameras 360◦

Ricoh, Wansview, and wide-angle camera to collect visual data; an ultrasonic sensor to
collect near-distance range measurements; and a Delphi ESR Radar sensor to measure the
front side far-distance range measurement and speed data. The LiDAR data used in this
study, which is generated from a Velodyne VLP-16 LiDAR apparatus, was collected while
the car was driven autonomously by leveraging data from the sensors mounted on the
testbed. This sensor has a maximum range of 100 m with 16-channels, taking a total of
300,000 measurements per second. This device captures 360◦ and 30◦ on the horizontal
and vertical axis, respectively. The data are collected in different types of glass and glass
installations, including single and double-glazed structures.
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The range measurements in the orange box in Figure 3a versus Figure 3b have a
slight difference. Although the difference is very small, it is mathematically significant.
The difference in range measurements is smaller or larger depending on the height of the
LiDAR from the ground and the angle of elevation of the LiDAR. The VLP-16 LiDAR sensor
used in this study has an array of 16 infrared lasers, and each laser fires approximately
18,000 times per second. Each of the laser’s 16 channels are fixed at a certain elevation
angle in relation to the horizontal plane of the LiDAR apparatus. Each of the 16 infrared
lasers are assigned a specific laser ID number from 0 to 15 counting from the bottom to
the upper channel. In this experiment, the LiDAR is mounted at 90 cm from the ground,
and range difference between neighbouring pulses is largest in laser IDs 4, 6, and 8 with
vertical angles −110, −90, and −70, respectively. When laser pulses pass through a glass
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medium, the difference in range measurement of neighbouring point clouds is higher than
when lasers hit an object directly.
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Figure 3. Displays image of LiDAR (light detection and ranging) distance measurements that are color coded by intensity
(i.e., calibrated reflectivity). These measurements are collected in a room containing a glass door. (a) is collected while the
glass door a is closed, and (b) is collected while the glass door is open. Both of these data are collected whilst the robot is at
the same origin. The area detected behind the glass door is displayed in the orange box and the zoomed image of the red
box is displayed in the right side of the image. As shown in the zoomed part of (a,b), the consecutive laser pluses distance
measurement does not follow a similar pattern when the glass door is opened and closed. Looking closely, the three red
boxes in (a,b) show the variation of distance measurement of neighbouring point clouds. The distance measurement of
neighbouring lasers that passes through glass and hits the floor (when the glass door is closed) shows a relatively higher
variation in the range measurement than when the point clouds when the glass door is open.

We conduct the experiment frame by frame because we aim to achieve our objective
accurately starting from the very first scan. The experimental setup is designed in such a
way to makes the proposed algorithm robust by pressing it to produce results from only
one a single scan. Therefore, our algorithm does not depend on consecutive scan matching
which leads to a potential gross error over time. Our experiment is set at 5 frames per
second. Figure 3a,b shows a scan of a single frame from the LiDAR.

Figure 4 classifies the point clouds in two groups by quantifying the range difference.
First, we manually extracted a set of point clouds that pass through glass and classify them
as PCoG (Point Cloud o f Glass). We follow the same procedure and manually extract the
point clouds, which directly hit objects and classify them as PCoO (Point Clouds o f Object).
Then, we calculate the standard deviation of range measurements between the two groups.
σ represents the standard deviation, µ is the mean, and N is the total number of point
clouds included in each group.

σPCoG =

√
∑ (PCoG− µ)2

N
(1)
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σPCoO =

√
∑ (PCoO− µ)2

N
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We apply Equations (1) and (2) in several point cloud datasets from single- and double-
glazed glass environments. Then, we compute the threshold (Trh) between the two groups
as follows:

Trh =
1
2 ∑ σPCoG + σPCoO (3)

The result of Equation (3) is used as a threshold to compare against the new neighbour-
ing data inputs from the LiDAR apparatus. We did not compute the standard deviation of
two consecutive laser pulses to compare against the threshold, as the standard deviation
different between σPCoG and σPCoO will be very small. Instead, we use a sliding window
to compute the standard deviation of a group of neighbouring incoming pulses, as this
simply widens up the gap between standard deviation of σPCoG and σPCoO. The mathe-
matical representation of the sliding window size (WH,J

i ) used in this study is declared in
Equation (4). H and J are the number of samples included before and after the point cloud
(xi ). In other words, H is the upper limit of the sliding window for sample (xi ) and J is the
lower limit of the sliding window for the same sample (xi ). We ran several experiments to
decide the sliding window size and found size 11 to have the highest accuracy. Hence, we
use 5 samples before and after sample (xi ). In other words, both H and J = 5.

WH,J
i =

{
xi−H,...xi,..., xi+J

}
(4)

Using the window stated in Equation (4), we calculate the standard deviation of the
range measurement in each window. σWi represents the standard deviation of each window.
Lr represents the LiDAR range measurement. µi is the mean of the laser measurements
inside the window.

σwi =
1(∣∣∣WH,J
i

∣∣∣) ∑
LR ∈ WH,J

i

( Lr− µi)
2 (5)
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We subsequently apply Equation (5) to classify each window as a PCoO or as a
candidate for PCoG by comparing the result with the threshold (first filter), as presented in
Figure 4.

Equations (1)–(3) are performed on hand-labelled PCoG and PCoO data. In filter 1,
we primarily use the standard deviation difference between the two groups to classify
incoming point clouds as PCoG and PCoO. Hence, we use the average of the hand-labelled
data’s standard deviation (Equation (3)) as a threshold. Therefore, every 11 new incoming
point cloud data are assigned to group (the sliding window size (Equation (4))) and the
standard deviation of each of each window (Equation (5)) is compared against Equation (3).
If the result is above the average, then these point clouds are labelled as potential PCoG, and
if the result is below the threshold, it is classified as PCoO. The pseudocode of Algorithm 1
is presented below.

Algorithm 1. Filter 1

Input
Wi

H,J← rolling window
P← the scan point clouds
Trh← threshold
for each point clouds run a rolling window do

Calculate the STDV of window
If STDV of the window > threshold then

Store the point cloud to potential PCoG
else

store the point as PCoO
end if

end

When lasers hit a straight object such as a wall, range measurements between neigh-
bouring pulses either increase or decrease depending on the rotation direction of the
apparatus, as illustrated in Figure 5.
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This characteristic has a significant impact on the standard deviation, as it tends to
increase its value, which may lead to the wrong assignment of some point clouds hitting
the straight surface as a PCoG. Hence, we run a second filter on all points clouds assigned
as PCoG by filter one. The second filter is designed based on the following beliefs:

• Distance increases and intensity decreases at the first point when a LiDAR pulse
passes through the glass as it is expressed in (Figure 6), and

• Distance decreases and intensity increases at the last point when a LiDAR pulse passes
through the glass (Figure 6).

All point clouds that do not meet the second filter criteria are assigned as PCoO and
added together with filter one PCoO to get the total, as illustrated in Figure 4. We also use
the second filter (Algorithm 2) to confirm point clouds assigned as PCoG are in the correct
glass width profile (within the interval of intensity fall and rise (Figure 6)).
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Algorithm 2. Filter 2

Input
PCoG ← Potential glass hitting point clouds filtered by algorithm one
PCoO ← Non-glass object hitting point clouds by algorithm one
I ← Intensity
Dis ← LiDAR range measurement
for all point clouds except for those filtered as PCoO by algorithm one do

if Dis increases at the first point
Where a pulse passes through glass

AND
if I decreases at the same point, then
Store this point as beginning of window profile width

end if
end if
if Dis decreases at the end point

Where a pulse passes through glass
AND
if I increases at the same point then

Store this point as end of window profile width
end if

end if
end
for all PCoO DO

if between the beginning and end
profile width then

accept as a PCoO
else

add the point clouds to PCoO
end if

end

Finally, we update the cartesian coordinates and the range measurement of all the
point clouds assigned as PCoG by the second filter. Let D2 and D1 represent the range and
cartesian coordinates measure at the end and beginning of a glass region respectively (i.e.,
the beginning and the end measurement of consecutive point clouds assigned as PCoG by
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the second filter, illustrated in Figure 7). Uc is the value-added on each consecutive point.
N is the total count of consecutive lasers.

Uc =
D2 − D1

N
(6)
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Once the glass width profile is known from Algorithm 2, then, we extract the upper
and lower limit of the glass width profile’s distance measurement (D1 and D2), the cartesian
coordinate at the beginning and end of the glass width profile (X1 and X2) and (Y1 and
Y2) together with the total number of laser beams within the upper and the lower limit
interval. We use these as the input for algorithm three to update distance and cartesian co-
ordinates. Algorithm 3, presented below, is for updating distance measurement. Cartesian
coordinates can be similarly updated by changing D1 and D2 by (X1 and X2) and (Y1 and
Y2), respectively.

Algorithm 3. Update distance (Similar method used for updating cartesian coordinates)

Input
N ← Count of laser
D1 ← Distance measurement of the end of the glass frame
D2 ← Distance measurement of the beginning of the glass frame

for each point clouds to the length of N do
D2−D1

n
Store the result to Uc
Add Uc to the range measurement
Store the result

end

4. Experiments and Results

This section consists of three experiments conducted to demonstrate the usability
of the proposed algorithm. These experiments use single- and double-glazed glass. All
the glass used in these experiments are glass walls. In the rooms where experiments 1
and 2 were conducted, one wall was partially glass. In the room where experiment 3 was
conducted, one wall consisted of two separate glass panes.

Initially, we present the finding that in all the experiments, there is a marginal dif-
ference in the rolling window standard deviation (rolling stdev) of the laser range mea-
surements between point clouds that pass-through glass and those that do not. Figure 8
illustrates this margin.

The experiments presented hereafter have two primary aims: firstly, to identify and
locate the presence of glass in the three experimental setups and, secondly, if there is a
presence of glass, to update the lasers pules distance by recalculating the distance between
the LiDAR apparatus and the identified glass.
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4.1. Experiment 1: Office-Like Environment

This experiment room is conducted in an office-like room. The room has a glass wall
located at the corner of the left side, as seen in Figure 9. The glass wall in experiment 1 is a
single glazed glass. The height of the glass is 2.5 m, and the width is 1.5 m. Point clouds
behind the glass wall are unwanted, since they represent objects beyond the glass. There
was a 3-m distance between the glass wall and the LiDAR apparatus.
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Using the proposed method, the point clouds that pass through glass are identified
using Equation (3). The width of the glass is identified using the second filter of the
proposed algorithm. Then, the distance and cartesian coordinates of the point clouds that
are within the range of the identified glass are updated using Equation (4).

All maps displayed in the results sections are 2D maps presented on an XY plane.
The result in green (Figure 10b) shows the updated cartesian coordinates of the identified
glass regions. In Figure 10c, the orange line shows the updated distance measurement.
Figure 10d,e show the comparison of the traditional grid map and grid map constructed
using the proposed method. The traditional method wrongly identifies the glass region
and points beyond the glass region as free space. The proposed method correctly identifies
the LiDAR point clouds that pass through the glass wall. This algorithm also updates the
distance and cartesian coordinates to approximate the location of the glass. Finally, point
clouds beyond the glass region are labelled as occupied space.



Sensors 2021, 21, 2263 11 of 16

Sensors 2021, 21, x FOR PEER REVIEW 11 of 17 
 

 

All maps displayed in the results sections are 2D maps presented on an XY plane. 
The result in green (Figure 10b) shows the updated cartesian coordinates of the identified 
glass regions. In Figure 10c, the orange line shows the updated distance measurement. 
Figure 10d,e show the comparison of the traditional grid map and grid map constructed 
using the proposed method. The traditional method wrongly identifies the glass region 
and points beyond the glass region as free space. The proposed method correctly identifies 
the LiDAR point clouds that pass through the glass wall. This algorithm also updates the 
distance and cartesian coordinates to approximate the location of the glass. Finally, point 
clouds beyond the glass region are labelled as occupied space. 

  
(a) (b) (c) 

 
(d) (e) 

Figure 10. (a) A map built by the original LiDAR data shows no recognition of the presence of glass in the office, (b) the 
glass region is detected and presented in a green dotted line, (c) the distance measurement is updated based on the de-
tected glass region and presented in the orange line, (d) the occupancy grid map built by using the original LiDAR data 
before the glass region is detected. This map shows the area beyond the glass region as a free space, (e) occupancy grid 
map built using the proposed method recognises the areas beyond the glass as occupied spaces. 

4.2. Experiment 2: Room with a Corridor in Front 
The second experiment is conducted in an empty room with a double-glazed glass 

wall located on the front side of the room as shown in Figure 11. There was a 2-meter 
distance between the LiDAR apparatus and glass wall. The height of the glass wall is 2.20 
m and the width is 1.5 m. 

Figure 10. (a) A map built by the original LiDAR data shows no recognition of the presence of glass in the office, (b) the
glass region is detected and presented in a green dotted line, (c) the distance measurement is updated based on the detected
glass region and presented in the orange line, (d) the occupancy grid map built by using the original LiDAR data before the
glass region is detected. This map shows the area beyond the glass region as a free space, (e) occupancy grid map built
using the proposed method recognises the areas beyond the glass as occupied spaces.

4.2. Experiment 2: Room with a Corridor in Front

The second experiment is conducted in an empty room with a double-glazed glass
wall located on the front side of the room as shown in Figure 11. There was a 2-m distance
between the LiDAR apparatus and glass wall. The height of the glass wall is 2.20 m and
the width is 1.5 m.
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Figure 11. Experiment 2 room.

Our algorithm filters the point clouds that pass through glass and identifies the width
of the glass boundary using Equation (5) and filter two, respectively. The conventional
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occupancy grid map (Figure 12d) assumes there is a free space pathway between the room
and the corridor. Figure 12e presents the map produced by our method. This approach
effectively identifies the glass area and estimates the glass width. It produces a correct
representation of the environment by updating the cartesian coordinates and the distance
measurement of the LiDAR.

Sensors 2021, 21, x FOR PEER REVIEW 12 of 17 
 

 

 
Figure 11. Experiment 2 room. 

Our algorithm filters the point clouds that pass through glass and identifies the width 
of the glass boundary using Equation (5) and filter two, respectively. The conventional 
occupancy grid map (Figure 12d) assumes there is a free space pathway between the room 
and the corridor. Figure 12e presents the map produced by our method. This approach 
effectively identifies the glass area and estimates the glass width. It produces a correct 
representation of the environment by updating the cartesian coordinates and the distance 
measurement of the LiDAR. 

   
(a) (b) (c) 

  
(d) (e) 

Figure 12. (a) A map built by the original LiDAR data shows no recognition of the presence of glass in the empty room, 
(b) the glass region is detected and presented in a green dotted line, (c) the distance measurement is updated based on the 
detected glass region and presented in the orange line, (d) the occupancy grid map built by using the original LiDAR data 
before the glass region is detected. This map shows area beyond the glass region as a free space, (e) the occupancy grid 
map built using the proposed method recognises the area beyond the glass as occupied spaces. 

  

Figure 12. (a) A map built by the original LiDAR data shows no recognition of the presence of glass in the empty room,
(b) the glass region is detected and presented in a green dotted line, (c) the distance measurement is updated based on the
detected glass region and presented in the orange line, (d) the occupancy grid map built by using the original LiDAR data
before the glass region is detected. This map shows area beyond the glass region as a free space, (e) the occupancy grid map
built using the proposed method recognises the area beyond the glass as occupied spaces.

4.3. Experiment 3: Room with Two Glass Walls

The third experiment is conducted in a room that has two single glaze glass walls, as
shown in Figure 13. The first glass was put in a 2-m distance from the LiDAR apparatus
and had an area of 0.75 m × 2.20 m. The far side of the second glass has a 4-m distance
from the LiDAR apparatus and has an area of 2.5 m × 2.20 m. A 1-m wide wall separates
the two glass planes.

Both glass walls in this experiment are identified and located. The identified width
of the glass in this experiment is a little greater than the dimension of the glass because
we applied a higher window size to filter the point clouds. As a result, non-glass walls
near the glass end and start points are labelled as a glass. Nevertheless, this does not affect
the map produced (Figure 14e), as the purpose of the algorithm is to identify glass and to
assign the glass as occupied space.

Using the proposed method, in all three experiments, glass walls are displayed as
occupied regions on the respective occupancy grid map cell.

We conducted experiment 3 in an environment where objects, which are behind the
glass, are placed at different distances from the location of the glass. Such an environment
makes it viable to see the performance of the proposed algorithm with respect to the
distance of objects behind the glass. While the closest object to the glass is placed 2.5 m
away, the farthest is located 12.1 m from the glass. Figure 15 shows that our algorithm
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effectively works despite the difference in distance of objects behind the glass. However,
theoretically, it will be difficult for our algorithm to detect glass if an object is placed right
behind the glass. This is due to the overlap between PCoO’s and PCoG’s rolling standard
deviation. However, since we are proposing this algorithm to improve occupancy gride
mapping, such case has no effect. If objects are placed right behind the glass, then we can
assume that there will be no free space to be detected between the object and the glass.
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Figure 14. (a) A map built by the original LiDAR data shows no recognition of the presence of both glass in the room, (b)
lasers that pass through the glass are identified and marked by the orange color, (c) the distance measurement is updated
based on the two detected glass regions and presented in the red line, (d) the occupancy grid map built by using the
original LiDAR data before the glass region is detected. This map shows the area beyond the glass region as a free space, (e)
occupancy grid map built using the proposed method recognises the area beyond the glass as occupied spaces.
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The quantitative performance evaluation of the proposed algorithm is challenging since it
is hard to obtain a ground truth point cloud with glass areas detected [25]. Hence, we compare
the proposed method result with ground truth data generated by hand labelling each point
cloud as Point clouds passes through glass and Point clouds does not pass through glass. The
method’s accuracy is quantified based on methods by Zhao et al. [9] and Foster et al. [10].
Point clouds passing through glass were considered accurate if the point cloud is in the subset
of hand-labelled Point clouds passes through glass. If the point cloud is not in the subset, it will
counted as false positive. Table 1 shows the experiment results compared to the hand-labelled
ground truth. The mean accuracy of glass correctly detected in the proposed method is 96.2%.

Table 1. Result of glass detection.

Ground Truth
Point Clouds

Passes through
Glass

Ground Truth
Point Clouds

Does Not Pass
through Glass

Our Method
Point Clouds

Passes through
Glass

Ground Truth
Point Clouds

Does Not Pass
through Glass

Experiment 1 2823 56,925 96.3% 95.6%
Experiment 2 2774 58,064 96.5% 92.3%
Experiment 3 4901 53,746 95.9% 94.2%

Proposed method glass correctly detected (avg) 96.2%
VisAGGE [10] method glass correctly detected 94.90%

We also evaluate the proposed method’s accuracy of the updated distance. A sticker
was attached to selected places on the glass during data collection. The ground truth
for the true position of the glass (the true distance from the robot’s pose to the glass) is
collected by using these stickers attached to the glass. The cloud points that hit the sticker
are extracted, and their respective range measurement is used as the ground truth distance.
Then, the updated distance results from the proposed algorithm are compared against the
ground truth distance. Then, we calculated the Root Mean Square Deviation (RMSD) and
compared against the approach of Zhao et al. [9]. As shown in Table 2, this method gives a
better estimation of the glass location.



Sensors 2021, 21, 2263 15 of 16

Table 2. Accuracy of glass location.

RMSD

Experiment 1 0.0180
Experiment 2 0.0814
Experiment 3 0.0291

Proposed method (Avg) 0.0429
Zhao et al. approach [9] (Avg) 0.0500

5. Conclusions

This paper presents a novel methodology to perform occupancy grid mapping in the
presence of glass. Existing reflection detection algorithms perform poorly in the presence
of glass. Therefore, in this paper, we focus on glass detection by itself.

The proposed method is based on the variation of neighbouring LiDAR point clouds
when the LiDAR pulses pass through glass. Results show that there is a variation of
neighbouring pulses’ distance measurement when the pulses pass through glass versus
when the pulses directly hit objects. We classify LiDAR pulses into two groups: those that
pass through glass and those that directly hit objects. Then, we apply two filters using
intensity and range discrepancy to identify the boundary of the glass. Finally, we update
the cartesian coordinates and the distance measurement of the LiDAR. Then, we show
the usability of this method using occupancy grid maps that demonstrate improved map
quality with a single scan. This approach effectively identifies and localises glass and
improves indoor mapping quality using LiDAR sensors.

The key findings and contributions of this paper can be summarised as follows:

• LiDAR range measurements exhibit a different character when the pulses pass through glass
• We proposed a novel method to detect and localise glass using LiDAR
• We proposed a new approach to update distance and cartesian coordinates measure-

ment from a LiDAR apparatus to compensate the incorrect reading due to the presence
of glass.

• Our approach effectively improves traditional occupancy grid mapping by eliminating
a false positive free space.

In the future, this approach can be integrated with a camera sensor to investigate the
algorithms robustness for indoor and outdoor dynamic environment in real time.
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