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Abstract: Robot grasping is an important direction in intelligent robots. However, how to help robots
grasp specific objects in multi-object scenes is still a challenging problem. In recent years, due to the
powerful feature extraction capabilities of convolutional neural networks (CNN), various algorithms
based on convolutional neural networks have been proposed to solve the problem of grasp detection.
Different from anchor-based grasp detection algorithms, in this paper, we propose a keypoint-based
scheme to solve this problem. We model an object or a grasp as a single point—the center point
of its bounding box. The detector uses keypoint estimation to find the center point and regress
to all other object attributes such as size, direction, etc. Experimental results demonstrate that the
accuracy of this method is 74.3% in the multi-object grasp dataset VMRD, and the performance on
the single-object scene Cornell dataset is competitive with the current state-of-the-art grasp detection
algorithm. Robot experiments demonstrate that this method can help robots grasp the target in
single-object and multi-object scenes with overall success rates of 94% and 87%, respectively.

Keywords: robot grasping; CNN; keypoint; multi-object scenes; Cornell dataset; VMRD

1. Introduction

Grasping is one of the main ways for robots to interact with the real world. Moreover,
robotic grasping is often used in industrial and service environments, such as warehouses,
homes, etc. In order to better achieve human-machine cooperation under household or
industrial scenes, it is important for service robots or industrial robots to be able to grasp
specified objects in complex scenes containing multiple objects. This requires three issues
to be solved: (1) how to accurately detect the category and grasps of objects in multi-object
scenes; (2) how to determine the belonging relationship between the detected objects and
the grasps; (3) how to obtain the executable grasp of the specified object. Human can stably
and accurately grasp a specific target even in a constantly changing environment, however,
it’s still challenging for robots to solve this problem. To grasp an object properly, the robot
should first accurately recognize it and determine the grasp type before grasping. Therefore,
we propose a new scheme to identify the grasps of a specific target in multi-object scenes.

Previous research works [1–6] focused on grasp detection in single object scenes.
This method does not need to distinguish the category of the object and directly detects
the grasping pose of the object. Moreover, on the Cornell dataset [2], the current state-
of-the-art grasping detection algorithm achieves an accuracy of 97.74% on image-wise
split and 96.61% on object-wise [6]. However, in practical applications, robots often face
multi-object scenes. For this problem, some studies [7–11] have been proposed to solve the
grasp detection in multi-object scenes. However, these studies only detect the grasping
and did not know the category of the grasped object, that is, what to see and what to
grasp. However, in reality, what is needed is to know how to grasp and what to grasp.
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Moreover, Zeng et al. [12] proposed a “grasp-first-then-recognize” framework. Instead
of first recognizing, it directly grasps an object from a bunch of objects, and then judges
its category. However, when used in scenes with many targets, the process of detecting
one by one limits the efficiency. Recently, Zhang et al. [13] proposed a region-of-interest
(ROI) based robot grasping detection algorithm ROI-GD, which has a good performance
in detecting the grasps of specific targets in multi-object scenes. However, like most
previous methods, ROI-GD uses an anchor-based detection method. This method relies
on excessive manual design, enumerating an almost exhaustive list of potential object
locations, and processing each location. This is wasteful, inefficient, and requires additional
post-processing. Moreover, because the location of anchor is not sufficient, there are
inherent shortcomings.

For robot grasping detection, a good grasping point determines a good grasping, and
only the correct grasping point can get the correct grasping. Therefore, we propose a new
robot grasping detection method based on keypoints. We model an object or a grasp as a
single point—the center point of its bounding box. The detector uses keypoint estimation
to find the center point and regress to all other object attributes such as size, direction, etc.
On the Cornell dataset, the accuracy of our scheme in image splitting and object splitting
is 97.12% and 95.89%, respectively, which is equivalent to the most advanced grasping
detection algorithm. In order to verify the effect of the scheme in multi-object scenarios,
we used the VMRD dataset [14] containing multi-object scenarios, which produced an
accuracy of 74.3%. As shown in Figure 1, our method is also applied to real robot grasping
tasks. UR5 is used as an actuator to complete the grasping task, in which the robot is
required to detect the grasping of specified objects, develop a grasping plan, and complete
the grasping step by step. In the single-object scene, the grasping success rate was 94%,
and in the multi-object scene, the grasping success rate was 87%.
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Figure 1. Robotic grasping environment.

In summary, contributions of this paper include:

• A new scheme of robot grasping detection based on keypoint, which is different from
the anchor-based scheme in the previous work, is proposed.

• A new network is proposed that detects objects and grasp at the same time and
matches the affiliation between them in multi-object scenes.

• A matching strategy of objects and grasps is proposed, which makes the result
more accurate.
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The rest of the paper is organized as follows: The related work is discussed in Section 2.
Our proposed approach is illustrated in Section 3. Detailed experiments setup is repre-
sented in Section 4. We present our results in Section 5, then conclude in Section 6.

2. Related Works

In previous works [15–17] model-based methods have taken a dominant position in
solving the problem of grasping. This method uses the complete 3-D model of the object
to model the grasping operation. Considering many constraints, an objective function is
established to optimize the stable grasping pose. However, the environment the robot faces
is unknown, and it is impossible to obtain a 3-D model of the object in advance.

In the real world, capturing RGB images is more convenient than reconstructing a
3-D model. Moreover, as the visual perception is more and more applied to the robot’s
grasping operation task [18–20], many works try to extract the target features that best
reflect the grasping characteristics from the visual information to guide the robot complete
the grasping operation of the target. Saxena et al. [18] extracted artificially designed image
features from the training data set, trained a grasping probability model, completed the
task of learning the target grasping point from the picture, and successfully applied it to the
actual field. Add the deep image features, Le et al. [19] realized the learning of multi-touch
point grasping of the target object. The algorithm clarified the contact point between each
finger and the target object, which can be extended to different multi-finger dexterous hand
grasping operations.

Recent years, deep learning has provided the possibility of detecting grasping directly
from RGB or RGB-D images with its powerful feature extraction and generalization capabil-
ities [20]. Lenz et al. [2] used two neural networks in series to detect the grasping position
in the RGB-D image. The first network has a small scale and is responsible for eliminating
candidate grasping positions with a low probability. The second network has a larger
scale and can extract more features, judge the remaining candidate positions, and obtain
the optimal grasping position. Redmon et al. [3] proposed a real-time and accurate grasp
detection algorithm based on convolutional neural network for RGB-D image data, which
can simultaneously realize the classification of the object to be grasped and the regression
of the grasping position. The algorithm can reach a processing speed of 13 frames per
second on the GPU. Kurma et al. [4] used the residual network as the feature extraction
layer, and trained the Uni-modal model using only RGB data and the Multi-modal model
using RGB-D data. Multi-modal uses two residual networks to extract color features and
depth features at the same time and achieves better detection results. Guo [5] et al. fused
the visual and tactile information in the grasping process, and propose a new hybrid neural
network to process multi-modal information and detect the optimal grasping position. The
author established a THU grasping dataset for model training and achieved good results.
Chu et al. [11] based on the RPN network (Region Proposals Network) proposed a model
that can be used to simultaneously determine the grasping position of multiple targets
in an RGB-D image and achieved good results. Depierre et al. [21] proposed a neural
network with a scorer which evaluates the graspability of a given position and introduce
a novel loss function which correlates regression of grasp parameters with graspability
score. Based on the Event-Stream dataset, Li et al. [22] develop a deep neural network for
grasping detection which consider the angle learning problem as classification instead of
regression. This work provides a large-scale and well-annotated dataset, and promotes
the neuromorphic vision applications in robot grasp. Zhou et al. [6] proposed the oriented
anchor box mechanism that assigns the reference rectangles with different default rotation
angles, which achieved the current best results on the Cornell dataset. The above are all
single-object scenes for the Cornell dataset, and some works involve grasping in scenes
with cluttered objects. Guo et al. [23] trained a deep network on a fruit dataset contain-
ing 352 RGB images to simultaneously detect the most exposed object and its best grasp.
However, their model can only output the grasp belonging to the most exposed object,
without the perception and understanding of the overall environment, which limits the
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use of algorithms. The algorithms proposed in [7–11] only focus on the detection of grasps
in densely and cluttered scenes, rather than what the grasped objects are. Vohra et al. [24]
proposed a method to estimates the object contour in the point cloud and predicts the grasp
pose along with the object skeleton in the image plane. Zhang et al. [13] proposed a robot
grasping detection algorithm ROI-GD based on a region of interest (ROI), which can detect
objects and their corresponding grasps at the same time and has better performance in
multi-object scenes.

Nowadays, methods based on deep learning have dominated, most of which are
anchor-based ideas and list a large number of candidate grasps. However, for humans, to
grasp an object, first determine the grasp point of the object instead of selecting a large
number of candidate grasps. Therefore, we propose a grasp detection algorithm based
on key-points.

3. The Proposed Method
3.1. Problem Formulation

For single-object scenes, the five-dimensional robot grasping representation proposed
by Lenz et al. [2] is widely used for grasping detection with parallel graspers. We use
this method in a single-object scene, and the five-dimensional grasp configuration g is
represented as follow:

g = (x, y, w, h, θ) (1)

where (x, y) corresponds to the center of grasp rectangle, h is the height of parallel plates,
w is the maximum distance between parallel plates and θ is the orientation of grasp
rectangle with respect to the horizontal axis [4]. As shown in Figure 2, an example has
been represented.
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To complete the task of grasping a specified object in multi-object scenes, we also need
to know the object to which the grasp belongs. We extended the five-dimensional robotic
grasp representation to including object class as follows:

g = (xgd, ygd, θgd, wgd, hgd, clsgd) (2)

where clsgd represents the object to which the grasp belongs.

3.2. Network Architecture

Our scheme consists of a feature extractor, object detector, grasps detector and other re-
lated attributes, as shown in Figure 3. Because the correctness of key points plays a decisive
role in the detection results, here we use several different fully convolutional encoder-
decoder networks as feature extractors. We tried stacked hourglass networks [25,26] and
deep layer aggregation (DLA) [27] in our experiments. Although the hourglass network is
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powerful, the network is quite large and slow, comprehensive speed and accuracy, choose
DLA-34.
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Our scheme is one-stage detector, which directly predict grasps and objects from the
feature maps generated by feature extractor. Let I ∈ RW×H×3 be an input image of width

W and height H. Our aim is to produce two keypoint heatmaps Ĥo(g) ∈ [0, 1]
W
S ×

H
S ×C one

prediction grasp and one prediction object, where S is the output stride to downsample the
output prediction (We use the default output stride of S = 4 in literature [26,28–32]) and C
is the number of object categories. A prediction Ĥo(g)_xyc = 1 corresponds to a detected
keypoint, while Ĥo(g)_xyc = 0 is background. Then regress to other attributes, for example,
w, h ∈ W

S ×
H
S × 4 contains the size of the object and the grasp; we use a classification

method for angles, so k in θ ∈ W
S ×

H
S × k represents the number of angle categories. if k is

equal to 6, the default rotation angles are 75◦, 45◦, 15◦, −15◦, −45◦ and −75◦. In addition,
we also corrected the offset caused by downsampling through o f f _p ∈ W

S ×
H
S × 4, and

fine-tuned the classified angle through o f f _θ ∈ W
S ×

H
S × 1.

3.3. Keypoint Estimate Mechanism for Training

We model an object or a grasp as a single point—the center point of its bounding
box. The detector uses keypoint estimation to find the center point and regress to all other
object attributes such as size, direction, etc. We predict two sets of heatmaps, one set for
object and the other for grasp. Each heatmaps has C channels, where C is the number of
categories, and is of size H

S ×
W
S . They have no background channel. Each channel is a

binary mask representing the center point of the object or grasp for a class. In the network,
the key-point estimation is done by Gaussian function. First, for each center point p ∈ R2

of the object or grasp, we calculate an equivalent point p̃ ∈ R2 after downsampling. Then
calculate an object size-adaptive standard deviation σp determined by the object size for
each point [25]. Finally, the center point of the object and grasp is scattered on the key-point

heatmap Ĥo(g) ∈ [0, 1]
W
S ×

H
S ×C by Gaussian kernel function. If two Gaussians of the same
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class overlap, we take the element-wise maximum [4]. The loss function of the training
keypoint heatmap uses the penalty-reduced pixel-wise logistic regression with focal loss
in [32]:

Lh = − 1
N

C

∑
C=1

H
R

∑
i=1

W
R

∑
j=1

{
(1−

∧
Hcij)

α

log (
∧

Hcij) i f Hcij=1

(1−Hcij)
β(
∧

Hcij)
α

log (1−
∧

Hcij) otherwise
(3)

Lh = − 1
N

C

∑
c=1

H
S

∑
x=1

W
S

∑
y=1

{
(1−

∧
Hxyc)

α

log (
∧

Hxyc) i f Hxyc=1

(1−Hxyc)
β(

∧
Hxyc)

α

log (1−
∧

Hxyc) otherwise
(4)

where α and β are hyper-parameters of the focal loss [32], and N is the number of keypoints
of the objects or grasps in image. The normalization by N is chosen as to normalize all
positive focal loss instances to 1. We use α = 2 and β = 4 in all our experiments, following
Law and Deng [25]. With the Gaussian bumps encoded in Hxyc, the

(
1− Hxyc

)
term

reduces the penalty around the ground truth locations.

3.4. Loss Function

Since we predicted two heatmaps of the objects and grasps, Lh contains two parts: Lh_o
used to predict the center of the objects and Lh_g used to predict the center of the grasps.

Lh = Lh_o + Lh_g (5)

Lh_o = −
1

No

C

∑
c=1

H
S

∑
x=1

W
S

∑
y=1

{
(1−

∧
Ho_xyc)

α

log (
∧

Ho_xyc) i f Ho_xyc=1

(1−Ho_xyc)
β(

∧
Ho_xyc)

α

log (1−
∧

Ho_xyc) otherwise
(6)

Lh_g = − 1
Ng

C

∑
c=1

H
S

∑
x=1

W
S

∑
y=1

{
(1−

∧
Hg_xyc)

α

log (
∧

Hg_xyc) i f Hg_xyc=1

(1−Hg_xyc)
β(

∧
Hg_xyc)

α

log (1−
∧

Hg_xyc) otherwise
(7)

When predicting keypoints, we downsampled the center point and rounded down
the coordinates of the points after downsampling. That is, a position (x, y) in the image
is mapped to position

( x
S , y

S
)

in the heatmaps where S is the downsampling factor. In
this way, when mapping from the heatmaps back to the input image, errors will occur,
which will have a greater impact on small objects. For this reason, we predict the keypoint
position offset o f f _p ∈ W

S ×
H
S × 4 to correct the position of the center point.

o f f _pk =
( xk

S
−
[ xk

S

]
,

yk
S
−
[yk

S

])
(8)

where o f f _pk is the offset of the objects center and grasps center, xk and yk are the x and y
coordinate in the image for center k.

We adopt L1 loss for regression loss.

Lo f f _p = − 1
No

No

∑
k=1

∣∣∣∣ ∧
o f f _pk − o f f _pk

∣∣∣∣− 1
Ng

Ng

∑
k=1

∣∣∣∣ ∧
o f f _pk − o f f _pk

∣∣∣∣ (9)

where No and Ng are the number of objects and grasps on a picture respectively. Since we
use the classification method to predict the angle θ, here we use cross entropy for training:

Lθ= −
Ng

∑
k=1

log
(

p(k)θ

)
(10)
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In order to improve the accuracy of the prediction, we also predict the angle offset
o f f _θk =

(
θ̂k − θk

)
and adopt L1 loss for regression loss.

Lo f f _θ = − 1
Ng

Ng

∑
k=1

∣∣∣∣ ∧
o f f _θk − o f f _θk

∣∣∣∣ (11)

For the size sk =
(

wk, hk
)

of the objects and the grasps, we use a single size prediction

Ŝ ∈ R
W
S ×

H
S ×2 to predict it and adopt L1 loss for regression loss.

Lw_h = − 1
No

No

∑
k=1

∣∣∣ ∧sk − sk

∣∣∣− 1
Ng

Ng

∑
k=1

∣∣∣ ∧sk − sk

∣∣∣ (12)

Finally, our loss function is defined as:

L = Lh + λw_hLw_h + λθ Lθ + λo f f _pLo f f _p + λo f f _θ
Lo f f _θ (13)

We set λw_h = 0.1, λo f f _p = 1 and λo f f _θ = 1 in all our experiments. In addition, the
angle is an important factor for grasps, so λθ = 1. Moreover, we use a single network to

predict the keypoint Ĥo(g), offset
∧

o f f _pk, angle θ̂ and size Ŝk. The network predicts a total
of 2C + (7 + k) outputs at each location, where k is the number of angle categories.

3.5. Matching Strategy

The purpose of post-processing is how to get the grasps of each object, so a good
matching strategy is obviously very important. Firstly, non-maximum suppression (NMS)
is performed on the detected objects and grasps to eliminate unnecessary detection results;
then the objects and grasps are grouped according to the category information of the objects
and grasps; then based on the following formula, remove the grasps that are less than
the threshold.

IOU =
Aod ∩ Agd

Aod ∪ Agd
(14)

where Aod is the area of the object detection rectangle and Agd is the area of the grasp
detection rectangle. Aod ∪ Agd is union of these two rectangles. Aod ∩Agd is the intersection
of these two rectangles. Finally, among the grasp candidates whose IOU exceeds a certain
threshold (we set IOU = 0.4), the grasp closest to the target center is selected as the
grasp configuration.

4. Experiments
4.1. Dataset

The algorithm proposed in this paper is faced with complex multi-object scenes. We
use the VMRD dataset [14] to verify the performance of the algorithm. Because a large
number of previous grasp detection algorithms are for single-object scenes, it is necessary
to verify the effect of the proposed algorithm in single-object scenes. Here we use Cornell
dataset [2] for verification.

The Cornell dataset [2] consists of 855 images (RGB-D) of 240 different objects,
and the ground truth tags are some graspable/non-graspable rectangles, as shown in
Figure 4a. We divided the training set and the test set into four to one and adopted the
object-wise splitting and the image-wise splitting criteria used in previous works [2] for
performance verification.

1. Image-wise split splits all the images of the dataset randomly into training set and
validation set. This is to test the generalization ability of the network to detect
new objects.

2. Object-wise split splits the object instances randomly into train and validation set.
The training and validation data sets do not have instances in the other’s dataset.
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That is, all pictures of the same instance are assigned to the same dataset. This is to
test the generalization ability of the network to new instances.
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Figure 4. Dataset example: (a) Examples of Cornell Dataset; (b) Examples of VMRD. The two sides are the object detection
results and the middle is the corresponding grasp detection results.

VMRD consists of 4233 train data and 450 test data (RGB images) as shown in
Figure 4b. This dataset contains 31 object categories and there are 2 to 5 stacked objects in
each image. Each object includes category information, bounding box location, the index
of the current object and indexes of its parent nodes and child nodes. Moreover, each
grasp includes the index of the object it belongs to, bounding box location. The affiliation
between the objects and the grasps is determined by the index. For example, as shown in
the left image of Figure 4b, the index of the glasses is 1, so all the grasps with index 1 in the
second image belong to the glasses.

Deep neural networks require a large amount of labeled data for training. However,
data is usually not easily available and labeling is usually expensive. The problem is
usually solved from two aspects. First, perform pre-training on a larger dataset. Second,
expand the dataset through data augmentation. In this paper, backbone of network are
initialized with ImageNet [27] pretrain. We use random flip, random scaling cropping, and
color jittering as data augmentation.

4.2. Implementation Details

Our network is implemented on PyTorch. GPUs used to train the network are all Tesla
T4 with 16 GB memory. We train with a batch-size of 32 (on 2 GPUs) and learning rate
5 × 10−4 for 70 epochs, with learning rate dropped 10× at 30 and 60 epochs, respectively.
We use Adam to optimize our schemes. For each of the scheme, we adopt the same training
regimen. The input resolution of the network is 512 × 512 and the feature map of 128 × 128
resolution is generated after feature extraction. Then fit the keypoints and regress to other
attributes based on the feature map.

After detecting the grasps from the RGB image, it is necessary to combine the depth
information to obtain the grasp point and the approaching vector. First find the coordinates
(xminD, yminD) of the smallest depth point within 5 pixels near the center point (x, y) of the
grasp box; then get a square area D with a side length of 10 pixels near point (xminD, yminD)
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from the depth map; then use the camera internal parameters to convert all the 2D pixel
coordinates in square area D into 3D coordinate points in the camera coordinate system
to obtain a point cloud P. Among them (xminD, yminD) converted 3D points are the final
grasp points. Then calculate the surface normal vector of the point cloud P, and find the
average n of all surface normal vectors. The approach vector is −n.

4.3. Metrics

For single-object scenes, we use the “rectangle-metric” proposed in [1] to evaluate
the network’s grasp detection ability. In this metric, a grasp that meets the following two
conditions is considered a good grasp:

1. the difference between the predicted grasp rotation angle and the ground-truth grasp
rotation angle is less than 30◦.

2. the Jaccard index of the predicted grasp and the ground-truth is more than 25%. The
Jaccard index for a predicted rectangle g and a ground-truth rectangle ĝ defined as:

J(g,
∧
g) =

Ag ∩ A∧
g

Ag ∪ A∧
g

(15)

where Ag is the area of predicted grasp rectangle and Aĝ is the area of ground-truth
grasp rectangle. Ag ∪ Aĝ is union of these two rectangles. Ag ∩ Aĝ is the intersection
of these two rectangles.

To compare with the previous algorithm, we use the (o, g) metric proposed by [13] to
evaluate the algorithm in the multi-object scenes. A detection (o, g) is considered a True
Positive when it meets the following conditions:

1. A detection (o, g) includes object detection result o = (Bo, Co) and top-1 grasp detection
result g, where Bo is the position of the object predicted by the network and Co is the
predicted category.

2. The object o is detected correctly, which means that the predicted category Co is the
same as ground-truth and the IOU between the predicted position Bo and ground-
truth is greater than 0.5.

3. The Top-1 grasp g is detected correctly, which means that the predicted Top-1 grasp
has a rotation angle difference less than 30◦ and Jaccard Index more than 0.25 with at
least one ground truth grasp rectangle belonging to the object.

5. Results
5.1. Validation Results on Cornell Dataset

In order to verify the algorithm proposed in this paper, first use the Cornell dataset
to verify the single-object scene. As shown in Table 1, the accuracy of previous work on
the Cornell dataset is list. Moreover, the verification results of this work on the Cornell
dataset are shown in Table 1 and Figure 5a. We achieved an accuracy of 96.05% and 96.5%
in image-wise and object-wise split. Compared with state-of-the-art algorithm [6], it is
competitive. Some error detections of the dataset are shown in Figure 5b. It can be seen
from the figure that these error detections are feasible for robot grasping. In other words,
the labeling of the dataset is not exhaustive. This also further illustrates the rationality of
our classification method for angle prediction.
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Table 1. Performance of different algorithm on Cornell Grasp Dataset.

Approach Algorithm
Accuracy (%)

Image-Wise Object-Wise

Jiang et al. [1] Fast Search 60.5 58.3
Lenz et al. [2] SAE, struct. reg. Two stage 73.9 75.6

Redmon et al. [3] AlexNet, MultiGrasp 88.0 87.1

Kumra et al. [4] ResNet-50 × 2, Multi-model
Grasp Predictor 89.21 88.96

Guo et al. [5] ZF-net, Hybrid network, 3 scales
and 3 aspect ratios 93.2 89.1

Chu et al. [11]
VGG-16 model 95.5 91.7

ResNet-50 model 96.0 96.1

Zhou et al. [6]
ResNet-50 FCGN 97.7 94.9
ResNet-101 FCGN 97.7 96.6

the proposed scheme keypoint-based scheme 96.05 96.5
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Figure 5. Prediction result: (a) Correct prediction result on Cornell Grasp Dataset; (b) Failures prediction result on Cornell
Grasp Dataset.

5.2. Validation Results on VMRD Dataset

For multi-object scenes, we use the VMRD dataset for verification. As shown in
Table 2, the results of our ablation experiments on the VMRD dataset are list. It can be
seen from the optimization process that the number of angle categories k has a greater
impact on the detection result. The value of k is negatively correlated with the angle
range corresponding to each angle category. The larger the angle range, the worse the
prediction accuracy, and the smaller the angle range, the better the prediction accuracy, but
the difficulty of learning increases. The comprehensive experimental result k is the best. In
addition, Focal Loss dynamically adjusts the Cross Entropy according to the confidence.
When the confidence of the correct prediction increases, the weight coefficient of loss will
gradually decay to 0, so that the loss function of model training pays more attention to
the hard cases, and a large number of easy examples contribute very little to it. So, we use
Focal Loss to improve the detection results.
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Table 2. Ablation experiment results on VMRD.

k 1 Loss mAPg (%) 2

6 Cross Entropy 57.3
9 Cross Entropy 64.2
12 Cross Entropy 69.3
18 Cross Entropy 72.6
18 Focal Loss 74.3

1 k: Number of angle categories. 2 mAPg: mAP with grasp.

As shown in Table 3, accuracy of the previous works and our proposed method on
VMRD Dataset are listed. Our proposed method yielded state-of-the-art performance of
74.3% mAPg. And as shown in Figure 6, the verification result is listed.

Table 3. Performance of different algorithm on VMRD.

Approach Algorithm mAPg (%)

Zhou et al. [13] Faster-RCNN [31] + FCGN [6] 54.5
Zhou et al. [13] ROI-GD 68.2

the proposed scheme keypoint-based scheme 74.3
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5.3. Robot Experiment

In our robot experiment, we use a UR5 robot with six degrees of freedom as the
executor. The UR5 robot can handle automated tasks up to 5 kg and has an extended radius
of 850 mm, which is perfect for lightweight collaborative processes. The grasping plane
and the robot base are on the same plane. The camera uses RealSense depth camera, which
is installed with eyes on hands. In the process of perception and inference, we use RGB
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images, and add depth information to the calibration process to calculate the grasp points
and approaching vector during the grasping process.

In this paper, the problem we want to solve is to grasp a specific object in a multi-
object scene. In order to test the performance of the network in the real world, we select
several objects and place them on the grasping plane chaotically to generate various multi-
object scenes. For each scene, we recognize and grasp the specified object. We try to
grasp each of objects 10 times and record the number of successes. There are ten kinds
of objects specifically used in the experiment, namely apples, bananas, wrist developer,
tape, toothpaste, wrenches, pliers, screwdrivers, knife and toothbrush. The experimental
results are shown in Table 4 and Figure 7. Accuracy of the previous works and our
proposed method on robot grasping experiment are shown in Table 5. In single-object
scenes, the overall success rates of our algorithm in prediction and execution are 98% and
94%, respectively. In multi-object scenes, the overall success rates of our algorithm in
prediction and execution are 94% and 87%, respectively.

Table 4. Robotic grasp experiment results.

Object
Single-Object Scenes Multi-Object Scenes

Prediction Grasping Prediction Grasping

Knife 8/10 8/10 7/10 7/10
Bananas 10/10 10/10 10/10 10/10

Toothbrush 10/10 9/10 10/10 8/10
Toothpaste 10/10 10/10 10/10 10/10
Wrenches 10/10 10/10 10/10 9/10

Wrist developer 10/10 10/10 8/10 7/10
Screwdrivers 10/10 8/10 10/10 10/10

Apples 10/10 10/10 10/10 9/10
Pliers 10/10 9/10 9/10 7/10
Tape 10/10 10/10 10/10 10/10

Accuracy (%) 98 94 94 87Sensors 2021, 21, x FOR PEER REVIEW 14 of 16 
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Table 5. Accuracy of different algorithm on robot grasping experiment.

Approach Algorithm
Accuracy (%)

Single-Object Scenes Multi-Object Scenes

Zhou et al. [13] ROI-GD 92.5 83.75

the proposed scheme keypoint-based scheme 94 87

6. Discussion

The limitation of this scheme is: in our algorithm, the specified object to be grasped
must meet the condition of not being covered by other objects. When the specified object is
below another object, our algorithm can detect the grasps but cannot perform the grasping
operation successfully because direct grasping will damage the above object. In this case,
if we know the operational relationship between the objects, we can move the objects
above the specified object in order, and then grasping the specified object. This avoids
damage to the above objects. Therefore, it is important to know the operational relationship
between objects.

7. Conclusions and Future Work

We propose a keypoint-based grasp detection algorithm, which models the objects
and grasps as a point and regresses to all other object attributes, such as size, direction,
etc. Experimental results demonstrate that the accuracy of this method is 74.3% and
96.05% in the multi-object grasp dataset VMRD and single-object grasp dataset Cornell
dataset, respectively. Through the analysis of the failure prediction result of the Cornell
dataset, we found that these failure detection results are still a good grasp because the
dataset annotation is not exhaustive. The results show that this algorithm is specifically
competitive with the state-of-the-art grasp detection algorithm in single-object scenes, and
it performs better in multi-objects scenes. Robot experiments demonstrate that this method
can help robots grasp the target in single-object and multi-object scenes with success rates
of 94% and 87%, respectively.

In future work, the design of the representation form of the operational relationship
between overlapping objects and how to efficiently detect the operational relationship
between objects are our research focus. These are the keys to achieve grasps in overlap-
ping scenes.

Author Contributions: T.L. designed and performed the experiments; F.W. contributed the scientific
issues and the research ideas; T.L. and C.R. wrote and revised the paper; Y.J. and J.L. provided
hardware support and supervised experiments. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported in part by the Foundation of National Natural Science Foun-
dation of China under Grant 61973065, 52075531, the Fundamental Research Funds for the Central
Universities of China under Grant N182612002.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2021, 21, 2132 14 of 15

References
1. Jiang, Y.; Moseson, S.; Saxena, A. Efficient grasping from RGBD images: Learning using a new rectangle representation.

In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011;
pp. 3304–3311.

2. Lenz, I.; Lee, H.; Saxena, A. Deep Learning for Detecting Robotic Grasps. Int. J. Robot. Res. 2013, 34, 705–724. [CrossRef]
3. Redmon, J.; Angelova, A. Real-time grasp detection using convolutional neural networks. In Proceedings of the 2015 IEEE

International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 1316–1322.
4. Kumra, S.; Kanan, C. Robotic grasp detection using deep convolutional neural networks. In Proceedings of the 2017 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 769–776.
5. Guo, D.; Sun, F.; Liu, H.; Kong, T.; Fang, B.; Xi, N. A hybrid deep architecture for robotic grasp detection. In Proceedings of the

2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 1609–1614.
6. Zhou, X.; Lan, X.; Zhang, H.; Tian, Z.; Zhang, Y.; Zheng, N. Fully Convolutional Grasp Detection Network with Oriented Anchor

Box. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5
October 2018; pp. 7223–7230.

7. Levine, S.; Pastor, P.; Krizhevsky, A.; Ibarz, J.; Quillen, D. Learning hand-eye coordination for robotic grasping with deep learning
and large-scale data collection. Int. J. Robot. Res. 2016, 37, 421–436. [CrossRef]

8. Gualtieri, M.; Pas, A.T.; Saenko, K.; Platt, R. High precision grasp pose detection in dense clutter. In Proceedings of the 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 598–605.

9. Jeffrey, M.; Ken, G. Learning deep policies for robot bin picking by simulating robust grasping sequences. In Proceedings of the
1st Annual Conference on Robot Learning, PMLR, Mountain View, CA, USA, 13–15 November 2017; Volume 78, pp. 515–524.

10. Mahler, J.; Matl, M.; Liu, X.; Li, A.; Gealy, D.; Goldberg, K. Dex-net 3.0: Computing robust robot suction grasp targets in point
clouds using a new analytic model and deep learning. In Proceedings of the IEEE International Conference on Robotics and
Automation, Exhibition Center, Australia, 21–25 May 2018; pp. 1–8.

11. Chu, F.-J.; Xu, R.; Vela, P.A. Real-World Multiobject, Multigrasp Detection. IEEE Robot. Autom. Lett. 2018, 3, 3355–3362. [CrossRef]
12. Zeng, A.; Song, S.; Yu, K.T.; Donlon, E.; Hogan, F.R.; Bauza, M. Robotic Pick-and-Place of Novel Objects in Clutter with Multi-

Affordance Grasping and Cross-Domain Image Matching. In Proceedings of the 2018 IEEE International Conference on Robotics
and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 3750–3757.

13. Zhang, H.; Lan, X.; Bai, S.; Zhou, X.; Tian, Z.; Zheng, N. ROI-based Robotic Grasp Detection for Object Overlapping Scenes.
In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macao, China, 4–8
November 2019; pp. 4768–4775.

14. Zhang, H.; Lan, X.; Zhou, X.; Tian, Z.; Zhang, Y.; Zheng, N. Visual manipulation relationship network for autonomous robotics.
In Proceedings of the 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids), Beijing, China, 6–9
November 2018; pp. 118–125.

15. AMiller, A.T.; Allen, P.K. Graspit! a versatile simulator for robotic grasping. Robot. Autom. Mag. IEEE 2004, 11, 110–122.
16. Pelossof, R.; Miller, A.; Allen, P.; Jebara, T. An SVM learning approach to robotic grasping. In Proceedings of the IEEE International

Conference on Robotics and Automation, New Orleans, LA, USA, 26 April–1 May 2004; Volume 4, pp. 3512–3518.
17. Bohg, J.; Morales, A.; Asfour, T.; Kragic, D. Data-driven grasp synthesis—A survey. IEEE Trans. Robot. 2014, 30,

289–309. [CrossRef]
18. Saxena, A.; Driemeyer, J.; Ng, A.Y. Robotic grasping of novel objects using vision. Int. J. Robot. Res. 2008, 27, 157–173. [CrossRef]
19. Le, Q.V.; Kamm, D.; Kara, A.F.; Ng, A.Y. Learning to grasp objects with multiple contact points. In Proceedings of the Robotics

and Automation(ICRA) 2010 IEEE International Conference, Anchorage, Alaska, 3–8 May 2010; pp. 5062–5069.
20. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
21. Depierre, A.; Dellandréa, E.; Chen, L. Optimizing correlated graspability score and grasp regression for better grasp prediction.

arXiv 2020, arXiv:2002.00872.
22. Li, B.; Cao, H.; Qu, Z.; Hu, Y.; Wang, Z.; Liang, Z. Event-based Robotic Grasping Detection with Neuromorphic Vision Sensor and

Event-Stream Dataset. arXiv 2020, arXiv:2002.00872.
23. Guo, D.; Kong, T.; Sun, F.; Liu, H. Object discovery and grasp detection with a shared convolutional neural network. In

Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May
2016; pp. 2038–2043.

24. Vohra, M.; Prakash, R.; Behera, L. Real-time Grasp Pose Estimation for Novel Objects in Densely Cluttered Environment. arXiv
2020, arXiv:2001.02076.

25. Law, H.; Deng, J. Cornernet: Detecting objects as paired keypoints. In Proceedings of the European Conference on Computer
Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 734–750.

26. Newell, A.; Yang, K.; Deng, J. Stacked hourglass networks for human pose estimation. In European Conference on Computer Vision;
Springer: Cham, Switzerland, 2016; pp. 483–499.

http://doi.org/10.1177/0278364914549607
http://doi.org/10.1177/0278364917710318
http://doi.org/10.1109/LRA.2018.2852777
http://doi.org/10.1109/TRO.2013.2289018
http://doi.org/10.1177/0278364907087172
http://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442


Sensors 2021, 21, 2132 15 of 15

27. Yu, F.; Wang, D.; Shelhamer, E.; Darrell, T. Deep Layer Aggregation. In Proceedings of the 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 2403–2412.

28. Cao, Z.; Simon, T.; Wei, S.E.; Sheikh, Y. Real-time multi-person 2d pose estimation using part affinity fields. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 7291–7299.

29. Papandreou, G.; Zhu, T.; Kanazawa, N.; Toshev, A.; Tompson, J.; Bregler, C.; Murphy, K. Towards accurate multi-person pose
estimation in the wild. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu,
HI, USA, 21–26 July 2017; pp. 4903–4911.

30. Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks? arXiv 2014, arXiv:1411.1792.
31. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster rcnn: Towards real-time object detection with region proposal networks. arXiv 2015,

arXiv:1506.01497.
32. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell.

2017, 99, 2999–3007.


	Introduction 
	Related Works 
	The Proposed Method 
	Problem Formulation 
	Network Architecture 
	Keypoint Estimate Mechanism for Training 
	Loss Function 
	Matching Strategy 

	Experiments 
	Dataset 
	Implementation Details 
	Metrics 

	Results 
	Validation Results on Cornell Dataset 
	Validation Results on VMRD Dataset 
	Robot Experiment 

	Discussion 
	Conclusions and Future Work 
	References

