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Abstract: The communication channel in underwater acoustic sensor networks (UASNs) is time-
varying due to the dynamic environmental factors, such as ocean current, wind speed, and tem-
perature profile. Generally, these phenomena occur with a certain regularity, resulting in a similar
variation pattern inherited in the communication channels. Based on these observations, the energy
efficiency of data transmission can be improved by controlling the modulation method, coding rate,
and transmission power according to the channel dynamics. Given the limited computational capac-
ity and energy in underwater nodes, we propose a double-scale adaptive transmission mechanism for
the UASNs, where the transmission configuration will be determined by the predicted channel states
adaptively. In particular, the historical channel state series will first be decomposed into large-scale
and small-scale series and then be predicted by a novel k-nearest neighbor search algorithm with
sliding window. Next, an energy-efficient transmission algorithm is designed to solve the problem of
long-term modulation and coding optimization. In particular, a quantitative model is constructed to
describe the relationship between data transmission and the buffer threshold used in this mechanism,
which can then analyze the influence of buffer threshold under different channel states or data arrival
rates theoretically. Finally, numerical simulations are conducted to verify the proposed schemes,
and results show that they can achieve good performance in terms of channel prediction and energy
consumption with moderate buffer length.

Keywords: adaptive transmission; double-scale channel estimation; underwater acoustic sensor
networks; time-varying communication channel

1. Introduction

In recent years, the development of underwater acoustic sensor networks (UASNs)
has boosted a wide range of emerging applications, such as ocean observation, ecosystem
monitoring, disaster warning, etc. [1–3]. Compared with terrestrial wireless sensor net-
works, the transmission in UASNs suffers from low data rates due to large propagation
attenuation, limited bandwidth, and time-varying channels [4]. Generally, the transmis-
sion data rate highly depends on the selection of modulation method, coding rate, and
transmission power, which will be referred to as transmission configuration in this paper.
As battery replacement or charging is quite difficult in the underwater environment, in
order to improve the transmission efficiency, the energy cost and data rate should be jointly
optimized in UASNs.

Given specific transmission configuration, the energy efficiency of data transmission
will be affected by different channel states. Considering the time-varying communication
channels in UASNs, it is crucial to learn the channel variation characteristics for determining
the optimized transmission configuration. The underwater channels could be affected
by various environmental factors, including water temperature, wind speed, tidal, ocean
swell, and so on. These natural phenomena occur at different time scales, such as seasonal,
diurnal, minutes, and seconds [5–8]. The overlay of these time scales forms the complex
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fluctuation in underwater communication channels. Figure 1 presents an example of the
channel states in an underwater communication experiment [9]. Obviously, the fluctuation
of the received signal-to-noise rate (SNR) is roughly consistent with that of the wind speed.
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Figure 1. Keweenaw Waterway experiment: Average signal-to-noise rates (SNR) at the receiver.

Based on the above observation, we propose to take advantage of the historical
channel state series and analyze the fluctuation characteristics for channel state prediction,
so that an optimized configuration scheme can be derived and the energy efficiency of
data transmission would be enhanced accordingly. However, it is quite challenging to
schedule the optimal configuration scheme dynamically due to the following reasons. First
of all, the prediction of underwater channels is difficult as they are impacted by multiple
factors, such as underwater geology, salinity and depth, environmental factors (ocean
current, surface wind, sea wave, solar radiation, etc.), human-being activities, and fish
behaviors, and it is hard to model the fluctuation by just using long time-scale historical
channel state data or just using short time-scale cycle information. Secondly, to improve the
overall performance of underwater sensor networks, the transmission rate and energy cost
should be jointly optimized based on the predicted channel states. Thirdly, considering
the limited computational and storage capability of underwater sensor nodes, how to
balance the network quality and reducing complexity is essential. For example, even
though the quality of network service, such as network throughput, can be improved with
a fine-grained transmission scheme, the frequent change of transmission modes might
cause extra computational complexity and energy cost.

In the literature, adaptive transmission according to channel state has become a hot
topic. The rule-based adaptive modulation and coding (AMC) methods usually utilize
fixed thresholds for transmission mode determination [1,10–12]. These methods are easy
for implementation and could be used in the resource-constrained networks, while the
threshold selection should be carefully designed. Learning strategies [13–16] have been
proposed to provide intelligent transmission decisions to characterize the dynamic com-
munication channel, and the Markov chain is widely adopted. However, the state space
would be enlarged with a large channel fluctuation amplitude, which may increase the
training burden and computational complexity. Optimization [17,18] schemes have also
been investigated for adaptive transmission, but fine-grained optimization will lead to
greater computational complexity.

To provide energy-efficient transmission for UASNs, we propose a double-scale adap-
tive transmission mechanism in this paper. The historical channel state series will first be
decomposed into large-scale and small-scale series; then, real-time channel state can be
predicted according to different fluctuation features with each time scale. In order to solve
the problem of long-term transmission configuration with modulation and coding mode
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selection, an energy-efficient transmission algorithm is designed on the basis of channel
state prediction. The contributions of this paper can be summarized as follows:

• To improve the energy efficiency and reliability of data transmission, we propose a
double-scale adaptive transmission mechanism for UASNs. Specifically, the historical
channel state series is used for channel state prediction, and then the transmission
mode is determined adaptively.

• To balance the accuracy and computational complexity of channel states prediction,
we propose to decompose the channel state series with two different time scales. For
the large-scale channel state, a k-nearest neighbor algorithm with sliding window
is designed to predict the fluctuation tendency, and then a small-scale channel state
prediction algorithm is developed to enhance the accuracy.

• To determine the specific configuration of data communication in UASNs, we design
an energy-efficient transmission algorithm. In particular, the long-term modulation
and coding problem is formulated and optimized with the constraint of limited
energy cost.

The paper is organized as follows. In Section 2, the related works are presented.
Section 3 illustrated the framework of our proposed transmission method, and then the
double-scale channel prediction and transmission scheduling are given in Sections 4 and 5,
respectively. Quantitative performance analysis and computational complexity are pre-
sented in Section 6. Simulation results are analyzed in Section 7, and, finally, the paper is
concluded in Section 8.

2. Related Works

In this section, existing prediction methods and adaptive transmission methods de-
signed for the dynamic communication environment are briefly reviewed.

2.1. Channel State Prediction

To resolve the inefficient and unstable communication caused by time-varying channel
conditions, prediction methods for future channel states have been widely studied in recent
years. Specifically, existing works can be classified into direct prediction and decomposition-
based prediction methods, and direct prediction methods include linear and non-linear
channel prediction methods.

Linear prediction models have been used for channel prediction in wireless commu-
nication. The auto-regressive (AR) model was proposed in Reference [19] to predict the
channel impulse response, which was expressed as a linear combination of current and
past channel states. Liu et al. [20] employed a channel prediction framework based on auto-
regressive predictors to exploit both the spatial and temporal correlations among antennas.
An improved adaptive Kalman estimator was proposed in Reference [21] for the adaptive
fading channel. A recursive approximated structure with filter bank and discrete cosine
transform was proposed in Reference [22] for channel prediction. For underwater channel
state forecast, linear prediction models, such as statistical analysis [23] and exponential
moving average (EMA) [24], were utilized, as well. In Reference [11], auto-regression was
used every several symbols for the adaptive modulation of underwater communication.
Zhang et al. [25] proposed an adaptive channel prediction scheme based on the exponential
weighted recursive least square (EWRLS) algorithm, which used current and past estimated
channel parameters in the delay-Doppler domain.

Compared with linear prediction methods, non-linear channel prediction can achieve
a smaller mean square error (MSE). A support vector machine (SVM) was employed
in Reference [26] to predict channel state in airplane cabin scenarios. In Reference [27], an
echo state network (ESN) was utilized for fast channel prediction in Ricean fading scenarios,
which obtained smaller prediction error than previous designs. Tripathi et al. [28] proposed
novel channel prediction frameworks by using stochastic modeling, as well as data-driven
learning of channel variability. A deep learning-based algorithm was proposed in Refer-
ence [29] to predict future channel state information (CSI) and received signal levels. Due to
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the complex fluctuation of underwater channel state with environmental noise, non-linear
prediction methods can significantly improve accuracy [30]. Diao et al. [30] introduced a
channel prediction model based on nearest neighbor regression for underwater acoustic
networks, where a fast search algorithm and a statistical storage compression method
were used to optimize the time and space complexity of the prediction scheme. However,
non-linear prediction methods usually show high computational complexity, while the
computational capacity of underwater sensor nodes is limited.

Due to the advantage of significant prediction accuracy, decomposition-based pre-
diction methods have become promising solutions for channel prediction in the most
recent years. Long et al. [31] introduced multi-resolution wavelet analysis to predict the
received signal strength in the fast varying wireless environment. In Reference [5], the
change process of underwater acoustic channel state was modeled as the sum of an environ-
mental process affected by measurable environmental parameters and a Markov process
explaining the contribution of unknown physical mechanisms. Based on the historical
channel state sequence and recorded environmental parameters, a recursive algorithm was
proposed to estimate the combination coefficient of the environmental parameters and
the Markov process for channel prediction. The decomposition-based prediction methods
show good performance [32] and the reason is as follows. From the perspective of divide
and conquer, the prediction based on decomposition can enhance the prediction ability of
the model [33], as the original non-linear and non-stationary sequence is decomposed into
a finite number of subsequences, which have simpler frequency components. Thus, the
difficult prediction task is divided into several relatively easy subtasks [34].

2.2. Adaptive Data Transmission

Adaptive transmission schemes have been studied in terrestrial wireless commu-
nications to improve communication performance. Huang [35] investigated cross-layer
scheduling and power control combined with adaptive modulation for wireless ad hoc
networks. Reinforcement learning (RL) has also been used for adaptive transmission in
terrestrial wireless communication. A transmission scheduling strategy based on deep
Q-learning (DQN) was proposed in Reference [36] to maximize the system utility com-
posed of throughput, buffer pressure, and power consumption for the cognitive Internet
of Things. Li et al. [37] studied a throughput maximization problem based on deep Q-
learning in a wireless communication system with energy harvesting and energy limited
transmitter. For hybrid satellite-terrestrial relay networks, the performance of adaptive
transmission was investigated in Reference [38] with a decode-and-forward relay. Ekerete
et al. [39] investigated adaptive margins for AMC in broadband satellite links during the
actual rain event. To increase system throughput and improve transmission efficiency,
an adaptive coding transmission (ACT) scheme was proposed in Reference [40] over the
satellite-terrestrial channel based on the analog fountain code (AFC), achieving a seamless
performance across all channel states.

Underwater acoustic communication surfs from the following difficulties: large
amplitude of channel variation, large propagation delay, narrow bandwidth, and low
bit rate. Compared with terrestrial wireless sensor networks, the design of UASNs is
more challenging.

Adaptive transmission schemes based on rules have been investigated for underwa-
ter acoustic communication. Wan et al. [1] proposed an AMC system to maximize the
transmission rate with a given transmission power for underwater communication using
orthogonal frequency-division multiplexing (OFDM). And the system utilized a finite
number of transmission modes which were switched based on the effective signal-to-noise
ratio (ESNR). Different modulation methods were used in Reference [10] for opportunistic
cooperative transmission of underwater networks under various environmental condi-
tions to achieve the best compromise between robustness and data rate. Kuai et al. [11]
proposed a fixed threshold adaption algorithm and the required SNR of different modula-
tion methods were presented to meet the target bit error rate (BER). An adaptive OFDM
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transmission system was proposed in Reference [12] based on the SNR while maintaining
a certain bit error rate (BER). Although these rule-based schemes are convenient to operate,
fixed thresholds are not applicable for complex channel fluctuations and varying data
transmission requirements, which will result in performance degradation.

Some researchers investigated adaptive transmission based on learning algorithms
for underwater acoustic communication. In Reference [41], Xiao et al. proposed an RL-
based antijamming relay scheme, as well as a deep-RL-based relay scheme, for UWSNs
to optimize the relay mobility and power allocation. Tomasi et al. [13] designed two
transmission schemes based on dynamic programming (DP) and a heuristic strategy to send
a specified number of packets before a deadline while minimizing transmission attempts.
To maximize the expected total amount of delivered data in finite time, energy management
was investigated in Reference [14] for underwater acoustic nodes. And a stochastic dynamic
programming algorithm was used to solve the optimal solution in energy allocation and a
suboptimal algorithm was presented with reduced complexity. Reinforcement learning can
be used to derive optimal actions for adaptive transmission in dynamic environments. A
RL-based protocol was developed in Reference [42] for underwater acoustic communication
to minimize a cost function which combined delay and energy consumption and ensure
reliable transmission. Wang et al. [15] formulated the adaptive transmission problem as
a partially observable Markov decision process for underwater acoustic communication
systems. And a model-based reinforcement learning strategy was used to develop an online
algorithm, which could derive the optimal transmission actions to minimize a long-term
cost. A reinforcement learning-based adaptive modulation and coding algorithm was
proposed in Reference [16] for underwater communications based on the network states.
However, the learning-based methods have high training complexity and usually need
a long time to converge. Moreover, the reward function should be designed reasonably,
which is also a problem to be studied.

Some optimization-based adaptive transmissions have been studied for underwater
acoustic communication. In Reference [17], adaptive OFDM modulation and power alloca-
tion were investigated to maximize the throughput while maintaining a target average bit
error rate (BER). Two schemes were developed with different levels of adaptivity based
on a greedy algorithm: One scheme could adjust only the modulation levels and adopted
a unified power allocation, while the other scheme could adjust both the modulation
levels and the power allocated to each subcarrier. Wang et al. [18] investigated the energy
efficiency maximization problem in underwater acoustic channels with periodic dynamics.
Assuming that the future channel states were known, a water-filling algorithm was de-
signed to schedule the optimal transmission actions. For channels with causal knowledge,
the optimal actions were scheduled based on the predicted channel states and the packet
queue condition. However, the computational complexity was relatively high to schedule
actions for all time slots.

3. Double-Scale Adaptive Transmission Mechanism for UASNs
3.1. System Model

Most UASNs can be modeled as a multi-hop clustered network as shown in Figure 2.
The clustered UASN consists of a surface sink node and underwater sensor nodes. Gen-
erally, the sensor nodes can be classified into cluster headers (CH) or cluster members
(CM). The CM nodes gather environmental information and forward the data to its CH.
Then, each CH transmits collected data to the sink node through single-hop or multi-hop
transmission. The transmission slots of all sensors are scheduled based on media access
control (MAC) algorithms, such as Time Division Multiple Access (TDMA). Each node
sends at the scheduled slot, and the time interval between two transmissions is assumed to
be equal.

The signal-to-noise ratio (SNR) can be considered as an indicator of the channel state,
which is defined as the received SNR corresponding to a transmission power of one unit.
We assume that the channel state remains stable in each slot and would change in the next
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slot. In each time slot, some packets arrive at the transmitter node and enter the data buffer.
Bmax denotes the buffer capacity of the transmitter. At the beginning of slot i, the existing
buffer length is Bi. Let the number of arriving packets be gi, and the number of transmitted
packets be li, the new buffer length can be expressed as

Bi+1 = min{max{Bi − li, 0}+ gi, Bmax}. (1)

The amount of arrival data in the future can be predicted by recursive least squares
(RLS) filter [43] and artificial neural network [44]. So, in this paper, for the sake of simplicity,
it is assumed that the sensors collect sensory data at certain time intervals for a period of
time so that each node can know the data arrival rate in the future period.

Cluster head

Node

Surface sink node

Buffer

Figure 2. Multi-hop clustered underwater acoustic sensor network.

The set of modulation and coding modes is defined as {m0, m1, . . . , mM}, which is
sorted in ascending order of transmission rate. In this set, m0 means stop transmission and
mM yields max transmission rate. Pmax denotes the maximum transmission power of the
transmitter and M represents the number of modulation and coding modes.

3.2. Underwater Acoustic Channel Model

Throughout this article, a shallow-water acoustic propagation environment is con-
sidered. According to the principle of underwater acoustic, the signal-to-noise ratio of
an underwater acoustic signal at the receiver can be calculated using the passive sonar
equation as follows [45]:

SNR = SL − PL − NL + DI ≥ DT, (in dB re µPa), (2)

where SL is the source level, PL is the transmission loss, NL is the noise level, DI is the
directive index, and DT is the detection threshold of the sonar for specific modulation and
coding mode. All these quantities are in dB re µPa, where the reference value of 1 µPa
equals to 0.67× 10−18 Watts/m2 [45]. For the convenience of expression, the notation dB is
used to signify dB re µPa in the rest of this paper. The path loss for a signal over distance d
is given by Reference [46] as
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PL = fs · 10lgd + α · d× 10−3, (3)

where fs is the spreading factor, which can be taken as 1.5 for a practical scenario, and α is
the absorption coefficient, which can be modeled by Thorp’s formula [45] as follows:

α =
0.11 f 2

1 + f 2 +
44 f 2

4100 + f 2 +
2.75 f 2

104 + 0.003, (4)

where α is given in dB/km, and f is in kHz. The power spectrum density of the ambient
noise in the ocean can be calculated by

NL = Nturb( f ) + Nship( f ) + Nwave( f ) + Nther( f ), (5)

where Nturb( f ), Nship( f ), Nwave( f ), and Nther( f ) in dB per Hz represent the turbulence
noise, the shipping noise, the waves noise, and the thermal noise, respectively. These noises
can be modeled by the following empirical formulas [46]:

10log(Nturb( f )) = 17− 30log f , (6)

10log
(

Nship( f )
)
= 40 + 20(s− 0.5) + 26log f − 60log( f + 0.03), (7)

10log(Nwave( f )) = 50 + 7.5
√

w + 20log f − 40log( f + 0.4), (8)

10log(Nther( f )) = −15 + 20log f , (9)

where s and w denote the shipping activity factor and wind speed, respectively. The
channel state ht is defined as the received signal-to-noise ratio corresponding to a source
level SL0 with a transmission power of one unit. When the source level is SL1 and the
signal-to-noise ratio at the receiver is SNR1, channel state is recorded as

ht = SNR1 − SL1 + SL0. (10)

According to the above formula, channel state can vary with the dynamic environmen-
tal factors. The underwater channels could be affected by various environmental factors,
such as water temperature, wind speed, tidal, ocean swell, and so on, and these natural
phenomena occur at different time scales, such as seasonal, diurnal, minutes, and seconds.
These environmental factors result in complex fluctuation of the underwater acoustic
channel on various time scales. Specially, the well-known “afternoon effect” caused by the
diurnal and seasonal change in water surface temperature can result in the diurnal and
seasonal change in the signal and noise strength [9]. As a result, the fluctuation charac-
teristics of channel state can be analyzed for channel state prediction, and an optimized
configuration scheme can be derived to improve the energy efficiency of data transmission.

3.3. Adaptive Transmission Framework

To improve energy efficiency and reliability of underwater acoustic communication,
a double-scale adaptive transmission mechanism is proposed based on the fluctuation
characteristics of underwater channel, as shown in Figure 3. The transmission framework
consists of two parts, namely double-scale prediction and adaptive transmission. In double-
scale prediction, the historical channel state series is decomposed into large-scale and
residual series, which will be predicted by a novel k-nearest neighbor search algorithm
with sliding window and auto-regressive algorithm, respectively. In adaptive transmission,
an energy-efficient transmission algorithm is designed to solve the problem of long-term
modulation and coding optimization.

To reduce the complexity of scheduling, the transmitter of a CH or a CM node uses
the same modulation and coding mode in a large-scale time. In this way, the modulation
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and coding mode only needs to be scheduled once for each large-scale period. For the
convenience of description, epoch and slot are used to refer to large-scale and small-scale
time, respectively. A large-scale epoch consists of Nlarge slots, as shown in Figure 4.

In detail, the large-scale decision aims to predict large-scale channel states and deter-
mine the modulation and coding mode for each large-scale epoch. As it is difficult to predict
the future channel state in each slot, the average channel state of each large-scale epoch
in the future is predicted for schedule. Large-scale channel state is defined as the average
channel state in a large-scale epoch. Then, based on the present buffer state and predicted
large-scale channel states, the modulation and coding mode in each future large-scale
epoch will be scheduled.

Then, given the scheduled modulation and coding mode, the small-scale decision
operates to predict the channel state of the next slot and control the transmission power.
To improve the accuracy of prediction, the channel state in each slot is predicted based on
series decomposition.

Channel State Series 

Decomposition

k-nearest Neighbor Prediction 

Algorithm with Sliding Window
Auto-regression Prediction

Transmission 

Buffer

Energy-efficient Transmission Algorithm

Long-term Modulation and 

Coding Optimization
Transmission Power Regulation

Adaptive Transmission

Double-Scale Prediction

Large-scale Channel 

State
Predicted Channel State

Residual SeriesLarge-scale Series 

Large-scale Channel State 

Series

Small-scale Residual Channel 

State Series

Large-scale Channel State 

Series

Small-scale Residual Channel 

State Series

     Historical Channel State Series     Historical Channel State Series

Figure 3. Double-scale adaptive transmission mechanism.

Small-Scale Slot

Large-Scale Epoch Large-Scale Epoch

Figure 4. Large-scale epoch and small-scale slot.

In a large-scale epoch, the average channel change should be less than a certain
threshold Dt, so that the same modulation and coding mode can be allocated for the slots
in this large-scale epoch. Thus, the algorithm calculates the average time Tlarge required for
channel state change Dt and takes Tlarge as the length of large-scale epoch. Dt is given as

Dt =
hmax − hmin

2M
, (11)
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where hmax and hmin are the best channel state and worst channel state, respectively, and
M is the number of modulation and coding modes.

At the beginning of a slot, packets are sent by the transmitter. Before the end of
the slot, an acknowledgment packet is sent from the receiver to the transmitter via an
error-free channel, including the number of packets successfully decoded and the received
signal-to-noise ratio (SNR) of each packet.

4. Double-Scale Channel State Prediction

In this section, the proposed prediction algorithms for the large-scale and small-scale
channel states are presented, respectively.

4.1. Large-Scale Channel State Prediction

To predict large-scale channel states, a k-nearest neighbor algorithm with sliding
window is designed based on subsequence matching. Furthermore, in order to reduce the
computational complexity, the length of time series to be reserved is calculated according
to the characteristics of channel fluctuation.

4.1.1. k-Nearest Neighbor Prediction Algorithm with Sliding Window

Large-scale channel state is represented as the average channel state in a large-scale
epoch, as shown in Figure 5. Large-scale channel state of epoch j is

hL
j =

1
Nlarge

Nlarge

∑
i=1

hS
i , (12)

where Nlarge is the number of slots in a large-scale epoch. hS
i is the channel state of the i-th

slot during the epoch j in dB. For the convenience of expression, the notation hj is used to
signify hL

j in Section 4.1.
Assuming that the current time is in the u-th large-scale epoch, and the stored historical

series of large-scale channel state can be represented as

HL = [h1, h2, . . . , hu], (13)

where hi denotes the large-scale channel state in epoch i.
The scheme of large-scale channel prediction is shown in Algorithm 1. The input

elements of the algorithm include the training set which consists of training vectors and a
test vector. And the output of the algorithm is the predicted large-scale channel state after
v-th epochs.

The training set Y = [Sn, Sn+1, . . . , Su−v] contains a group of training vectors and
their labels. Training vectors are obtained from HL by a sliding window with a length of
n, which is the order of the prediction model, as shown in Figure 5b. The label is the v-th
value after the corresponding vector in HL. Training vector Si and its label hi+v is given as

Si = [hi−n+1, hi−n+2, . . . , hi−1, hi] ∼ hi+v, i ∈ [n, u− v]. (14)

Test vector Su contains channel state of n large-scale epochs before current large-scale epoch,

Su = [hu−n+1, hu−n+2, . . . , hu−1, hu]. (15)

Firstly, each training vector is matched according to its last value. In detail, training
vector Si is selected if the last values of Si and Su are similar, meeting the following condition,

|hi − hu| ≤
hmax − hmin

M
. (16)
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Algorithm 1: large-scale channel state prediction
Input: training set Y, test vector Su
Output: predicted large-scale channel state ĥu+v

1 for vector Si in training set Y do
2 if last value of Si and Su are similar then
3 Calculate distance of Si and Su
4 end if
5 end for
6 Choose nearest k vectors with labels
7 Calculate weight of chosen vectors
8 Obtain predicted channel state

If this condition is not satisfied, Si is filtered out. Most of the training vectors are
filtered out by this condition, so the computational complexity is greatly reduced.

To reduce the computational complexity, the L1 metric is calculated as the distance
between Si and Su. The L1 metric is represented as

DSiSu = ||Si − Su||1. (17)

v1 v2 v3

Sliding window

(a) Original Channel State

(b) Large-scale Channel State

v1 v2 v3

Sliding window

(a) Original Channel State

(b) Large-scale Channel State

Figure 5. Channel state and large-scale channel state prediction method. (a) Original channel state. (b) Large-scale channel
state and diagram of k-nearest neighbor algorithm with sliding window. v3 is the test vector. v1 and v2 are nearest neighbors
chosen from training vectors.

Then, k nearest neighbors [c1, c2. . . ck] are chosen with labels {hc1
v , hc2

v , . . . , hck
v } as k

prediction values. For example, in Figure 5, nearest neighbors v1 and v2 are chosen for test
vector v3.

Inverse distance weight of chosen vector cj is calculated as
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wcj =
1/DcjSu

∑k
m=1 1/DcmSu

. (18)

Finally, the predicted channel state is calculated with inverse distance weight, which
is represented as

ĥu+v =
k

∑
m=1

wcm hcm
v . (19)

4.1.2. Calculation of Stored Series Length

Since historical channel state series increases with time and will consume large stor-
age space and increase the prediction complexity, we propose to take advantage of the
fluctuation features. Considering the certain changing cycle in a long-time period, only
a few cycles of historical channel state series need to be stored to reduce the amount of
storage and accelerate the prediction speed.

To calculate the spectrum of historical channel state series, the Fourier transform is
used. Then, the frequency fmax with maximum amplitude is selected. The time Tp corre-
sponding to fmax represents the characteristic time of channel fluctuation. The historical
channel state series with a length of Tp can reflect the characteristics of channel fluctuation.
Thus, the historical channel state series with a length of βTp is stored for channel prediction,
β > 1.

4.2. Small-Scale Channel State Prediction

To accurately regulate transmission power in time-varying acoustic channels, a
decomposition-based prediction algorithm is proposed.

4.2.1. Small-Scale Channel Fluctuating Features

Due to the complex fluctuation of underwater acoustic channel state, direct prediction
usually suffer from large prediction error. Over-estimation of the channel state will lead to
packet loss, while under-estimation will lead to energy efficiency deterioration.

To improve the accuracy of prediction, a decomposition-based prediction model is
proposed. The advantage of this model is that it adopts a series decomposition method
with low complexity to improve the prediction accuracy, and a large-scale channel state
only needs to be predicted once in a large-scale epoch.

Firstly, the large-scale channel state HL is subtracted from the original channel state
series H to obtain the high frequency residual series Hre, as shown in Figure 6.

Hre = H−HL. (20)

The residual series can represent small-scale fluctuating features of the underwater
acoustic channel. Although prediction models based on other decomposition methods,
such as discrete wavelet decomposition [31] and empirical mode decomposition [32–34],
can further improve the prediction accuracy, the advantage of the decomposition method
in this paper is its lower complexity.

4.2.2. Residual Series Prediction

Then, after decomposition of the original channel state series, the auto-regression (AR)
model is used to predict the residual series due to the low computational complexity. The
AR prediction model is presented as

ĥre
t+1 =

LAR

∑
i=1

aihre
t−LAR+i + bt+1. (21)

ĥre
t+1 represents the predicted value of residual series in slot t + 1, and hre

t is the value
of the residual series in slot t. LAR denotes the prediction order. ai represents the i-th
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coefficient of AR prediction model and and bt+1 is a noise term. The coefficients of the AR
model can be calculated by the least squares algorithm [5,11,25].
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Figure 6. Channel state series decomposition.

Finally, given the predicted large-scale channel state values ĥL
t+1 in Section 4.1.2, and

the prediction value of residual series ĥre
t+1 , the predicted channel state of the next slot is

ĥt+1 = ĥL
t+1 + ĥre

t+1. (22)

5. Energy-Efficient Transmission Algorithm

Based on the predicted large-scale channel states, an energy-efficient transmission
algorithm is proposed to schedule the modulation and coding modes.

5.1. Problem Formulation

Since the large-scale channel states in the future have been predicted, transmission
configuration can be scheduled. The objective of the energy efficiency optimization problem
is to minimize the ratio of energy cost to the amount of data successfully delivered, which
can be formulated as:

min
∑Nsch

k=1 Em
k (ĥk)

∑Nsch
k=1 Rm

k (ĥk)
, (23)

subject to

Nsch

∑
k=1

Rm
k (ĥk) ≥ As, (24)

0 < Pk ≤ Pmax, (25)

m ∈ {m0, m1, . . . , mM}. (26)

ĥk represents the predicted channel state of large-scale epoch k. Rm
k (ĥk) is the expected

amount of successfully transmitted data with m modulation and coding mode at the large-
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scale epoch k. Em
k (ĥk) denotes the expected energy cost of m transmission mode at the

large-scale epoch k. As denotes the amount of data that needs to be sent in the planned
time. Pk represents the transmission power in large-scale epoch k. Nsch is the number of
scheduled large-scale epochs.

Constraint (24) means that the expected amount of successfully delivered data should
be larger than the amount of data requested to be transmitted in the scheduling period.
Constraint (25) means that the transmission power should not exceed the maximum power
of the transmitter. Constraint (26) means that the transmission mode should be selected
from the available modulation and coding modes.

In order to calculate the amount of data to be sent, a threshold Bc is set to distinguish
the buffer states. When the data queue exceeds this threshold, the transmitter will transmit
as many packets as possible to make the data queue length lower than this threshold. Mmax
is the max transmitted bits of all modulation and coding modes in a large-scale epoch. STP
is the successful transmission probability under the current channel prediction accuracy,
which is obtained by statistical method. Thus, Mmax ∗ STP represents the maximum
transmission capacity. According to the data arrival rate, transmission requirements can be
divided into three cases:

(1) When the bits arrival rate is less than the maximum transmission capacity, and the
buffer size is less than the buffer threshold, the amount of successfully transmitted
bits should be more than the expected arrival bits.

(2) When the bits arrival rate is less than the maximum transmission capacity, and the
buffer size is greater than the buffer threshold, the amount of successfully transmitted
bits should be more than the expected arrival bits plus a certain proportion ε of the
buffer length, 0 < ε < 1.

(3) When the bits arrival rate is greater than the maximum transmission capacity, the
message should be sent according to the maximum transmission capacity.

As mentioned above, the amount of data required to be transmitted is given as

As =


λ ∗ L, λ ≤ Mmax ∗ STP, Bi ≤ Bc,

λ ∗ L + ε ∗ Bi, λ ≤ Mmax ∗ STP, Bi > Bc,

Mmax ∗ STP ∗ L, λ > Mmax ∗ STP.

(27)

λ represents the amount of arrival data in each large-scale epoch. Bi denotes the buffer
state at present.

The buffer threshold Bc can influence the corresponding energy cost, as well as average
transmission delay. The transmission delay is reduced with the decrease of buffer threshold
at the cost of increasing energy consumption, while, with the increase of buffer threshold,
more packets can be allowed to stay in the buffer until the channel state becomes good,
which will reduce the energy consumption and increase the transmission delay. In practice,
the buffer threshold can be adjusted according to the application scenarios. When the
transmission is delay tolerant, and the energy consumption is more important, the buffer
threshold can be set as a large value. In applications that require relatively low latency,
the buffer threshold should be reduced. The impact of buffer threshold on transmission
performance will be presented in quantitative analysis and simulation, which can be used
to select buffer threshold.

5.2. Modulation Coding Method Selection

Problem (23) is an integer programming problem. This kind of problem can be solved
by heuristic algorithms, such as particle swarm optimization and genetic algorithm. In
this paper, an improved genetic algorithm is designed to solve the problem as shown in
Algorithm 2. To accelerate the speed of obtaining the optimal solution, a rearrangement
process is used.

Firstly, G chromosomes are generated as the initial population. Modulation and
coding modes are encoded as genes, and each chromosome is in the following form,
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MC = [mc1, mc2, . . . , mcL], (28)

where mci is a modulation and coding mode for epoch i. In order to ensure the diversity
of the population, the combinations of various transmission modes are used as the initial
population, while the required amount of delivered data are met.

A rearrangement process is utilized on each chromosome to adjust the positions of
genes according to the predicted large-scale channel states. The lower modulation coding
methods are allocated to worse channel states, and higher modulation coding methods
are adopted for better channel states, as shown in Figure 7. The rearrangement process
accelerates the convergence speed of the algorithm.

(b) Transmission modes before rearrangement.

(c) Transmission modes after rearrangement.

(a) Predicted large-scale channel states.

Figure 7. Rearrangement process for a transmission modes chromosome.

Then, the estimated energy cost and the expected amount of delivered data will be
calculated. The packet error rate (PER) can be determined based on the received SNR
by using an information-theoretic approach [47] or an empirical formula estimated by
real data [1]. So, according to the scheduled modulation coding methods, the predicted
large-scale channel states, and target PER, the transmission power can be set. Thus, energy
cost and amount of delivered data can be estimated.

For each chromosome, fitness is defined as

f itness =


R̂e

Êe
, R̂e ≥ As,

0, R̂e < As.
(29)

Êe and R̂e are the estimated energy cost and the expected amount of delivered data for the
scheduling time, respectively. Large fitness means that the chromosome has high energy
efficiency, and the required amount of transmission data is satisfied.
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K chromosomes with large fitness scores are preserved. (G − K)/2 pairs of chro-
mosomes are selected with a probability according to fitness. Each pair of the selected
chromosomes are crossed and mutated to produce two new chromosomes as offspring.
For a pair of chromosomes, the standard crossover operation recombines them by inter-
changing portions of them, producing divergent solutions to explore the search space. The
mutation operation is performed on a chromosome by changing an element at a random
position of the chromosome. After crossover and mutation, the rearrangement process is
utilized on each new chromosome.

K preserved chromosomes and G− K new chromosomes form the next generation of
the population. As the algorithm continues and the new population evolves, the fitness
scores of chromosomes improve. Finally, after several rounds of selection, crossover, and
mutation, a good solution is obtained.

Before each transmission, given the scheduled modulation and coding mode for
this large-scale epoch, the predicted channel state of the next slot, and target PER, the
transmission power can be determined.

Algorithm 2: Modulation and coding mode scheduling
Input: predicted large-scale channel state, buffer state, data arrival rate
Output: modulation and coding modes

1 Generate initial population
2 Rearrange chromosomes
3 for crosstime = 1:MaxCrossTime do
4 Calculate fitness
5 Choose chromosomes with good fitness
6 Crossover and mutation
7 Rearrange new chromosomes
8 end for
9 Choose the chromosome with the best fitness

6. Performance Analysis and Computational Complexity
6.1. Performance Analysis

In this subsection, quantitative analysis is presented about the impact of buffer thresh-
old on communication performance, and a reasonable buffer threshold is derived for a
special channel state series.

6.1.1. Special Channel State Series

In this section, a linearly varying channel state series is presented in Figure 8, and
the corresponding transmission performance will be analyzed. It is assumed that only
the buffer threshold limits the data queue length, so the buffer length can grow without
other restrictions. Moreover, the transmitter does not discard any data packets. Based on
this situation, the transmission action of energy cost minimization will be derived. And
the impacts of buffer threshold and data arrival rate on communication performance will
be analyzed, in terms of energy consumption, average buffer length, and transmission
delay. In Section 5.1, the buffer threshold is used to set the amount of data that needs to be
sent once every Nsch epochs, while, in this section, the buffer threshold always limits the
buffer length.
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Channel state 

(dB)

h0

hm

2Th

t5

t0 t6

First half cycle Second half cycle

Time

Figure 8. A linearly varying channel state series.

Because the channel fluctuation in the first half cycle (from t0 to t5) is similar to that of
the second half cycle (from t5 to t6), only the transmission actions from t0 to t5 need to be
analyzed. Let kh be the change rate of the channel state during t0 and t5,

kh = (hm − h0)/(t5 − t0), (30)

where hm = ht5 is the best channel state, and h0 = ht0 is the worst channel state. At time t,
the transmission rate is

Rt = ρlog2(1 + Ptct), (31)

where Pt is the transmission power, and ct is the channel gain at time t. And ρ is the
ratio of real transmission rate and upper bound of the achievable transmission rate. The
logarithmic channel gain, i.e., the channel state at time t is

ht = 10log10ct. (32)

And this equation is equivalent to

log2ct = D2ht, D2 =
log210

10
. (33)

6.1.2. Energy Cost Minimization Problem

The objective is to minimize energy consumption and deliver a certain amount of data,

min
∫ t5

t0

Ptdt (34)

subject to ∫ t5

t0

Rtdt =
∫ t5

t0

ρlog2(1 + Ptct)dt = Nt5
t0
= λ(t5 − t0), (35)

where Rt is the transmission rate at time t, Nt5
t0

is the amount of arrival data from t0 to t5,
and λ is the data arrival rate. If the buffer threshold Bc is long enough, according to the
water-filling algorithm, the optimal transmission power is

Pt = ( µ− 1
ct
)+. (36)

6.1.3. Reasonable Buffer Threshold

The transmission action with sufficiently large buffer threshold is shown in Figure 9.
In order to use the optimal transmission power of Equation (36), which is the optimal
solution of (34), the buffer threshold should be large enough. In this paper, the minimum
buffer threshold required for obtaining the best solution of (34) is called the reasonable
buffer threshold Br = 2B1. And B1 will be derived below.
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t1 t3 t5

Channel state (dB)

Transmission rate

Date arival rate

Buffer length
B1

t0

h0

hm

First half cycle Second half cycle

Ts

t6

Time

Time

Time

Buffer threshold

Figure 9. Transmission action when buffer threshold is long enough (Bc ≥ 2B1), for case 1.

Constraint (35) can be derived as∫ t5

t1

Rt dt =
∫ t5

t1

ρlog2(1 + Ptct)dt = ρ
∫ t5

t1

log2(µct)dt

= ρTslog2(µ) + ρ
∫ t5

t1

D2htdt

= ρTslog2(µ)+ρD2(2hm − khTs)Ts/2

= Nt5
t0

, (37)

where Ts = t5 − t1 is the length of transmission time during the time of t0 to t5.
Assume that the transmission rate becomes positive from t1, so Pt1 = µ− 1

ct1
= 0, and

log2µ = −log2ct1 = −D2ht1 = khD2Ts − D2hm. (38)

Combining (37) and (38), t1 can be calculated as

t1 = t5 − Ts, (39)

T2
s =

2λ(t5 − t0)

khρD2
. (40)

And µ is calculated by (38) and (40).
If the buffer threshold Bc is long enough, the transmission action is shown in Figure 9.

The transmission rate will gradually increase from zero and eventually exceed the data
arrival rate. The buffer length will rise to a maximum at t3; so, at t3, the transmission rate
is equal to the arrival rate,

Rt3 = ρlog2(µct3) = ρ(log2µ + log2ct3) = ρ(log2µ + D2(h0 + kht3)) = λ. (41)
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t3 can be calculated as

t3 =
1
kh

(
1

D2
(λ/ρ− log2(µ))− h0

)
. (42)

From t0 to t3, the transmission amount of data is

TN(t1, t3) =
∫ t3

t1
Rtdt = ρ

∫ t3
t1

log2(µct)dt = ρ(t3 − t1)log2(µ) + ρD2(h3 + h1)(t3 − t1)/2. (43)

From t0 to t3, the amount of arrival data is (t3 − t0)λ, so the increment of buffer
length is

B1 = (t3 − t0)λ− TN(t1, t3). (44)

In order to use the optimal transmit power of Equation (36) from t0 to t5, the minimum
buffer threshold required, i.e., the reasonable buffer threshold is Br = 2B1. Then, the
transmission performance will be derived in three cases, which are divided according to
the buffer threshold.

6.1.4. Performance with Large Buffer Threshold

Case 1: If buffer threshold Bc is greater than 2B1, the transmission action is shown in
Figure 9. The energy consumption from t0 to t5 is

E1 =
∫ t5

t1

(
µ− 1

ct

)
dt =

∫ t5

t1

(
µ− 10−

ht
10

)
dt

= (t5 − t1)µ +
10

khln10

(
1

ct5

− 1
ct1

). (45)

The average transmission energy consumption per unit of data is

AE1 =
E1

λ(t5 − t0)
. (46)

The average buffer length is

AB1 = Bc − B1. (47)

The average transmission delay is

AD1 = (Bc − B1)/λ. (48)

6.1.5. Performance with Small Buffer Threshold

Case 2: If the buffer threshold Bc is less than 2B1 and greater than 2λt1, the transmis-
sion action is shown in Figure 10. During t0 to t1, the node does not transmit; during t1 to
t2, the transmission power is ( µ− 1

ct
)+; during t2 to t4, the transmission rate is equal to

the data arrival rate; during t4 to t5, the transmission power is ( µ− 1
ct
)+.
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Time
B2

Figure 10. Transmission action when 2λt1 ≤ Bc < 2B1, for case 2.

From t0 to t2, the buffer increases from B2 to 2B2,

(t2 − t0)λ−
∫ t2

t1

ρlog2(1 + Ptct)dt = B2, (49)

where B2 = Bc/2. Based on (49), t2 can be calculated as

t2 =
λ− ρlog2(µct1)−

√
(λ− ρlog2(µct1))

2 − 2ρkhD2(B2 − t1λ)

ρkhD2
+ t1. (50)

Similarly, t4 can be calculated as

t4 = t5 −
ρlog2(µct5)− λ−

√
(ρlog2(µct5)− λ)2 − 2khρD2B2

ρkhD2
. (51)

From t0 to t5, the energy consumption is

E2 =
∫ t2

t1

(
µ− 1

ct

)
dt +

∫ t4

t2

Ptdt +
∫ t5

t4

(
µ− 1

ct

)
dt. (52)

The three items are calculated as follows:∫ t2

t1

(
µ− 1

ct

)
dt =

∫ t2

t1

(
µ− 10−

ht
10

)
dt = (t2 − t1)µ +

10
khln10

(
1

ct2

− 1
ct1

)
. (53)

∫ t5

t4

(
µ− 1

ct

)
dt =

∫ t5

t4

(
µ− 10−

ht
10

)
dt = (t5 − t4)µ +

10
khln10

(
1

ct5

− 1
ct4

)
. (54)

From t2 to t4, the transmission rate is equal to the data arrival rate, so the energy
cost is ∫ t4

t2

Ptdt =
∫ t4

t2

2
λ
ρ − 1
ct

dt = (2
λ
ρ − 1)(

−10
khln10

(
1

ct4

− 1
ct2

)
). (55)
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The average energy consumption per unit of data is

AE2 = E2/(λ(t5 − t0)). (56)

The average buffer length is
AB2 = Bc/2. (57)

The average transmission delay is

AD2 = Bc/2λ. (58)

Case 3: If buffer threshold Bc is less than 2λt1, the transmission action is shown in
Figure 11. During t0 to t7, the node does not transmit; during t7 to t8, the transmission
rate is equal to the data arrival rate; during t8 to t5, the transmission power is ( µ− 1

ct
)+.

From t0 to t7, the amount of arrival data is B2, which is half of the buffer threshold Bc. t7 is
calculated as

t3 t5

Channel state (dB)

Transmission rate

Date arival rate

Buffer length

Buffer threshold

t7 t8t0

B2

t6

Time

Time

Time

Figure 11. Transmission action when Bc < 2λt1, for case 3.

t7 = B2/λ, (59)

where B2 = Bc/2. From t8 to t5, the buffer length decreases from 2B2 to B2. Similar to (51),
t8 can be calculated as

t8 = t5 −
ρlog2(µct5)− λ−

√
(ρlog2(µct5)− λ)2 − 2khρD2B2

ρkhD2
. (60)

Similar to case 2, the energy consumption is

E3 =
∫ t8

t7

Ptdt +
∫ t5

t8

(
µ− 1

ct

)
dt. (61)
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The two items are calculated as follows:

∫ t8

t7

Ptdt =
∫ t8

t7

2
λ
ρ − 1
ct

dt = (2
λ
ρ − 1)(

−10
khln10

(
1

ct8

− 1
ct7

)
), (62)

∫ t5

t8

(
µ− 1

ct

)
dt =

∫ t5

t8

(
µ− 10−

ht
10

)
dt = (t5 − t8)µ +

10
khln10

(
1

ct5

− 1
ct8

)
. (63)

The average energy consumption per unit of data is

AE3 = E3/(λ(t5 − t0)). (64)

The average buffer length is
AB3 = Bc/2. (65)

The average transmission delay is

AD3 = Bc/2λ. (66)

These quantitative analysis will be calculated in simulation Section 7.4, and impacts of
buffer threshold and data arrival rate on communication performance will be presented.

6.2. Computational Complexity

The prediction process is composed of large-scale channel state prediction and small-
scale channel state prediction. In large-scale channel state prediction, Nsch large-scale
channel state should be predicted, and, for each prediction, k-nearest neighbor prediction
algorithm should act on Nrl reserved large-scale channel states. So, the computational
complexity of the large-scale channel state prediction is O(NschNrl). In small-scale channel
state prediction, the number of slots in a large-scale epoch is Nlarge, and NschNlarge small-
scale channel state should be predicted; so, the computational complexity of the small-
scale channel state prediction is O(NschNlarge). In general, Nlarge � Nrl ; so, the total
complexity of the prediction process is CC1 = O(NschNrl). This also explains the content in
Section 4.1.2, that the amount of storage can be reduced, and the prediction can be speed
up, with the decrease of the length of stored historical channel state series.

In terms of the improved genetic algorithm for modulation coding method selection,
Nc is the number of evolution cycles, and, in each evolution cycle, the fitness of G chro-
mosomes should be calculated. Because each chromosome represents modulation and
coding modes of Nsch large-scale epochs, the performance of Nsch large-scale epochs should
be summed. So, the computational complexity of the improved genetic algorithm for
modulation coding method selection is CC2 = O(NcGNsch). As described in Section 3.3, in
a large-scale epoch, the average channel change should be less than a certain threshold, so
that the same modulation and coding mode can be allocated for the slots in this large-scale
epoch. In this way, the modulation and coding mode only needs to be scheduled once for
each large-scale epoch; so, the number of scheduled parameters will decrease, and com-
plexity of scheduling is reduced. Hence, the total complexity of prediction and scheduling
schemes is O(CC1 + CC2).

7. Performance Evaluation
7.1. Simulation Setting

Simulations are conducted to verify the effectiveness of the double-scale adaptive
transmission mechanism in terms of channel prediction and communication performance.
The proposed scheme and contrast schemes are evaluated through simulation under the
same parameters setting.

The channel state sequence is generated with large-scale and small-scale dynamics. In
each slot, the sender transmits one block for 2 s, and the block has 1000 symbols. Unless
otherwise specified, the simulation parameters are shown in Table 1.



Sensors 2021, 21, 2252 22 of 37

Table 1. Simulation parameters.

Parameter Value

Transmission distance 1 km
Acoustic speed 1500 m/s

Carrier frequency 10 kHz
bandwidth 5 kHz
Time slot 2 s
Block size 1000 symbols

Buffer Capacity 100 kb

Multiple sets of channel state series with large-scale and small-scale fluctuations are
generated by the superposition of multiple signal sources with the MATLAB toolbox.
The generated channel state series combines certain regularity and randomness, which
conforms to the channel state fluctuation characteristics described in the literature. For
example, if the component of large-scale fluctuation is ft, and that of small-scale fluctuation
is gt, the generated channel state series for simulation can be calculated as

ht = ft + gt + C, (67)

where C is the coefficient to adjust the mean value of the series so that the channel
state approximately satisfies the attenuation and distance relationship of the underwater
acoustic channel.

7.2. Channel Prediction Performance

Multiple sets of channel state series have been generated for simulation, and each
series has 3000 channel measurements. And the results of two sets of series will be shown,
which are called Data 1 and Data 2. The fluctuation of Data 1 is relatively regular, while the
varying of Data 2 is relatively complicated.

Figures 12 and 13 show the large-scale channel state prediction results of Data 1 and
Data 2, respectively. The predicted large-scale channel states are very close to the real
large-scale channel states. The root mean square error (RMSE) of large-scale channel state
prediction are 1.25 dB for Data 1 and 1.32 dB for Data 2, respectively. The results reveal
that the predicted large-scale channel states can reflect the channel trend in the future.

Figures 14–17 show the large-scale channel prediction performance of Data 1 corre-
sponding to the different lengths of storage series as training set and different lengths of
the sliding window. The longer the stored historical series is, the smaller the prediction
error is. When the stored historical series exceeds 2Tp, increasing the length of the reserved
series has a smaller effect on improving the prediction accuracy. However, the longer the
reserved historical series is, the more time the prediction consumes.
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Figure 12. Predicted large-scale channel state and real large-scale channel state of Data 1.

Figure 13. Predicted large-scale channel state and real large-scale channel state of Data 2.

As the length of the sliding window increases, the RMSE of prediction decreases
gradually. When the length of the sliding window exceeds 6, the RMSE of prediction almost
no longer decreases. The effect of the sliding window length on prediction performance
can be explained as follows. Each channel state value is affected by previous channel states.
In other words, the channel state might display certain time-delay effects on subsequent
channel states. Obviously, the larger the vector length is, the more information it contains.
Therefore, in order to cover the time-delay effects, the sliding window length n (number
of selected values) should be large enough. However, overly large length of the sliding
window may significantly increase computational complexity for prediction and lead to
overfitting, which may cause poor performance [48,49].

The small-scale channel state is predicted by the decomposition-based prediction
model and AR prediction separately. Figures 18 and 19 show the small-scale channel state
prediction results of Data 1 and Data 2, respectively. The RMSEs of decomposition-based
prediction is 15.7% and 9.2% lower than that of AR prediction for Data 1 and Data 2,
respectively. In the same epoch, channel states of the decomposition-based prediction
are relatively stable, while the predicted channel states of the auto-regression prediction
fluctuate violently.
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Sliding Window Length

Figure 14. Root mean square error (RMSE) of 1-step ahead prediction with different length of sliding
window and stored series.

Sliding Window Length

Figure 15. RMSE of 5-step ahead prediction with different length of sliding window and stored series.
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Sliding Window Length

Figure 16. RMSE of 15-step ahead prediction with different length of sliding window and
stored series.

Sliding Window Length

Figure 17. RMSE of 25-step ahead prediction with different length of sliding window and
stored series.
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Figure 18. Predicted small-scale channel state of Data 1 by the decomposition-based prediction
model and auto-regressive (AR) prediction.

Figure 19. Predicted small-scale channel state of Data 2 by the decomposition-based prediction
model and AR prediction.

In Figure 20, the performances of small-scale channel prediction by two methods are
shown for Data 1. The predicted small-scale channel state is used to determine the actual
transmission power. RMSE of decomposition-based prediction is smaller than RMSE of AR
prediction. The decomposition-based prediction shows better performance.

7.3. Data Transmission Performance Comparison

Four modulation and coding modes are used, which is indexed in order of increasing
rate, as shown in Table 2. Mode 0 refers to no transmission. The maximal amount of bits
that can be carried during one slot is computed based on the transmission mode with the
highest data rate, namely Mode 4, as 1000× 1/2× log216, where 1000 is the number of
symbols per block.

The double-scale adaptive transmission mechanism is compared with the contrast
schemes in terms of communication performance. Contrast schemes include combina-
tion adaptive transmission (AT), channel-based adaptive transmission, and buffer-based
adaptive transmission, as shown in Table 3. Each adaptive transmission scheme consists
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of an adaptive modulation coding strategy and a channel prediction method for power
regulation. Channel-based AMC schedules modulation and coding mode according to
the predicted channel state of next slot, as shown in Table 4. Buffer-based AMC schedules
modulation and coding mode based on the buffer state at the beginning of the transmitting
slot, as shown in Table 5. Both the predicted channel state and the buffer state are utilized
to determine modulation and coding mode in combination AMC, as shown in Table 6. In
Tables 4 and 6, ∆h = hmax − hmin.

Table 2. Modulation and coding modes.

Transmission Mode Modulation Methods Coding Rate

Mode 0 stop transmitting
Mode 1 BPSK 1/2
Mode 2 QAM 1/2
Mode 3 QAM 3/4
Mode 4 16QAM 1/2

Input vector length

Figure 20. RMSE of small-scale channel state prediction with different input vector length.

Table 3. Comparative schemes.

Adaptive Schemes Name AMC Strategy Channel Prediction Method

scheme 1 DSAT Energy-Efficient Transmission Decomposition-based Prediction algorithm
scheme 2 Combination AT Combination AMC AR Prediction algorithm
scheme 3 Channel-Based AT Channel-based AMC AR Prediction algorithm
scheme 4 Buffer-Based AT Buffer-based AMC AR Prediction algorithm

Table 4. Channel-based adaptive modulation and coding (AMC).

Channel State Mode

h ≤ hmin + 0.2∆h stop
hmin + 0.2∆h < h ≤ hmin + 0.4∆h Mode 1
hmin + 0.4∆h < h ≤ hmin + 0.6∆h Mode 2
hmin + 0.6∆h < h ≤ hmin + 0.8∆h Mode 3

h > hmin + 0.8∆h Mode 4
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Table 5. Buffer-based AMC.

Buffer State Mode

Buffer = 0 kb stop
0 kb < Buffer ≤ 5 kb Mode 1

5 kb < Buffer ≤ 15 kb Mode 2
15 kb < Buffer ≤ 25 kb Mode 3

Buffer > 25 kb Mode 4

Table 6. Combination AMC.

Condition Buffer ≤ 10 kb 10 kb < Buffer ≤ 30 kb Buffer > 30 kb

h > hmin + 2∆h/3 Mode 2 Mode 3 Mode 4
hmin + ∆h/3 < h ≤ hmin + 2∆h/3 Mode 1 Mode 2 Mode 3

h ≤ hmin + ∆h/3 stop Mode 1 Mode 2

When the packet arrival rate is 2 kb/slot, the predicted large-scale channel states
and the scheduled future modulation and coding modes of Data 1 and Data 2 are shown
in Figures 21 and 22, respectively. When the predicted channel state is good, the higher
modulation and coding mode is scheduled; otherwise, the lower modulation and coding
mode is adopted. The energy overhead of transmitting a certain amount of data in a good
channel state is smaller than that of sending when the channel state is bad. Therefore, in
order to improve energy efficiency, the transmitter should send more when the channel is
good, and send less or stop sending when the channel is bad.

(a) Original channel state and predicted large-scale channel state.

(b) Scheduled transmission mode

Figure 21. Scheduled transmission mode according to predicted large-scale channel state for Data 1.

In Figures 23 and 24, the energy cost per kb of all schemes are compared with data
arrival rate from 0.2 kb/slot to 1.0 kb/slot. Overall, compared with the comparison
algorithm, the energy cost of double-scale adaptive transmission is the lowest. In other
words, double-scale adaptive transmission achieves higher energy efficiency than contrast
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schemes. The good energy efficiency results from the reasonable schedule of modulation
and coding mode, as shown in Figure 21.

Figure 22. Scheduled transmission mode according to predicted large-scale channel state for Data 2.

DSAT Combination AT Channel-Based AT Buffer-Based AT

Figure 23. Average energy cost per kb of for comparative strategies (Data 1).
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Figure 24. Average energy cost per kb for comparative strategies (Data 2).

In Figures 25 and 26, the average buffer length of each scheme is shown with data
arrival rate from 0.2 kb/slot to 1.0 kb/slot. The average buffer length of DSAT is longer
than that of other schemes. This reflects that the transmitter often waits until the channel
is good. With the increase of the data arrival rate, the average buffer length of each
scheme increases.

DSAT Combination AT Channel-Based AT Buffer-Based AT

Figure 25. Average buffer length for comparative strategies (Data 1).
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Figure 26. Average buffer length for comparative strategies (Data 2).

In Figures 27 and 28, the average transmission delay of each scheme is shown with
data arrival rate from 0.2 kb/slot to 1.0 kb/slot. The average transmission delay of DSAT
is longer than that of other schemes. The average transmission delay of DSAT decreases
with the increase of data arrival rate, and the reason is as follows. When the data arrival
rate is very low, packets stay in the buffer until the channel state gets better, which makes
the average transmission delay relatively long. With the increase of data arrival rate, some
packets have to be transmitted, although the channel state is not good, in order to send a
predetermined amount of data. Thus, the average transmission delay will be reduced.

Figure 27. Average transmission delay for comparative strategies (Data 1).



Sensors 2021, 21, 2252 32 of 37

Figure 28. Average transmission delay for comparative strategies (Data 2).

7.4. Influence of Buffer Threshold

Through the simulation of Data 1, the impacts of buffer threshold on communication
performance is obtained. Based on the quantitative theoretical analysis of transmission
performance which is described in Section 6.1, the theoretical results of the impact of
buffer threshold on communication performance are obtained. The parameters of the
linearly varying channel state series used for theoretical analysis is as follows: h0 = 1 dB,
hm = 15 dB, t5 − t0 = 30 slots. Simulation results and theoretical analysis are presented.

Simulation results and theoretical analysis of the impact of buffer threshold and data
arrival rate on the average energy cost per kb are shown in Figures 29 and 30. The average
energy cost decreases as the buffer threshold increases, but the decrease becomes slower
and slower. After the buffer threshold exceeds a critical value, the average energy cost
hardly decreases. This critical value is positively correlated with the data arrival rate. The
buffer threshold can be set based on this critical value to improve energy efficiency and
prevent excessive delay.

Simulation results and theoretical analysis of the impact of buffer threshold and data
arrival rate on the average buffer length are shown in Figures 31 and 32. The average buffer
length increases rapidly with the increase of buffer threshold. Obviously, there is a strong
correlation between buffer threshold and average buffer length, which can be obtained
from theoretical analysis.

Simulation results and theoretical analysis of the impact of buffer threshold and data
arrival rate on the average transmission delay are shown in Figures 33 and 34. When the
data arrival rate is very low, the average delay increases rapidly with the increase of the
buffer threshold; when the data arrival rate is high, the average delay increases relatively
slowly as the buffer threshold increases. With a certain buffer threshold, the transmission
delay decreases as the data arrival rate increases. And this is consistent with the result of
theoretical analysis.
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Figure 29. Simulation results of the impact of buffer threshold and data arrival rate on the average
energy cost.

Figure 30. Theoretical results of the impact of buffer threshold and data arrival rate on the average
energy cost.

Figure 31. Simulation results of the impact of buffer threshold and data arrival rate on the average
buffer length.
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Figure 32. Theoretical results of the impact of buffer threshold and data arrival rate on the average
buffer length.

Figure 33. Simulation results of the impact of buffer threshold and data arrival rate on the average
transmission delay.

Figure 34. Theoretical results of the impact of buffer threshold and data arrival rate on the average
transmission delay.
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8. Conclusions

In this paper, a double-scale adaptive transmission mechanism has been proposed
for UASNs with time-varying channels. Firstly, the historical channel state series has been
decomposed into large-scale and small-scale series, which can then be predicted by a novel
k-nearest neighbor search algorithm with sliding window and auto-regressive algorithm,
respectively. Since only a few historical channel state series are needed for channel pre-
diction, the proposed mechanism can ensure the prediction performance with a greater
reduction of the computation complexity and the storage size. Then, an energy-efficient
transmission algorithm is designed to solve the problem of long-term modulation and
coding optimization, and an improved genetic algorithm is designed to accelerate the
convergence speed. With the theoretical analysis for the transmission impact of buffer
threshold adopted in our proposed mechanism, we have optimized the selection of buffer
length. Numerical simulation results show that the proposed methods achieve good per-
formance in terms of channel prediction and energy efficiency. The predicted large-scale
channel states can reflect the channel trend in the future, and the adaptive transmission
mechanism can significantly reduce the energy consumption of communication. Mean-
while, the simulation results of buffer threshold impact on average energy cost and average
transmission delay are consistent with the theoretical analysis. For our future work, we
will investigate the combination of the double-scale adaptive transmission mechanism and
media access control protocol to further improve the overall performance of underwater
acoustic sensor networks.
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