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Abstract: In an autonomous driving assistance system (ADAS), top views effectively represent
objects around the vehicle on a 2D plane. Top-view images are therefore widely used to detect lines
in ADAS applications such as lane-keeping assistance and parking assistance. Because line detection
is a crucial step for these applications, the false positive detection of lines can lead to failure of the
system. Specular reflections from a glossy surface are often the cause of false positives, and since
certain specular patterns resemble actual lines in the top-view image, their presence induces false
positive lines. Incorrect positions of the lines or parking stalls can thus be obtained. To alleviate this
problem, we propose two methods to estimate specular pixels in the top-view image. The methods
use a geometric property of the specular region: the shape of the specular region is stretched long in
the direction of the camera as the distance between the camera and the light source becomes distant,
resulting in a straight line. This property can be used to distinguish the specular region in images.
One estimates the pixel-wise probability of the specularity using gradient vectors obtained from
an edge detector and the other estimates specularity using the line equation of each line segment
obtained by line detection. To evaluate the performance of the proposed method, we added our
methods as a pre-processing step to existing parking stall detection methods and investigated changes
in their performance. The proposed methods improved line detection performance by accurately
estimating specular components in the top-view images.

Keywords: specularity estimation; line detection; gradient vector

1. Introduction

Perspective geometry of a camera causes planar surfaces such as a parking-lot floor
to distort into peculiar shapes. Inverse perspective mapping [1] is a method to correct
these irregularities that have been caused by factors such as lens distortion, and imaging
geometry by employing an appropriate nonlinear mathematical model. Top-view images,
also known as a bird’s-eye view images, generated using the inverse perspective mapping
have been widely used in autonomous driving assistance system (ADAS) applications.
Because the top-view image provides an elevated view of objects from above, users can
easily recognize empty spaces or objects around the vehicle. In conjunction with line
detection methods, the top-view images play an important role in line keeping and parking
assistance systems. A line response map used for line detection is a filtered image to
enhance line elements in the top-view image. To obtain the line response map, two
approaches are generally used: edge filter-based [2–10] and line filter-based [11–17]. Both
approaches generate the line response map by using the characteristics of a line with a
convex intensity profile distinct from the background of the image. The line is then detected
from the line response map using a random sample consensus (RANSAC) [8,9,11,12,17,18],
Hough transform [3–7,16,19,20], or Radon transform [2,13]. The process described above
has been successful in many line detection studies. However, the existing line detection
methods produce false detection results when specular reflections are present on the
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ground, because the specular reflections in the image are similar to that of actual lines. As
shown in Figure 1, specular regions generated by light sources form long straight lines.
This phenomenon makes line detection very difficult, especially on glossy surfaces on
which large bright specular regions form easily. Compounding the problem, some specular
patterns produce stronger responses than actual lines in conventional detection methods,
because they are much brighter than actual parking lines.

(a)

(b)

Figure 1. Examples of specularity in top-view images: (a) indoor parking lot and (b) outdoors on a
wet road. The left image is the raw image and the right image is the top-view image.

Although researchers have previously tried to remove specular regions from im-
ages [21–28], they have focused on distinguishing the specular regions from the back-
ground by using intensity or color profiles. Data-driven deep learning-based methods
have recently been applied to this problem [29,30], but these methods are not feasible as
a pre-processing step, because they require high-end graphic cards to ensure a real-time
processing. The deep neural network with 1.9 million parameters takes about 20 ms and
120 ms to produce outputs for 256 × 256 input images with NVIDIA GTX Titan X GPU
and Intel i7-6700K CPU, respectively [31]. Since widely used backbones such as VGG
16 or ResNet have more than 20 million parameters, in the line detection applications,
the computational cost of the pre-processing might become much higher than that of the
main processing. Hence, characteristics of the specular reflections must be investigated to
overcome these obstacles.

In general, light sources such as traffic lights, street lights, car headlights, and indoor
lighting in parking buildings tend to have oval-shaped specular regions on the floor when
they are reflected by an inhomogeneous surface [32]. The distance between a light source
and an observer affects the shape of specular regions. As the distance becomes greater,
its shape stretches toward the observer such as a stretching shadow. If the distance is
sufficiently great, a specular region on the ground resembles a line toward the camera in a
top-view image. Morgand et al. [33–35] empirically modeled this phenomenon under the
name JOint LIght-MAterial Specularity (JOLIMAS), to investigate the way in which a point
light source forms a conic shaped specular region, using the Phong model [36].

Two pre-processing methods are proposed to identify false lines due to the reflected
light from the light source on the glossy floor by using a geometric property that the
specular region appears as a straight line toward the camera in the top-view image. The
first generates a probability map that is part of the specularity. Specifically, considering
the camera location in the top-view image, the possible direction of specularity can be
identified, and at this time, the probability that the pixel is a specular is calculated using
gradient vector indicating the direction of intensity changes around the pixel. The second



Sensors 2021, 21, 2079 3 of 19

directly applies the geometric property of the specularity to line segments, producing a
binary output. False line segments generated by specularity are filtered by investigating a
direction of each line segment. Although this method needs processed data as an input,
it incurs a low computational burden, and the results of the detection are intuitive. We
applied our methods to existing parking stall detection methods as a pre-processing step.
Manually collected outdoor and indoor sequences were used to investigate the changes in
quantitative performance of the line detection of these methods. There are two versions of
each parking stall detection method: one is the original version and the other is an enhanced
version, including our methods for suppressing specularity. Our two methods improved
the line detection performance in real-world applications. To the best of our knowledge,
ours is the first attempt to tackle this issue in ADAS applications. The contributions of this
paper are as follows:

1. The geometric property of specularity is used to identify specular pixels. We tried to
use the orientational characteristic of the specularity in the image to overcome the
limitations of color-based approaches in the line detection.

2. Two methods which can be applied to the line detection using the top-view image are
presented. Our two methods estimate the specularity using the intermediate outputs
of line filter-based and edge-based line detection approaches.

3. The proposed methods were tested using real-world applications and environments.
We applied our methods to existing parking stall detection methods, to demonstrate
that our methods can remove artifacts caused by the specularity in various environ-
ments.

The rest of the paper is organized as follows. Related studies into removing specular
regions from images are summarized in Section 2. Section 3 explains the properties of
specular regions and describes the proposed specularity estimation methods. Section 4
presents the experimental results, and the paper is concluded in Section 5.

2. Related Works

The existing literature addressing the problem of false detection caused by specular-
ity can be categorized into two approaches: threshold-based [21–28] and deep learning-
based [29,30].

2.1. Threshold-Based Approaches

These approaches use the intensity or color property of specular regions in images.
They are assumed to be outliers with color values distinct from those of other objects in
the image.

Saint-Pierre et al. [21] presented a method to remove specular regions in thoracoscopic
images. The saturation value of an HSV (hue, saturation, value) channel is used in a pre-
processing, to enhance the specular elements in the image. Subsequently, the bump part at
the end of the histogram of each RGB (red, green, blue) channel is considered specular.

Tchoulack et al. [22] tried to extract specular regions in endoscopic images via a
threshold value obtained from the maximum intensity values in grayscale images and
saturation values in the HSV color space.

Chang et al. [23] removed glossy reflections in the portrait photography. This method
finds a face region in the photograph using a skin color information. A threshold value is
then determined using the maximum and minimum values in the YCbCr color space.

Karapetyan and Sarukhanyan [24] proposed a method to detect specular regions in
endoscopic images. Each histogram of local patches obtained from a sliding window is
used to determine an adaptive threshold value. For more precise results, this method
refines the detected specular region using information about its size and shape.

Morgand and Tamaazousti [25] used the HSV color space to detect specular regions.
As a pre-processing step, iterative contrast equalization is performed to make the average
intensity value of the image less than a pre-defined intensity value. Next, two threshold
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values, one calculated from the saturation channel values and the other calculated from the
value channel, are applied to identify the specular regions.

Guo et al. [27] presented a method to suppress specular regions in endoscopic im-
ages. The method uses grayscale images and creates binary images using a predefined
threshold to extract the specular regions. A dilation technique is then used to refine the
extracted regions.

Silva et al. [28] performed contrast enhancement using the maximum and minimum
values for grayscale images as a pre-processing step for detecting specular regions. The
specular regions are extracted using a threshold value obtained from the statistical infor-
mation of the image.

Li et al. [26] used two reference images, sparse and highlight, to provide specularity
information. The sparse image obtained using robust principal component analysis (RPCA)
contains a rough estimation of the specular region and the highlight image indicates the
predicted specular region using two threshold values. If a similarity between the sparse
and highlight image exceeds a certain threshold, the raw image is reconstructed from
low-rank image acquired using RPCA. If not, iterative optimization using adaptive RPCA
is applied to modify low-rank and sparse images.

2.2. Deep Learning-Based Approaches

These approaches have been reported more recently than the threshold-based ap-
proaches. Various types of a network have been designed for different applications. Back-
bones of the network have been shown to generate more powerful features to distinguish
objects than traditional hand-crafted features.

Rodriguez-Sanchez et al. [29] used two segmentation networks to extract specular
regions in the image. The first network extracts specular regions, and second network
reconstructs the extracted specular regions.

Funke et al. [30] proposed a SpecGAN based on a generative adversarial network
(GAN) specialized for removing specular regions from images. The SpecGAN adds self-
regularization loss to make the generator only change the specularity region. Some of the
terms of cycle consistency loss have been adopted to achieve a similar effect to the paired
training.

The deep learning-based methods are state-of-the-art approaches that are widely used
for computer vision applications such as object detection, classification, and semantic
segmentation. They could be applied to classify specular regions based on trained features
of convolutional neural networks. However, aside from the computational issue, the deep
learning-based methods have a critical drawback that they can produce unexpected results
for the input with different characteristics from the training dataset [37,38]. The threshold-
based approaches are suitable for the pre-processing, due to their low computational
cost. However, it is impossible to distinguish between specular regions and objects with
similar color properties. If the specular regions reflected on the glossy floor have the same
brightness or color as the surrounding objects in the parking lot or clearly distinguished
parking lines, it is difficult to solve with the existing methods based on the thresholding. To
address this problem, we propose new methods to distinguish the specular regions using
the geometric property of the specularity. The proposed methods are highly effective for
detecting lines in images with specular regions.

3. Proposed Method

Our proposed methods use a geometric clue; the specular regions are stretched toward
the camera. Although this geometric clue can be observed in any scene captured by a
camera, we set our target domain as top-view images. We chose this domain because the
location of the camera in the top-view image can be obtained in generating the top-view
image, and the specular regions are overstated in top-view images and can significantly
hinder the line detection. In this section, the geometric property of specularity is explained,
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and the way in which we implement this concept to estimate specularity is discussed
in detail.

3.1. The Geometric Property of Specularity

From a macroscopic point of view, there are two terms used to describe reflection:
specular or diffuse. Specular reflection means that the light rays reflect at the same angle as
the angle of incidence, whereas diffuse reflection means that the light rays scatter equally
in every direction. In real-world situations, both types are ideal and rarely happen in
isolation. Reflections from most existing materials have mixed characteristics, being neither
completely specular nor completely diffuse. Phong [36] empirically modeled reflections
using specular and diffuse terms. According to the model, a reflection from a glossy surface
such as a wet road or a floor coated with the epoxy or concrete, which is slightly rough
at a microscopic level, is very close to the specular reflection but has a small amount of
scattering (Figure 2).

Figure 2. An illustration of reflection from a glossy surface.

Since specularity caused by this reflection produces a striking effect in the image,
many researchers have tried to detect and remove this effect, as mentioned in Section 2.
However, there is a limitation to what can be achieved. Using only the color properties
of the reflection, objects with a color similar to that of the specular region cannot be
distinguished. To solve this problem, we handle specularity from a geometric point of
view, considering the JOLIMAS model, in which the shape of the specularity based on
Phong’s model is analyzed. In the JOLIMAS model, the shape of the specular region is an
orthogonal projection of a virtual sphere located at a point symmetrical to the light source
relative to the ground (Figure 3), in which a conic section generally forms. The major axis
of the specular region can be calculated as

d = l1 − l2 = h1{tan(θ + α)− tan(θ − α)} = 2h1r
√

L2 + (h1 + h2)2 − r2

(h1 + h2)2 − r2 , (1)

where

d is the major axis of an ellipse from the projection of the virtual sphere,
θ is the reflection angle of the ray emitted from the center of the light source,
L is the horizontal distance between the virtual sphere and the camera,
r is the radius of the virtual sphere,
l1 is the horizontal distance between the camera and the vertex farthest away from
the camera,
l2 is the horizontal distance between the camera and the vertex closest to the camera,
h1 is the height between the camera and the surface,
h2 is the height between the virtual sphere and the surface,
a is angle between two lines; one is a tangent line to the virtual sphere from the
camera and the other is a line passing through the center of the virtual sphere from
the camera.
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Light source

Camera

Surface

Virtual sphere

Figure 3. Length of the major axis according to the position of the light source and camera.

Since d increases as L increases, the specular region stretches toward the camera
direction in the image, while retaining its width. A length of d in the image changes
according to a projection angle between the image plane and camera plane. This length is
proportional to cosine θ and maximized when θ is zero; this represents the top-view image.
Because the inverse perspective mapping removes a perspective effect caused by different
depths of objects [39], the specular region which looks like a slightly stretched ellipse in
the oblique-view image appears as a very long straight line in the top-view image.

3.2. Pixel-Wise Specularity Estimation

Because the intensity values and profiles of the lines and specular regions are very
similar, the latter can induce false line detection results. The specularity inducing the
false line detection has a linear shape due to a long distance between the camera and light
source. According to the geometric property discussed in Section 3.1, its orientation is
directed toward a camera location in the top-view image. Since the camera location in
the top-view image can be obtained during the extrinsic calibration process to define a
geometric relationship between the camera and ground plane, we do not need an additional
step to acquire the camera location in the top-view image. Therefore, we can predict all
possible stretched directions of the specularity at a certain pixel. This is an important clue
to distinguish specular pixels and non-specular pixels. If a pixel is specular, a local gradient
around the pixel should be similar to the gradient of the possible specularity. These two
gradients can be obtained using intensity changes of adjacent pixels and direction of the
possible specularity as depicted in Figure 4.

Due to the quantization error caused by the process of generating top-view images
and the non-spherical shape of the light source, it is difficult to determine specular pixels
discretely. Therefore, a probability map indicating pixel-wise probability that a pixel is
specular is generated to fill this gap. The information from the probability map is then
used to suppress specular pixels. There can be many possible applications using this map
to suppress specular pixels. As an example, we describe how to apply this probability map
to other applications in Section 4. A flowchart of the way in which the probability map is
generated is depicted in Figure 5.
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Camera location

in the top-view image

Direction of possible speculairty

Gradient of the possiblespeculairty

Local gradient around thepixel

Pixel

Figure 4. Example of a local gradient around the pixel and gradient of the possible specularity.

Extracting gradient
Calculating gradient

of possible specularity

Calculating the probability 

of specular pixels

Gray image

Specularity

probability map

Figure 5. A flowchart of the probability map generation to estimate specular pixels.

3.2.1. Extracting Gradient

To obtain a local gradient around a pixel, vertical and horizontal gradient maps are
first extracted by applying a 3 × 3 Sobel filter to a grayscale top-view image. This process
can be expressed using the following equations:

Eh = G ~ Sh, Ev = G ~ Sv, (2)

where Eh is the horizontal gradient map, Ev is the vertical gradient map, G is the grayscale
top-view image, Sh is a Sobel horizontal edge detector, and Sv is a Sobel vertical edge
detector. Then the gradient vector NI(x) at pixel x = (u, v) is calculated as

NI(x) =
( Eh(x)√

Eh(x)2 + Ev(x)2
,

Ev(x)√
Eh(x)2 + Ev(x)2

)
. (3)

NI(x) is a 2D vector indicating the direction of the local gradient around the pixel x.
The NI(x) is used to distinguish specular pixels in subsequent work.
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3.2.2. Calculating Gradient of Possible Specularity

Specularity appears as radial lines centered on the camera position in the top-view
image. This geometric property gives us a clue with which to distinguish between specular
and non-specular pixels. The gradient vector of the possible specularity at a certain pixel
can be calculated using the camera location. However, as shown in Figure 6, a straight line
can have one of two gradient vectors: positive or negative. Therefore, one specular line
can have either positive gradient or negative gradient vector according to the direction of
intensity changes. To take this into account, we calculate the two gradient vectors, N+

R (x)
and N−R (x), from the possible specularity direction at pixel x. These two vectors are defined
by following equations:

N+
R (x) =

( v√
(u− uc)2 + (v− vc)2

,
u√

(u− uc)2 + (v− vc)2

)
,

N−R (x) =
( −v√

(u− uc)2 + (v− vc)2
,

−u√
(u− uc)2 + (v− vc)2

)
,

(4)

where (uc, vc) is the pixel location of the camera in the top-view image.

x

y

Negative gradient

(dx < 0, dy < 0)

Positive gradient

(dx > 0, dy > 0)

Figure 6. Two types of gradient for a line segment.

3.2.3. Calculating the Probability of Specular Pixels

A probability map P(x) represents the probability of a specular pixel at location x. A
2D Gaussian function is used to calculate the probability, as follows:

Gσ(‖x−m‖) = exp
(
−
( (u−mu)2

2σ2
u

+
(v−mv)2

2σ2
v

))
, (5)

where m = (mu, mv) is the mean and σ = (σu, σv) is the standard deviation of x. To
generate the probability map, we consider not only the gradient vectors obtained, but also
the local spatial continuity, because the specular pixels form a straight line of a specific
width. The concept of a bilateral filter [40] was adopted to combine the spatial and gradient
information. Consequently, the equations calculating the values of the positive and negative
probability maps, P+(x) and P−(x), are defined as follows:

P+(x) =
1

Ws
∑

xi∈S
Gσs(‖xi − x‖)Gσn(‖NI(xi)−N+

R (xi)‖), (6)
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P−(x) =
1

Ws
∑

xi∈S
Gσs(‖xi − x‖)Gσn(‖NI(xi)−N−R (xi)‖), (7)

Ws = ∑
xi∈S

Gσs(‖xi − x‖), (8)

S = {x|x : (u, v), (uo − w) ≤ u ≤ (uo + w), (vo − w) ≤ v ≤ (vo + w)}, (9)

where (uo, vo) is the center of a predefined window, w indicates half of the predefined
window size, Ws is a normalization term which limits the range of the probability values
from 0 to 1, and σs = (σs

u, σs
v) and σn = (σn

u , σn
v ) are constant vectors selected manually to

adjust the size of each Gaussian kernel. According to the type of an application, the two
probability maps can be used separately or in combination.

We generated probability maps using synthetic and real images for qualitative evalu-
ation. The set operation ‘or’ was used to combine the positive and negative probability
maps. The combined probability maps are depicted in Figure 7; the red pixels indicate
higher probabilities of being specular pixels than blue pixels. The probability map helped
to identify the specular pixels correctly.

(a) (b)

Figure 7. An example of applying probability maps: (a) synthetic images and (b) real images. The
first row shows the raw images and the second row shows pseudo colored probability maps.

We qualitatively compared the proposed probability map with the results of other exist-
ing specularity detection methods (Figure 8). The methods published by Morgand et al. [25],
Chang et al. [23], Li et al. [26], and Silva et al. [28] were used for the comparison; in Li’s
method [26], we used the result of specular highlight detection (highlight images) for the
comparison. These methods assume that specularity has an intensity value distinct from
that of other objects in the image and determine threshold values using statistical infor-
mation about pixel intensity values. Thresholding is applied to extract specular regions
from the image. Although the main target of the alternate methods is slightly different
from that of our work, which detects the edge of the specularity, this comparison makes it
clear that the color-based approaches cannot be directly applied to the line detection. Since
the color-based methods have a lower power to discriminate between the specularity and
white bumper or parking lines, they remove details which must be preserved for the line
detection. However, the proposed probability map correctly estimates most specularity
edges, while preserving the edges of the white parking lines. This comparison indicates
that the geometric property of specularity is effective in distinguishing specular from non-
specular pixels. Because this result shows the superiority of our method for line detection,
we did not perform additional comparisons using color-based approaches.
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(a) (b) (c) (d) (e) (f)

Figure 8. Results of qualitative evaluation for specularity detection: (a) raw image, (b) Morgand et al. [25],
(c) Chang et al. [23]. (d) Li et al. [26], (e) Silva et al. [28], and (f) proposed.

3.3. Line-Segment-Level Specularity Estimation

In the previous section, we described the process of generating the probability map
to estimate specular pixels. To apply this map to other applications, gradient information
is required to calculate the probability of specularity of each pixel. Since the line filter-
based methods do not use edge detector to extract line responses, the pixel-wise specularity
estimation cannot be directly applied to these methods. To address this issue, we developed
a line-segment-level specularity estimation using line segments, which is the intermediate
output of the line filter-based methods. For this estimation, the line equation of each line
segment is used to determine specularity. If a line passes through the center location
of the camera, the corresponding line segment is regarded as specular. To consider the
quantization error described in the previous section, we give an extra margin to a tolerance
range used for this estimation. Specularity can be determined as follows:

S(i) =

{
1, if vc −M ≤ li(uc) ≤ vc + M
0, otherwise

, (10)

where S indicates specularity, i is the index of line segments, li is the line equation of
the ith line segment, (uc, vc) is the camera location in the top-view image, and M is a
pre-defined margin.

4. Experiments

To evaluate the performance of the proposed methods, we applied them to existing
parking stall detection methods [8,15] as a pre-processing stage. Because there is no
publicly available database for evaluating parking stall detection performance, a private
database was constructed from images captured in parking lots with various patterns
and environments. This database consists of indoor and outdoor parking lot sequences
with rectangular parking stalls and was captured with a fisheye camera with 720 × 480
resolution and 30 fps mounted on the rear bumper of a vehicle. To avoid data duplication,
each sequence was subsampled once every 15 frames. The parking scenario and parking
place were changed to obtain various situations and specular patterns as shown in Figure 9.
We collected 12 sequences: six sequences were taken outdoors and the rest were captured
indoors. The viewpoint of the database was changed to top-view at 400 × 300 resolution;
one pixel in the top-view image corresponds to 2 cm in the real world. The dataset
specifications are summarized in Table 1.
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(a)

(b)

Figure 9. Example images: (a) outdoor and (b) indoor.

Table 1. Dataset characteristics.

Sequence Number # of Images Environment Specularity

1 56 Outdoor Absent
2 58 Outdoor Absent
3 48 Outdoor Absent
4 60 Outdoor Absent
5 37 Outdoor Absent
6 44 Outdoor Absent
7 42 Indoor Present
8 99 Indoor Present
9 52 Indoor Present
10 44 Indoor Present
11 41 Indoor Present
12 87 Indoor Present

4.1. Performance Evaluation Metrics

The two proposed methods focus on detecting elements caused by specularity in
the intermediate output generated during the line detection process. The pixel-wise
probability map provides probabilistic information for the edge of a specular region, and
the line-segment-level estimation identifies specular line segments among detected line
segments generated by the line detection. Since the goal of these two methods is not to
estimate all specular regions, the performance of existing parking stall detection methods
was measured by comparing junction detection results when the proposed specularity
suppression methods were applied at the pre-processing stage, and when it was not.
Let us define the junction as an intersection between a horizontal and vertical parking
lines. Assume that we have detected a junction by using a parking stall detection method.
Junctions located within a 10-pixel radius from the ground truth are considered to be
positive, and all others are negative. Because the quality of top-view images degrades as
the distance increases from the camera, we only consider junctions close to the camera
in the performance evaluation. Junctions whose distance from the camera is less than
200 pixels in the y-axis are our main target (Figure 10). The well-known definitions of
precision and recall are used as performance metrics. These measures are calculated as:
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Precision =
# of ground truth in positive samples

# of positive samples
,

Recall =
# of ground truth in positive samples

# of ground truth samples
.

(11)

Figure 10. Example image for quantitative evaluation. The target region is green, and the non-target
region is red.

4.2. Quantitative Analysis
4.2.1. Implementations

We reproduced two existing parking stall detection methods: Lee’s method [15]
and Suhr’s method [8]. These methods were implemented as described in the original
paper, with missing values filled with values chosen to produce similar results to the
original paper.

Lee’s method adopts the line-filter-based approach to detect parking lines in the top-
view image. It generates a line response map from the grayscale image using a top-hat filter.
Since this filter is symmetrical and designed to extract center points of a parking line with
a certain thickness, gradient information is not obtained during this process. It is, therefore,
redundant to apply an additional edge filter to generate the specularity probability map. In
this case, the line-segment-level estimation can be used to filter out specularity. We added
this process between the clustering and line segment combining processes, as depicted
in Figure 11a. Line segments acquired from the clustering process are inspected to filter
the specularity. Then, the filtered line segments considered to be non-specular are passed
to the next process. The filtering process incurs a low computational cost because it uses
information already obtained—the line equation and line segments—from the clustering
process; all that remains is to solve a linear equation to determine specularity.

Suhr’s method is an edge-based parking line detection method using positive and
negative gradients. Since this method obtains gradient information to extract the line
response, the probability map can be generated from this intermediate output. Specularity
suppression using the probability map is applied to the process of guide line detection.
Grayscale images and Sobel filters are used for the extraction of positive and negative
gradients. RANSAC is then applied to each the positive and negative gradient map to
detect guide lines, with the specularity suppression process placed between the gradient
extraction and RANSAC processes, as depicted in Figure 11b. At the voting stage in
RANSAC, different weight values are allocated, according to the probability of pixels
being specular.



Sensors 2021, 21, 2079 13 of 19

Top hat filtering Combining line segments

Specularity filtering

Clustering (D-DBSCAN)

(a)

Gradient extraction

(positive and negative)

Guide line detection

(RANSAC)
Segment lines detection

Suppressing specular pixels

(b)

Figure 11. Flowcharts of (a) Lee’s method [15] and (b) Suhr’s method [8] with added specularity
suppression and filtering. The black box is the original process, and the red box indicates the addition
of our method.

4.2.2. Quantitative Results

Table 2 summarizes the quantitative results using Lee’s method [15] for 12 sequences
with different specularity patterns and environments. In Table 2, ‘enhanced’ means that
our specularity estimation was applied and ‘baseline’ means that it was not applied. These
terms are also used in Table 3 later.

Table 2. Quantitative results using Lee’s method [15].

Sequence Number Precision (Baseline) Precision (Enhanced) Recall (Baseline) Recall (Enhanced)

1 49.43% 57.46% 85.53% 86.18%
2 49.37% 56.52% 82.98% 82.98%
3 70.94% 79.12% 85.21% 85.21%
4 54.81% 57.81% 82.22% 82.22%
5 40.28% 50.60% 75.22% 75.22%
6 100.00% 100.00% 93.33% 93.33%
7 60.75% 83.33% 76.47% 76.47%
8 53.16% 70.79% 69.23% 69.23%
9 57.29% 72.26% 67.07% 68.29%

10 55.80% 65.25% 85.56% 85.56%
11 55.36% 71.59% 72.09% 73.26%
12 50.20% 80.00% 62.12% 62.63%
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Table 3. Quantitative results using Suhr’s method [8].

Sequence Number Precision (Baseline) Precision (Enhanced) Recall (Baseline) Recall (Enhanced)

1 53.24% 53.86% 98.94% 98.94%
2 67.49% 67.32% 93.20% 93.20%
3 70.11% 69.92% 98.47% 98.47%
4 33.49% 33.53% 98.60% 98.60%
5 38.29% 37.17% 96.59% 97.16%
6 53.82% 53.82% 97.78% 97.78%
7 83.52% 83.33% 89.41% 91.18%
8 38.13% 37.75% 75.00% 78.30%
9 69.01% 67.79% 35.98% 73.78%

10 83.33% 83.78% 86.11% 86.11%
11 77.85% 76.51% 67.44% 73.84%
12 56.73% 77.81% 14.75% 69.25%

The enhanced version has precision values improved by up to 29.8% in most sequences.
This result indicates that our method successfully detects specularity and reduces false
positives. Since the indoor sequences contain specularity, the enhanced version shows
better performance in these images. However, the proposed approach also shows higher
precision when applied to the outdoor sequences. If the specularity filtering worked as
intended, there should be no difference in precision and recall for the outdoor sequences,
which do not contain specularity. A discrepancy arises because of the distortion caused by
objects standing perpendicular to the ground in the top-view image. Although in theory
the background is different, the edges of these objects are also oriented towards the camera
location, in the same manner as specularity [8]. Therefore, line segments generated from
these objects are filtered out by the specularity filtering. Examples of this case are presented
in first and fourth columns in Figure 12a,b.

Figure 12 shows the detection results for outdoor and indoor sequences. The false
positives generated by car bumpers or specularity are removed by the proposed specularity
filtering. The filtering does not affect most true positives; the parking lines detected by the
baseline approach are also detected in the enhanced version. This finding implies that our
line-segment-level specularity estimation can be successfully applied to line filter-based
approaches without significant additional computational cost.

There was no improvement for recall, because Lee’s method finds all line segments in
the top-view image. Lee’s method combines the line segments by considering geometric
constraints. Then, the structural information containing a distance between adjacent junc-
tions and each direction of line segments from a connected junction is used to detect parking
stalls. In this algorithm, specularity filtering cannot help in finding missing true positives
in line detection. However, it may be important for parking stall detection. Comparing the
fifth column in Figure 12c,d, the enhanced version provides more distinguishable structural
information about actual parking stalls; the approach implicitly assists in the estimation of
parking stall structure.

To test the effectiveness of the proposed pixel-wise specularity estimation, we applied
it to Suhr’s method [8] for guide line detection, to suppress specular pixels. The result of
quantitative evaluation is presented in Table 3. It shows that the Suhr’s method becomes
robust to the specularity by using our probability map to estimate specular pixels. In all
indoor sequences, recall values were the same as or better than the baseline. The recall
increased significantly, from 35.98% to 73.78% for 9 sequences, and from 14.75% to 69.25%
for 12 sequences. Two versions of Suhr’s method produced very similar recall and precision
in outdoor sequences with no specularity (Figure 13a,b). The results using outdoor and
indoor sequences implies that the specularity suppressing process using the proposed
probability map has very little effect on non-specular pixels and suppresses most of the
specular pixels in the top-view image.
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(a)

(b)

(c)

(d)

Figure 12. Comparison of junction detection results using Lee’s method [15]: (a) outdoor (base-
line), (b) outdoor (enhanced), (c) indoor (baseline), and (d) indoor (enhanced). Solid blue lines are
true positives and solid red lines are false positives. Dots indicate the junction of two connected
line segments.

However, the recall of the enhanced version is almost same as that of the baseline in
some indoor sequences. This phenomenon occurs because Suhr’s method locates parking
stalls by sequentially detecting two types of lines: guide lines and segment lines. Suhr’s
method first detects a guide line and then finds segment lines based on the detected guide
line information. To detect the guide line, his method uses RANSAC and considers a line
with the maximum inlier ratio to be a guide line. This scheme shows different performance
according to the pattern of specularity. If specular pixels are widely scattered and form
many short lines, the line response of the actual parking line is dominant over specularity.
In this case, the baseline correctly detects the guide line, and recall is the same in both
versions, as shown in first and second column of Figure 13c,d. The baseline has a very weak
guide line detection performance for a specularity pattern in which specular pixels are
densely gathered to form a strong straight line. The third to fifth columns of Figure 13c,d
show the cases where the baseline fails to detect a correct guide line due to the strong
specularity. The enhanced version therefore shows noticeably improved recall only in
the 9 and 12 sequences captured from the environment in which long straight specularity
is present.

ROC curves were calculated by changing the threshold for adjusting the sensitivity of
segment line detection. Figure 14a,b are ROC curves for outdoor and indoor sequences,
respectively. The enhanced version shows similar performance to the baseline in outdoor se-
quences and better performance in indoor sequences. The same tendency is seen in Table 3,
indicating that our method successfully estimates specular pixels in the top-view image.
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(a)

(b)

(c)

(d)

Figure 13. Comparison of junction detection results using Suhr’s method [8]: (a) outdoor (baseline),
(b) outdoor (enhanced), (c) indoor (baseline), and (d) indoor (enhanced). Solid green lines are
detected guide lines. Solid blue lines are true positives and solid red lines are false positives.

(a) (b)

Figure 14. ROC curve comparison between the ’baseline’ and ’enhanced’ Suhr’s method [8] without
and with the proposed method: (a) outdoor sequences and (b) indoor sequences.

4.2.3. Running Time

We measured the running time for generating the probability map and for line-
segment-level estimation. All source code is written in C/C++ and runs on a Ryzen7
2700X CPU with 64 GB memory. Generating the probability map takes about 13 ms for
processing the 400 × 300 top-view image. This process can take less time if we take advan-
tage of a multi-core environment. In the case of line-segment-level estimation, it requires
too little computation to measure processing times. Since our methods run far beyond the
real time, these methods can easily be adopted as a pre-processing step for various ADAS
applications that use top-view images.
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5. Conclusions

We proposed specularity estimation methods that can be used as a pre-processing step
in line detection applications using top-view images. The geometric property of specularity
was used to overcome the limitation of the color-based approach, with which white lines
and specular regions cannot be distinguished. The pixel-wise specularity estimation can be
applied to edge-based approaches, and the line-segment-level specularity estimation can be
applied to line-filter-based approaches. For quantitative evaluation, we used 12 manually
collected sequences and two existing parking stall detection methods. The quantitative
results showed that our methods successfully estimate specularity and improve the line
detection performance in the environment with specularity, while maintaining performance
in the environment without specularity. Despite the two existing methods adopt different
approach to detect parking stalls, the proposed methods can detect the specularity using
the intermediate output of each these approaches. All of the processes to generate the
probability map are completed within 13 ms for 400 × 300 image, and the line-segment-
level estimation has a much lower computational cost. Our specularity estimation methods
can therefore be widely applied to existing line detection methods. In future studies, we
intend to set a hyperparameter such as standard deviation, to generate the probability map
adaptively, using a mathematical approach, to make our methods more generic.
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