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Abstract: We implement a peer-to-peer (P2P) energy trading system between prosumers and con-
sumers using a smart contract on Ethereum blockchain. The smart contract resides on a blockchain
shared by participants and hence guarantees exact execution of trade and keeps immutable transac-
tion records. It removes high cost and overheads needed against hacking or tampering in traditional
server-based P2P energy trade systems. The salient features of our implementation include: 1. Dy-
namic pricing for automatic balancing of total supply and total demand within a microgrid, 2. pre-
vention of double sale, 3. automatic and autonomous operation, 4. experiment on a testbed (Node.js
and web3.js API to access Ethereum Virtual Machine on Raspberry Pis with MATLAB interface), and
5. simulation via personas (virtual consumers and prosumers generated from benchmark). Detailed
description of our implementation is provided along with state diagrams and core procedures.

Keywords: smart contract; peer-to-peer energy trading; blockchain; Ethereum; dynamic pricing;
microgrids

1. Introduction

With the introduction of renewable energy resources, traditional energy consumers are
becoming “prosumers” who use photovoltaic panels or wind power generators to generate
energy and make profit by selling the surplus energy after consumption to neighboring
consumers. The direct energy trade among prosumers and consumers is called peer-to-peer
(P2P) energy trading. A node participating in a P2P energy trading system stores generated
energy in an energy storage system (ESS) and the smart meter may record change of energy
due to generation, consumption, out-flow and in-flow.

However, without intervention by the trusted third party, it is impossible or hard to
guarantee trust between participants, determine the price of energy trading, or fulfill the
agreement automatically or forcibly in conventional P2P energy trading systems [1]. In
addition, these server-based systems are vulnerable to hacking and tampering unless costly
firewalls are installed. The cost and maintenance overheads resulting from this security
enforcement may be formidably high for small-scale P2P trading within a microgrid. We
leverage blockchain technology [2] to remove the cost and the overhead while guaranteeing
integrity of trading records. The salient features of our P2P energy trading system are
as follows:

(1) Dynamic pricing for automatic balancing of total supply and total demand within a
microgrid: We assume that our energy trading system within a microgrid will help
prosumers and consumers to trade small amounts of energy in each short trading
period, for example, an hour. Under this assumption, it would be cumbersome for
prosumers and consumers to bid or ask in every trade for each period. To avoid this
hassle, in our system, a single price is determined for each period as a function of total
demand and total supply submitted. The price increases/decreases per each period
depend on the ratio of total demand over total supply. The increased/decreased
price will encourage/discourage supply/demand for prosumers (consumers) in the
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next trading period. The speed of convergence is adjustable for faster convergence
or stable operation through manipulation of the pricing formula. This mechanism
will help our trading system automatically achieve equilibrium (total supply = total
demand) or operate close to it without any intervention by a third party.

(2) Prevention of double sale: Since energy is traded online, it is imperative to guar-
antee that the same energy is not sold more than once. For this, we introduce an
energy ownership structure and implement it inside a smart contract [3] on Ethereum
blockchain [4]. The energy ownership structure guarantees integrity for every state
change of energy: “Injected”, “On-board for sale”, “Matched” and so on. Change
of states is only allowed for qualified participants and protected from any hacking
or tampering by any unauthorized party. For example, injection of energy is only
verified by DSO (distribution system operator) and hence only the DSO is qualified
to update the corresponding state with its private key. Traditionally, the DSO is re-
sponsible for almost everything for trading on the energy market and is vulnerable to
hacking or tampering. In our system, we replace the DSO by Ethereum blockchain as
much as possible, excluding indispensable parts such as transmission, confirmation of
injection and pricing policy. Matching, payment, prevention of double sale, et cetera,
are automatically and forcefully executed by a smart contract, free from hacking
or tampering.

(3) Automatic and autonomous operation: The trading procedure is implemented as a
smart contract on Ethereum and hence trade in each period is performed automatically
and autonomously. At the start of each trading period, prosumers and consumers
send request_to_sell and request_to_buy, respectively, to the smart contract. The
consumers deposit enough money to cover their purchase to the smart contract. The
smart contract collects all the requests and computes an energy price according to a
preset formula. Matching and clearing are also performed by the smart contract. Thus,
all the procedures are automatic and autonomous, requiring neither intervention of
third parties nor costly firewalls. The smart contract performs as an escrow between
prosumer, consumer and DSO to ensure that the promised transaction is actually
delivered. In our current implementation, the DSO is responsible for transmission
and withdrawal of power. The DSO uses its private key to create a digital signature
which guarantees transmission and withdrawal of power. As for payment, the smart
contract performs as an escrow to verify the delivery of power by the DSO and to
ensure that the payment is done accordingly.

(4) Experiment on a testbed: Many known works in the literature on trading on blockchain
sketch their schemes without actual implementation. We perform an experiment on
a testbed using Raspberry Pis as prosumers, consumers and a DSO. All nodes have
their own virtual machine called Ethereum Virtual Machine (EVM) [5] on which a
smart contract is executed. Prosumers, consumers and DSO use Node.js and web3.js
API to control Geth (a command line interface to access EVM). The GUI is built with
MATLAB [6].

(5) Simulation via persona: We borrow from existing energy production and consumption
data to create virtual prosumers and consumers to experiment on our testbed. We
generate personas in such a way that they respond to price increase/decrease to
increase/decrease supply or decrease/increase demand, correspondingly. Their
behaviors are programmable to suit any scenario.

The rest of the paper is organized as follows: In Section 2, we summarize related
works. Our P2P energy trading system with dynamic pricing mechanism and state diagram
is presented in Section 3. Implementation on a private Ethereum blockchain is described
in Section 4. The experiment using a testbed with persona is shown in Sections 5 and 6
concludes this paper.
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2. Related Works
2.1. Pricing Models

The double auction is a mechanism involving both buyers and sellers, which simul-
taneously participate in the bidding process and are allocated individual shares of the
resource [7]. An aggregator communicates with the other agents about the supply, demand
and bidding price that each buyer is willing to pay and implements a distributed double
auction algorithm to determine price. Asynchronous double auction mechanism, another
double auction model proposed in [8], can be used as a P2P energy trading technique. The
matching priority and the prices are determined by the amount of energy and bidding
price possible between a preset upper limit and a lower limit. In double auction models, all
participants manually bid or ask, which may be cumbersome or time-consuming.

Several dynamic pricing models are proposed for smart grids: quadratic cost func-
tion (QCF) [9], usage-based dynamic pricing (UDP) [10], distributed demand response
(D2R) [11] and distributed dynamic pricing (D2P) [12]. QCF [9] uses a neural network for
piecewise QCF. If this model is applied to pricing, the microgrid decides the price only
depending on the supply. As a result, consumers may have to pay higher prices even
though the total demand within the microgrid is low. In UDP [10], real-time pricing is
performed as a quadratic function with energy demand as a variable during peak hours.
Otherwise, the price is fixed. In [11], the price is the k-square of energy demand. The cost
incurred by consumers depends directly on the energy demand even though the microgrids
have excess surplus energy to serve. As a result, consumers may not consume more energy,
even at lower prices, thus wasting excess surplus energy.

To consider both supply and demand, in [12], real-time pricing is performed from
the minimum price and the difference between total supply and total demand. The price
decreases with an increase in the supply from the prosumers while the demand from the
consumers is either fixed or decreased. On the other hand, the price increases with an
increase in the demand, while the supply is either fixed or decreased. Thus, prosumers
and consumers can control supply or demand according to the price. However, the price is
determined only depending on the difference. So, the price may be the same whether the
ratio of demand over supply changes or not, if the difference remains same.

Going on further from the proposed D2P model, Chekired, Khoukhi and Mouftah [13]
propose a pricing model that considers both the difference and the ratio between the total
demand and total supply in round t. The dynamic real-time price changes according to
the variation in the difference and the ratio by using exponential and arctangent functions.
However, this pricing model is not very adaptive to the change in demand/supply ratio as
we show in Section 3. We devise a dynamic pricing scheme which is more adaptive and
adjustable in controlling the speed of convergence to equilibrium (total demand = total
supply). Details will be provided in Section 3.

2.2. Blockchain Technology

Blockchain [14] is a distributed ledger over a P2P network where the encrypted data
is shared and recorded to all participating nodes in a chronological order. The transactions
are collected into a block when they are considered valid through a validation process
known as a proof of work (POW). Ethereum [4] is a programmable blockchain for building
decentralized applications, allowing anyone to write smart contracts [3]. In Ethereum we
can create our own arbitrary rules for ownership, transaction formats and station transition
functions. In this paper, we implement a smart contract-based P2P energy trading system
on Ethereum blockchain.

The smart contract is a blockchain-based program that encodes the conditions for
fulfillment of an agreement between participants. It automatically executes the agreement
when the conditions are met. It can be written in Solidity language [15] and can be built on
top of the Ethereum platform. It should be more like an autonomous agent that resides
in the Ethereum execution environment. Thus, it always executes a specific code when a
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message or transaction is transmitted and has direct control over its own balance and its
own key/value store to keep track of persistent variables [4].

The term transaction is used in Ethereum to refer to a signed data package that stores
records on the blockchain and is sent from an externally owned account. If the smart
contract is mined to a block, residing on the blockchain, it has a unique address (the smart
contract address). It is of the same type as the externally owned account and controlled by
the smart contract code. All nodes can execute the smart contract function by sending a
transaction referring the smart contract address. When the smart contract address receives
a transaction, its code activates, allowing it to read from or write to internal storage and
perform various actions.

In addition, the smart contract has an object called event. The event is an abstraction
of the Ethereum logging/event-watching protocol. Log entries provide the smart contract
address, a series of up to four topics and some arbitrary length binary data [15]. If an
event is called by the smart contract, all nodes can detect and watch the event because they
run and share the same state of the smart contract. Thus, participating nodes execute the
function and action in accordance with the results of the smart contract event.

2.3. Blockchains in Energy Trading

R. Skowronski [16] proposed open-trade through blockchain and a hierarchy-based
control of flows for the first time. R. Skowronski [17] tackles the problematics of aiding
cyber-physical systems through blockchain-based VMs (Virtual Machines).

Priwatt [18] is a decentralized P2P energy trading system, which provides anonymous
communication channels and the means to form agreements without trusting other parties
by using Bitmessage [19] and multi-signature techniques. It is built upon Bitcoin [20]
blockchain. The system can be applied to the microgrids. The nodes participating in the
network are assumed to be prosumer, consumer and distribution system operator (DSO),
which confirms injection of energy and is responsible for actual transmission of energy
ensuing trade.

When a prosumer injects the surplus energy to sell, the DSO sends a private message
to the prosumer with two secret keys which verify the prosumer’s ownership and can
be used as a lock to prevent double spending. Participants use auction panel and send a
private message to negotiate energy trading. When matching between a prosumer and a
consumer is complete, the energy agreed for the sale is locked and the prosumer creates a
2-of-3 multi-signature transaction that requires two out of three signatures (i.e., prosumer,
consumer and DSO) to be executed.

Then the consumer specifies the input tokens and signs the transaction. After receiving
the payment, the prosumer sends the energy ownership to the consumer [18]. In the Priwatt
system, if there is a dispute between participants, DSO mediates the issue to resolve. In
addition, trading procedures such as payment, change of energy ownership and execution
of trading contracts are not implemented automatically because the system is based on the
Bitcoin system.

In our system, based on Ethereum, we devise a dynamic pricing algorithm which
balances between demand and supply within a microgrid. We also design a state diagram
for our energy trading procedure. We implement our dynamic pricing algorithm and
trading procedures in a smart contract on Ethereum. The smart contract in our Ethereum
implementation removes any disputes and executes energy trading procedures automati-
cally. It also prevents double sale problems by keeping the changes in energy ownership as
trading is performed inside a structure array embedded in the smart contract, and hence is
free from any tampering.

Personas are archetypal users who embody the goals and aspirations of real users
in an easy-to-assimilate and personable form [21]. They have attributes that represent a
specific person or group and act like them. Recently, personas have been widely used for
designing user experiences.
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In our study, we set up virtual personas that act according to given conditions related
to energy trading. They act as prosumers or consumers and make virtual transactions
in the system. The prosumers’ supply depends on the prices. Furthermore, demands of
consumers varies depending on the price. Using these virtual personas, simulation of the
pricing model proposed in this study is performed.

3. The Proposed P2P Energy Trading System with Dynamic Pricing
3.1. Dynamic Pricing

The main objective of our dynamic pricing algorithm is to balance supply and demand
among prosumers and consumers within a microgrid. For example, if total demand in a
trading round exceeds the total supply, then the price of each energy unit will be increased
to discourage demand. Our dynamic pricing enables our energy trading system to reach
equilibrium in which total supply matches total demand within a microgrid. For microgrids
of small or medium size, we find bidding algorithms [7,8] unpractical since they require
human monitoring and involvement per each trading period (e.g., 1 h or 30 min) for small
amounts of energy. Instead, we choose to use one price per each trading round, which
is determined only on the total supply and total demand submitted at the start of each
trading period.

Let us denote total supply and total demand at the start of trading round t as ES(t)
and ED(t) as shown in Equations (1) and (2):

ES(t) =
np

∑
i=1

Si(t) (Si(t) ≥ 0) (1)

ED(t) =
nc

∑
j=1

Dj(t)
(

Dj(t) ≥ 0
)

(2)

where Si(t) is the supply of prosumer i; Dj(t) is the demand of consumer j; and np and nc
are the numbers of prosumers and consumers.

R(t) and D(t) denote the ratio and the difference between total demand and total
supply, respectively, as in Equations (3) and (4).

R(t) =
ED(t)
ES(t)

(3)

D(t) = ED(t)− ES(t) (4)

Chekired, Khoukhi and Mouftah [13] have proposed a dynamic real-time pricing
using R(t) and D(t) as in Equation (5).

p(t) =
{

tan−1
(

eD(t)
)
+

(
tan−1R(t)

)10
}
+ pmin (5)

We observe from (5) that if total supply (ES(t)) greatly exceeds total demand (ED(t)),
the price is reduced to pmin, which is the minimum price (usually imposed by the DSO
or the management of the microgrid to cover basic expenses for generating energy). The
price p(t). varies between (pmin,

(
π
2
)
+ (π

2 )
10 + pmin). To conform to pricing guides by

electrical companies, it uses exponential and arctangent functions, keeping the resulting
price in a given interval [13]. The price is increased rather slowly until demand greatly
exceeds supply. The price curve is not suitable for our purpose of balancing the demand
and supply since the curve is not symmetric. Later we will compare our dynamic pricing
algorithm against this pricing.
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3.2. The Proposed Dynamic Pricing Algorithm

Our dynamic pricing algorithm is represented in Equation (6) and Figure 1.

p(t) =
2
π
(pcon)·tan−1((ln R(t))k) + pbalance (6)

Figure 1. Comparison of our pricing model (solid red line) with (k = 3) against Chekired et al. [13] (dotted blue line), with
pbalance = 100, pcon = 30. (a) R(t) =

(
10−1, 101) (b) R(t) =

(
0.2× 10−2, 5× 102).

pbalance is a price when total demand is equal to total supply (R(t)=1). We use pcon to
determine the range of price (pbalance − pcon, pbalance + pcon).

Since lim
R(t)→0

tan−1
(
(ln R(t))k

)
= −π

2 and lim
R(t)→∞

tan−1
(
(ln R(t))k

)
= π

2 , the price

p(t) ranges from pbalance − pcon to pbalance + pcon. If total demand matches total supply,
in other words, R(t) is 1, p(t) is set to pbalance. In this way, we may choose the balance
price as well as the minimum price and the maximum price. We think that one price per
trading round reduces the burden of prosumers and consumers. They may choose their
own way in reacting to this price change. They may increase supply or reduce demand
according to their preset rules. The rules can be represented as a line, curve or step function
of supply/demand against price. For DSO, the exponent “k” in Equation (6) can be used to
control the price curve as illustrated in Figure 2 for k = 3, 5 and 7. In Section 5 we show
how this enables DSO to make a tradeoff between convergence speed and exactness of
balancing to suit its purpose.

Figure 1 compares our pricing model in Equation (6) against Chekired et al. [13] in
Equation (5). We assume that tan−1

(
eD(t)

)
of Equation (5) is 0 because it tends to be a very

small number. In our model, When R(t) is 1, the price p(t) becomes 100 which is preset as
pbalance. Additionally, the price exhibits saturation near the maximum or minimum price.
On the other hand, in Chekired et al. [13] as Equation (5) continues to increase price even if
R(t) is more than 102 as in Figure 1b. Furthermore, when R(t) is smaller than 100, price
hardly changes even when demand further increases. It shows asymmetry and it is hard to
set up saturation near maximum or minimum. Our pricing model exhibits symmetry and
saturation near maximum and minimum.
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Figure 2. The proposed dynamic pricing with varying k (pbalance = 100, pcon = 30).

Figure 2 shows p(t) against R(t) with k = 3, 5 or 7, respectively. If R(t) is very small,
p(t) is close to the minimum price (=70) and if R(t) is large, p(t) converges to the maximum
price (=130). When R(t) is 1, p(t) is 100, which is the pbalance. Price changes symmetrically
against R(t) in log scale. In addition, the slope of the price curve changes depending on
the k. Our proposed pricing model can easily choose pbalance and pcon as needed by the
DSO, utility companies, government authorities or microgrid managements.

3.3. The State Diagram Representation and Solidity Program

For state diagram representation of our trading system, we assume that the partic-
ipating nodes in the energy trading blockchain within a microgrid are prosumers, con-
sumers and the DSO. Prosumers increase/decrease energy supply in reaction to price
increase/decrease. A consumer buys energy from prosumers for their own need. Con-
sumers reduce/increase energy consumption in reaction to price increase/decrease. The
smart contract uses Equations (1)–(3) and (6) to determine energy price for each trading pe-
riod (e.g., hour, day). The DSO acts as an operator or manager of the blockchain network. It
is for energy transmission and a smart contract for energy trading. It creates, upgrades and
distributes a smart contract. Furthermore, DSO adjusts the exponent “k” in Equation (6) to
determine how quickly it will reach equilibrium.

We define states for each prosumer or consumer and show how the states change
in each phase. Refer to Algorithm 1 with Table 1 at the end of Section 4 which shows
our implementation of trading procedure in a Solidity-like pseudo-code. Solidity [15] is
a widely used programming language for developing smart contracts on Ethereum. The
states are implemented using enum type in Solidity. The enum allows programmers to
define a set of allowed members [15]. We choose this feature to define five states of energy
for each prosumer or consumer as “register”, “injected”, “board”, “match” and “purchased”
(line 8 of Algorithm 1). Figures 3 and 4 illustrate state changes for prosumers and consumers.
Pi(t) or Cj(t) denotes the state of prosumer i or that of consumer j respectively, within the
microgrid in phase t.
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Table 1. Notations for energy trading algorithm.

txAddrX An externally owned account in Ethereum for X
msgAddrX An address for X in Ethereum messaging Whisper
txAddr Pi Transaction address of the i-th producer

msgAddr Pi Message address of the i-th producer
txAddr Cj Transaction address of the j-th consumer

msgAddr Cj Message address of the j-th consumer
Ei Energy amount injected by prosumer i

Opi Producer’s energy ownership structure
Ocj Consumer’s energy ownership structure
Si Amount of intent to sell

Smi Matched amount of Si
Dj Amount of demand to buy

Dmj Matched amount of Dj

Figure 3. A state diagram for prosumer i in phase t = 0, 1, 2, 3 and 4 of energy trading.
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Figure 4. A state diagram for consumer j in phase t = 0, 1, 2, 3 and 4 of energy trading.

Any prosumer or consumer intending to trade energy should register with the private
Ethereum blockchain associated with the microgrid. It enters phase 0 after registration. The
registration is performed by sending a transaction which executes the “Register” function
(line 12 of Algorithm 1). The function txAddr Pi.sendtx(Resister, timestamp) sends the
transaction to smcAddr which is the address of the smart contract responsible for energy
trading. Line 13 or line 17 initializes state vectors (Opi and Ocj) representing amounts of
energy in the course of energy trading.

Pi(t) or Cj(t) has a vector of three states, respectively. {Ii(t), Bi(t), Mi(t)} represents
injected energy, energy on board for sale and energy matched for trading for a prosumer i.{

Bj(t), Mj(t), Pj(t)
}

represents energy intended to buy, energy matched for trading and
energy paid for a consumer j.

The vectors of states are defined by using struct EnergyOwnership in lines 9–10.
Lines 13 and 17 show instantiation of state vectors for prosumer i and consumer j. The
events invoked by the smart contract on receipt of “Register” transaction from joining
prosumer i and consumer j initialize the vectors of states for prosumer (line 14) and
consumer (line 18), respectively.

Prosumer i injects the surplus energy Ei into the microgrid by executing the IN-
JECTENERGY procedure (lines 21–26 of Algorithm 1 at the end of Section 4). In line 22,
prosumer i sends an encrypted message to the DSO (msgAddrD). The message contains
the amount of injected energy and is signed by the private key of the prosumer i. The DSO
verifies the signature, checks if the claimed injection is complete and sends a confirming
transaction (signed by the private key of the DSO) to the smart contract (line 23). The smart
contract verifies the signature of the DSO (line 24) to invoke an event which updates the
state vector for prosumer i with injected energy Ei (line 25).

Note that only the DSO, which physically controls transmission of energy, can confirm
the injection or delivery of energy. Thus, in our implementation of the energy trading smart
contract, we require the signature of the DSO to update the amount of injected energy in
the state vector for prosumer i. Therefore, hackers, whether in or out of the blockchain,
cannot tamper with it. After injection, the state of the prosumer i changes to phase 1, Pi(1),
and the amount of injected energy Ii(1) is set to Ei.
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Prosumer i publishes its intent to sell energy of Si(t) on board by executing the
“RequestSell” function (line 30). The state changes to Pi(2). Bi(2), on-board energy for
sale, is set to Si(t) and Ii(2) is decreased to Ei − Si(t). When matching phase begins
by the “Matching” function (line 41), the state changes to Pi(3). The amount of matched
energy (actually sold) is Smi as in lines 42–49. The unmatched energy (remaining after
sale), Si(t) − Smi, is returned to “injected”. Thus, the amount of energy with the state
vector Ii(3) is Ei − Smi. When the matching is complete and the DSO executes the
“Trade” function (line 57), prosumer i receives payment Smi·p(t) from the smart contract
(line 59) and changes to Pi(4). Prosumer i can inject surplus energy Si(t) − Smi again, i.e.,
Ii(4) = Ei − Smi.

Consumer j puts its intent to buy on board to purchase the amount of energy Dj(t)
by sending the transaction that executes the “RequestBuy” function (line 35). Consumer
j deposits the amount of Dj(t)·pmax to the smart contract by sending the transaction that
executes the “Transfer” function (line 37). The state of consumer j changes to Cj(1) with
Bj(1) = Dj. In the matching phase, the “Matching” function is executed (line 41) and
the state of consumer j changes to Cj(2) with matched amount of energy Mi(2) = Dm j
(lines 42–49 for calculation).

When the matching is complete and the DSO executes the “Trade” function (line 57),
the consumer receives the refund of Dj(t)·pmax — Dm j·p(t) from the smart contract (line
62) where p(t) is the price for phase t as determined by Equation (6). The state of consumer
j changes to Cj(3). Consumer j obtains the ownership of the amount of energy Pj = Dm j.
Consumer j can receive the energy from the DSO by using this ownership and then the
state changes to Cj(4).

Algorithm 1: Energy Trading Algorithm

1. procedure ENERGYTRADING
2. txAddr← hash(public key), msgAddr← hash(public key of whisper)
3. Prosumeri ←. txAddrPi, msgAddrPi, Opi, Ei, Si(t), Smi (1 ≤ i ≤ np)
4. Consumerj ← txAddrCj , msgAddrCj, Ocj, Dj(t), Dm j (1 ≤ j ≤ nc)
5. DSO ← txAddrD , msgAddrD, ES(t), ED(t)
6. Smart Contract(SmC)← smcAddr
7. procedure REGISTER(Prosumer1, . . . , Prosumernp , Consumer1, . . . , Consumernc )

8. enum State{register, injected, board, match, purchased}
9. struct EnergyOwnership{
10. address account; uint amount; State state; uint timestamp;}
11. if txAddr ∈ txAddrPi then
12. txAddrPi.sendtx (Register, timestamp)⇒ smcAddr
13. EnergyOwnership[ ] Opi;
14. SmC.event(Opi ← (txAddrPi, 0, register, timestamp) )
15. else if txAddr ∈ txAddrCj then
16. txAddrCj.sendtx (Register, timestamp)⇒ smcAddr
17. EnergyOwnership[ ] Ocj;
18. SmC.event (Ocj ← txAddrCj, 0, register, timestamp) )
19. end if
20. end procedure
21. procedure INJECTENERGY(Ei)
22. msgAddrPi.msg (Inject, txAddrPi, Ei)⇒msgAddrD
23. txAddrD.sendtx (Inject, txAddrPi, Ei, timestamp)⇒ smcAddr
24. SmC.require (msg.sender == txAddrD)
25. SmC.event(Opi ← (txAddrPi, Ei, injected, timestamp) )
26. end procedure
27. procedure AGGREGATION (Prosumer1, . . . , Prosumernp , Consumer1, . . . , Consumernc

during ∆t)
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28. txAddrD.sendtx (Roundstart, timestamp)⇒ smcAddr
29. order elements(state : injected) f or all Opi

30. txAddrPi.sendtx (RequestSell, Si, timestamp)⇒ smcAddr
31. if SmC.validate (Si ≤ Ei, timestamp ∈ ∆t) = true then
32. SmC.event(Opi ← (txAddrPi, Si(t), board, timestamp) )
33. SmC.event(Opi ← (txAddrPi, Ei = Ei − Si, injected, timestamp) )
34. end if
35. txAddrCj.sendtx (RequestBuy, Dj(t), timestamp)⇒ smcAddr

36. if SmC.validate
(

Dj(t)·pmax ≤ txAddrCj. balances, timestamp ∈ ∆t
)
= true then

37. txAddrCj.sendtx (Trans f er, smcAddr, Dj(t)·pmax, timestamp)⇒ smcAddr
38. end if
39. end procedure
40. Procedure MATCHING (Prosumer1, . . . , Prosumernp , S1(t), . . . , Snp (t), Consumer1, . . . ,
41. Consumernc , D1(t), . . . ,Dnc (t) about ∆t)
42. txAddrD.sendtx (Matching, ∆t, timestamp)⇒ smcAddr

43. ES(t)←
np

∑
1

Si(t), ED(t)←
nc

∑
1

Dj(t)

44. q = ED(t)/ES(t)
45. if ES(t) ≥ ED(t)

46. Smi = q·Si(t), Dm j = Dj(t),
np

∑
1

Smi =
nc

∑
1

Dm j

47. else if ED(t) > ES(t)

48. Smi = Si(t), Dm j = Dj(t)/q,
np

∑
1

Smi =
nc

∑
1

Dm j

49. end if
50. SmC.delete(Opi ← (txAddrPi, Si(t), board, timestamp) )
51. SmC.event(Opi ← (txAddrPi, Smi, match, timestamp) )
52. SmC.event(Opi ← (txAddrPi, Si(t)− Smi, injected, timestamp) )

53. SmC.event(Ocj ←
(

txAddrCj, Dm j, match, timestamp
)

)

54. end procedure
55. procedure TRADE ENERGY(Prosumer1, . . . , Prosumernp , Consumer1, . . . , Consumernc )

56. Pricing by DSO: p = 2
π ·pcon· tan−1

(
ln( ED(t)

ES(t) )
)k

+ pbalance

57. txAddrD.sendtx (Trade, p, ∆t, timestamp)⇒ smcAddr
58. for i = 1 to np
59. txAddrPi.balances = txAddrPi.balances + Smi·p(t)
60. smcAddr.sendtx (Trans f er, smcAddr, Smi·p(t), timestamp)⇒ txAddrPi
61. SmC.delete(Opi ← (txAddrPi, Smi, match, timestamp) )
62. for j = 1 to nc

63. txAddrCj.balances = txAddrCj.balances +
(

Dj(t)·pmax − Dm j·p(t)
)

64. smcAddr.sendtx (Trans f er, smcAddr, Dj(t)·pmax − Dm j·p(t), timestamp)⇒ txAddrCj

65. SmC.delete(Ocj ←
(

txAddrCj, Dm j, match, timestamp
)

)

66. SmC.event(Ocj ←
(

txAddrCj, Dm j, purchased, timestamp
)

)

67. smcAddr.balances = 0
68. end procedure
69. end procedure

4. The Proposed P2P Energy Trading Implementation on a Private
Ethereum Blockchain

Figure 5 shows the software architecture of our P2P energy trading system. All nodes
(prosumers, consumers and the DSO) have their own virtual machine called Ethereum
Virtual Machine (EVM) [5] on which a smart contract is executed. Each node uses Node.js
and web3.js API to conveniently control Geth. Geth [22] is a command line interface for
running a full Ethereum node implemented in Go language and is able to access the EVM.
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To execute a smart contract on EVM, a node needs a Solidity compiler called solc.js API to
compile the smart contract.

Figure 5. The software architecture of proposed peer-to-peer (P2P) energy trading implementation
on a private Ethereum blockchain.

Smart contracts on Ethereum can be written in Solidity [15] language. Participating
nodes send transactions including which functions to execute, parameters required to
execute the function, compiled bytecode of the smart contract and the corresponding smart
contract address. When the transactions are mined into a block, all nodes execute the smart
contract functions with the given parameters. Then the EVMs of all nodes run the function
and maintain the same state.

Ethereum blockchain provides an identity-based messaging system which is called
Whisper [23]. Whisper provides anonymity and privacy in a trustless network via broad-
casting encrypted messages in messaging streams. Every node may have symmetric and
asymmetric keys and use an envelope which is a packet sent and received in Whisper. All
messages are encrypted either symmetrically or asymmetrically and nodes use the keys to
decrypt received envelopes [23].

Note that messages are transmitted through Whisper without causing traffic on the
Ethereum block since they are not mined into a block. In this paper, Whisper messaging
is used to generate an element with the state of “Injected” when a prosumer injects the
surplus energy. Whisper can be activated on Geth, which is a command line interface of
Ethereum, through shh function of Whisper API.

The nodes participating in the blockchain network for energy trading are prosumers,
consumers and a DSO, depending on their roles. Prosumers produce energy and may sell
surplus energy to other consumers within the same microgrid. The DSO, an operator of the
blockchain network, is responsible for transmission of energy among participants. It also
creates/updates smart contracts for energy trading and manages the blockchain network.
Algorithm 1 at the end of Section 4 shows Solidity-style pseudo code of smart contract for
energy trading.

Lines 3–5 in Algorithm 1 perform initialization. A participating node X (X = Pi,
Cj, or DSO) has a pair of addresses, txAddrX and msgAddrX. For example, prosumer
Pi has txAddrPi and msgAddrPi. txAddrX is an externally owned account of Ethereum
reserved for X. Only X may access the account using its private key. msgAddrX is an
identity to which other nodes may send encrypted messages for node X using the Whisper
protocol [23]. It allows a node to send messages to other nodes without going through the
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Ethereum blockchain, saving time-consuming consensus. Transactions to txAddrX should
go through the Ethereum blockchain and hence suffer latency needed for consensus.

The DSO broadcasts a smart contract code for energy trading to the blockchain for
a microgrid. The smart contract is mined into a block, creating a smart contract account
smcAddr (Line 6). Every participating node may send valid transactions to the smcAddr
for executing any smart contract functions.

4.1. Prevent Tampering of Transaction Records

Each transaction involving an externally owned account should include a digital
signature (using a private key) from the owner of the account. The owner is responsible
for the transaction it sends and the digital signature guarantees authentication and non-
repudiation. The transaction is mined into a block when verified as valid [24]. The
transaction in a mined block is regarded as immutable through a mathematical proof [20].

4.2. Prevent Double Sale of Energy

Double sale of energy refers to the case in which a malicious node tries to sell the same
energy twice or more. To prevent double sale of energy, our system keeps the states of the
energy inside a smart contract. The smart contract specifies which nodes are qualified to
update which states under what conditions. Thus, updating of the states is only possible
through the private key(s) of the qualified node(s). There is no way that hackers may
possibly tamper these states without compromising the required private key(s).

For example, the amount of energy injected by prosumer (Pi) can be updated only by
the DSO using its private key after it physically checks the amount of injected energy with
its smart meter. Then the Pi may send a transaction of “Request_to_Sell” with a specified
amount of energy which is equal to or less than the “injected” energy. A private key of
prosumer Pi is needed for this update transaction to the smart contract. Now that amount
of energy changes its state from “injected” to “board”.

Each participant has a state vector representing its own energy as illustrated in
Figure 6. The state vector is implemented as an array called energy ownership struc-
ture. The state vector is kept inside a smart contract and hence can only be updated by the
qualified node(s) or the smart contract itself. In the following subsection, we describe a
state diagram which shows the changes in the state vectors of prosumers and consumers.

Figure 6. Cont.
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Figure 6. Illustration of change in the energy ownership in accordance with trading procedures.

4.2.1. Implementation of State Diagram

We use enum, a data type defined in Solidity [15], to implement state diagrams in
Figures 3 and 4. Enum allows us to define a set of elements to be allowed in the energy state
vector. Using this feature, we define five energy states in the state vector for each participant:
“register”, “injected”, “board”, “match” and “purchased”. In line 8 of Algorithm 1, an enum
data type is declared with the above five states. When a prosumer i or a consumer j first
joins the blockchain network, it should register itself by sending a “Register” transaction
to the smart contract (lines 12–19 of Algorithm 1). The “Register” procedure initializes
the states of prosumer i and consumer j to Pi(0) and Cj(0), respectively. The amounts of
energy in all the state vectors are initialized to zero. {Ii(0), Bi(0), Mi(0)} = {0, 0, 0} and{

Bj(0), Mj(0), Pj(0)
}

= {0, 0, 0}.
When prosumer i injects the surplus energy Ei through the INJECTENERGY procedure

(lines 21–26), its state changes to Pi(1) and Ii(1) is set to Ei. When prosumer i decides to
sell the amount Si(t) in this round of trading, it should send a transaction which executes
the “RequestSell” function (line 30). The state of prosumer i transitions to Pi(2) and Bi(2)
(energy on board for sale) becomes Si and Ii(2) is set to Ei − Si(t). When the DSO starts a
matching phase by sending a transaction to execute the “Matching” function (line 41), the
state of prosumer i changes to Pi(3).

Mi(3) is set to Smi, the amount of energy actually matched to be sold, which is less
than or equal to Si(t). Smi is computed in lines 42–49. If Si(t) − Smi is greater than zero,
we have Ii(3) = Ei − Smi.

When the matching is complete and the DSO executes the “Trade” function (line 57),
prosumer i receives payment Smi·p(t) from the smart contract (line 59) and its state changes
to Pi(4). Then the prosumer can either inject the remaining energy again or put it on board
for sale.

Consumer j sends a transaction that executes the “RequestBuy” function (line 35) to
state its intention to purchase the amount of Dj(t). If the transaction is confirmed valid,
the consumer deposits settlement cost Dj(t)·pmax to the smart contract address by sending
a transaction that executes the “Transfer” function (line 37). Then the state of consumer
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j changes to Cj(1) and Bj(1) is set to Dj. When the matching phase is started by the
“Matching” function (line 41), the state changes to Cj(2). The amount of energy in the state
vector Mj(2) is set to Dm j as computed in lines 42–49.

When the matching is complete and the DSO executes the “Trade” function (line 57),
the consumer receives Dj(t)·pmax − Dmj·p(t) as change from the smart contract (line 62)
and the state changes to Cj(3). The consumer receives the energy ownership that it has
purchased and the amount of energy is set to Dm j. The consumer can receive the energy
from the DSO by using this ownership and its state changes to Cj(4).

4.2.2. Energy Ownership Structure

We choose to represent the states of energy for prosumers and consumers in arrays.
Each array represents a prosumer or a consumer. On registration, the first element is created
and the “state” of the element is set to “register”. In lines 9–19, the energy ownership
structure that includes account, amount, state and timestamp is declared in an array Opi
for prosumer i (line 13) and Ocj for consumer j (line 17). Figure 6 illustrates changes in the
energy ownership for prosumer 1 and consumer 1 in accordance with trading procedures.
The changes of energy ownership are recorded in the smart contract as in Figure 6.

All prosumers and consumers must have an element with the state of “register” as the
first element of the array to participate in energy trading. A transaction for executing the
smart contract function appends, changes or deletes subsequent elements in accordance
with the trading procedures. As shown in Figure 6a, when prosumer 1 injects the energy,
an element with the state of “injected” is appended to the array by the DSO (line 25). As
shown in Figure 6b, when prosumer 1 makes a request to sell the energy, an element with
the state of “board” is appended (line 32). At the same time, the amount of the element with
the state of “injected” is reduced accordingly (line 33). As shown in Figure 6c, when the
“Matching” function is executed, the element with the state of “board” is deleted (line 50).
Elements with the state of “match” are appended to the prosumer’s array (line 51) and
consumer’s array (line 53). A new element with the state of “injected” for unmatched
energy is appended (line 52). Finally, as shown in Figure 6d, when the “Trade” function is
executed, elements with the state of “match” are deleted (lines 60 and 63) and an element
with the state of “purchased” is appended (line 64).

In addition, as shown in Figure 7, elements with the state of “injected” or “purchased”
exist in multiple elements of the array. Aggregation is performed (line 29) Opi and Ocj.

Figure 7. Example of aggregation of multiple elements: (a) Before aggregation and (b) after aggregation.
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4.2.3. Prevent Double Sale Using Smart Contract

We prevent double sale of energy by keeping the energy states inside a smart contract
as shown in Figure 8. Smart contract functions are executed only when a calling transaction
meets the conditions preset in the smart contract. The conditions may designate sender,
parameter and previous states, et cetera. Assume a malicious node sends two transactions
to sell the same energy to two different consumers. After the first transaction is executed,
states are changed accordingly and are written into an immutable block. There is no way
to undo this block. The second transaction is executed only when the node has enough
remaining energy after the first sale. If the remaining energy is not enough, the second
transaction is rejected by the smart contract, wasting the sender’s Ethereum gas. Gas refers
to the fee required to send a transaction on Ethereum blockchain [4].

In addition, a smart contract event is called when an element is appended, changed and
deleted. All nodes can detect the event and execute any functions accordingly. Thus, energy
trading can be performed automatically and exactly by a smart contract programmed to
implement a given trading procedure. Consequently, our proposed system performs a safe
and transparent P2P energy trading in a trustless environment by using a smart contract.

Figure 8. Prevent double sale by keeping the states of energy inside a smart contract.

4.3. Inject Energy Using Whisper

We assume that a distribution network within a microgrid allows two-way electric
transmission between prosumers/consumers and the energy storage system (ESS) in the
DSO. Smart meters are sealed to be tamper-proof. For simplicity, we assume there is no
power loss in electric transmission. As illustrated in Figure 9, when prosumer i injects
energy into the ESS, the prosumer uses its own messaging address msgAddrPi to send
a message to the DSO’s messaging address, msgAddrD via Whisper [23]. The message
contains the prosumer’s account (txAddrPi) and the amount of injected energy (Ei). Upon
receipt of the message, the DSO checks whether the energy is injected. If energy is injected
as promised in the Whisper message, the DSO sends a transaction to execute “inject”
function to the smart contract address smcAddr. The smart contract function is only
executed when the qualified sender, as dictated in the smart contract (the DSO in this
case), sends an “inject” transaction. The smart contract checks whether the sender of the
transaction is truly the DSO by using the require function (line 24) which verifies the digital
signature from the DSO’s with its known public key. If the transaction is considered valid
by the smart contract, a new element with the state of “injected” and the amount of energy
(Ei) is appended to the array for prosumer i.
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Figure 9. Appending an element to the energy ownership structure after energy injection.

4.4. Matching between Prosumers and Consumers

Prosumers and consumers send requests to sell (supply) and to purchase (demand)
during aggregation. The aggregate sum of sell (supply) amounts may not be equal to the
aggregate sum of purchase (demand) amounts. We calculate a ratio (q) using the total
supply (S) and the total demand (D) as in Equations (7) and (8).

ES(t) =
np

∑
i=1

Si(t), ED(t) =
nc

∑
j=1

Dj(t) Si(t), Dj(t) ≥ 0 (7)

q = ED(t)/ES(t) (8)

Si(t) is the amount of energy to sell (supply) requested by prosumer i. Dj(t) is the
amount of energy to purchase (demand) requested by consumer j. np and nc are the number
of prosumers and the number of consumers, respectively.

In the matching procedure, Smi is the amount of energy actually sold by prosumer i
and Dm j is the amount of energy actually purchased by consumer j as in Equations (9) and
(10). Note that ∑

np
i=1 Smi is equal to ∑nc

i=1 Dmj.

Smi =

{
q·Si(t) i f ES(t) ≥ ED(t)

Si(t) Otherwise
(9)

Dm j =

{
Dj(t) i f ES(t) ≥ ED(t)

Dj(t)/q Otherwise
(10)

4.5. Settlement

We choose to make the settlement between sellers (prosumers) and buyers (consumers)
go through a smart contract. The role of the smart contract is similar to escrow. The smart
contract is a blockchain-based program that encodes the conditions for fulfillment of an
agreement between participants. It enables the agreed procedures to be securely executed
without any third party.

Figure 10 illustrates our settlement procedure. The aggregation phase begins by
the DSO’s transaction to execute the “Roundstart” function (line 28). All prosumers and
consumers make requests to sell or purchase energy by sending transactions to execute the
“RequestSell” (line 30) or “RequestBuy” (line 35) functions.
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Figure 10. The process of payment between prosumers and consumers in the energy trading.

Consumer j deposits Dj(t)·pmax , the maximum possible amount of payment (actual
price p(t) ≤ pmax), to the smart contract address smcAddr by executing the “Transfer”
function (line 37). The payment in our system uses tokens that follow the standard
ERC-20(Ethereum Request for Comment 20) [25]. When matching is complete and the
DSO executes the “Trade” function (line 57), prosumer i receives the payment Smi ·p(t)
(lines 59–60) and consumer j receives the change Dj(t)·pmax − Dm j·p(t) (lines 63–64)
(performed by updating the corresponding balances on the smart contract). Finally, an
element with the state of “purchased” is appended to the consumer’s array to reflect
energy purchase.

5. Experiment Using a Test Ethereum Blockchain
5.1. Creation of Virtual Prosumers and Consumers

The experiment is performed using personas which are virtually created prosumers
and consumers. We assume each prosumer only sells the energy in the simulation. We
define prosumers and consumers using 4 parameters, respectively: MaxSupply, MinSupply,
PriceUp and PriceDown for each prosumer and MaxDemand, MinDemand, PriceUp and
PriceDown for each consumer. Table 2 defines the parameters.

Table 2. Parameters for personas representing prosumers and consumers.

Parameter (Postfix) Description

i.MaxSupply The maximum supply that prosumer i can request to sell
i.MinSupply The minimum supply that prosumer i can request to sell

j.MaxDemand The maximum demand that consumer j can request to buy
j.MinDemand The minimum demand that consumer j can request to buy

i.PriceUp,
j.PriceUp

Highest price (No more increase/decrease in
supply/demand after the price reaches this value)

i.PriceDown, j.PriceDown Lowest price (No more increase/decrease in
supply/demand after the price reaches this value)

It is reasonable for us to assume that prosumers increase/decrease supply and con-
sumers decrease/increase demand on increase/decrease in price with presumed upper
limit (MaxSupply, MaxDemand) and a lower limit (MinSupply, MinDemand). For simplic-
ity, we assume prosumer i requests to sell i.Supply(t) at the start of the trading round t. The
i.Supply(t) depends on p(t− 1), the matching price in round (t− 1). It is determined as in
Equation (11). Consumer j requests to purchase j.Demand(t) which is similarly determined
in Equation (12).

i.Supply(t) = {p(t− 1)− i.PriceDown} × i.MaxSupply− i.MinSupply
i.PriceUp− i.PriceDown

+ i.MinSupply (11)
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j.Demand(t) = {j.PriceUp− p(t− 1)} × j.MaxDemand− j.MinDemand
j.PriceUp− j.PriceDown

+ j.MinDemand (12)

Figure 11 illustrates requested energy (i.Supply(t) or j.Demand(t)) vs. p(t− 1) for pro-
sumer i (i.PriceUp = 175, i.PriceDown = 125, i.MaxSupply = 2000, i.MinSupply = 500) and a
consumer j (j.PriceUp = 175, j.PriceDown = 125, j.MaxDemand = 2000, j.MinDemand = 500)
as two personas.

Figure 11. An illustration of (i.Supply(t) or j.Demand(t)) vs. p(t− 1).

Figure 12 illustrates the impact of “k” in Equation (6) on the convergence to equilibrium
(R(t) = 1) assuming prosumer i and consumer j respond to price change as in Figure 11.
Figure 12 shows p(t) vs. R(t) using Equation (6) with pbalance = 150 and pcon = 100 for (a)
k = 3, (b) k = 5 and (c) k = 7, respectively. We define convergence area as where p(t) is
within pbalance± 1%.

For the smallest value of k (=3) as in Figure 12a, convergence speed is slowest (it takes
the largest number of rounds (=12) to arrive within the convergence area). However, the
convergence area is closest to equilibrium, 10−0.13 ≤ R(t) ≤ 100.13. For largest value of
k (=7) as in Figure 12c, convergence speed is fastest (it takes the smallest number of rounds
(=8) to arrive within the convergence area). However, the convergence area is farthest from
equilibrium, 10−0.25 ≤ R(t) ≤ 100.25.

For the medium value of k (=5) as in Figure 12b, the convergence speed (=10 rounds)
and the convergence area lies between these two extremes. This illustrates that our dynamic
pricing scheme enables the DSO to adjust “k” to make a tradeoff between convergence
speed and exactness of balancing (narrowness of convergence area) to suit its purpose.
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Figure 12. p(t) vs. R(t) using Equation (6), pbalance = 150 and pcon = 100, (a) k = 3, (b) k = 5 and (c)
k = 7.

5.2. Setup of an Experimental Ethereum Blockchain

Raspberry Pi devices are chosen to emulate the 11 nodes participating in the test
Ethereum blockchain. The nodes implement virtual prosumers, consumers and the DSO.
Each node uses the Geth [22] command line interface (CLI) to access the blockchain network,
deploy smart contracts, send a transaction and detect events from smart contracts.

All nodes participating in a private Ethereum blockchain should share a genesis
block [22]. In our test the Ethereum blockchain has a DSO, 5 prosumers, 5 consumers
(each with an account holding 5 Ethereums) and a smart contract. The source code used
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in our test can be found at: https://github.com/skj1080/energy_trading (accessed on 8
March 2021).

All nodes participating in the Ethereum blockchain need a smart contract address to
execute smart contract functions or to be notified of any events from the smart contract.

5.3. Execute Functions or Detect Events in a Smart Contract

Figure 13 shows prosumers, consumers and DSO access to the Ethereum blockchain
via Node.js [26]. The Web3 library in Node.js is used to access the Ethereum Virtual
Machine. After a smart contract address is generated, each node can execute a smart
contract function by sending a transaction and detect any resulting events declared within
the function in accordance with the trading procedure. IoT devices for any controls,
including transmission of energy, can be linked to certain events from the smart contract
through the Node.js. For example, energy transmission after matching can be performed in
an autonomous way with appropriate IoT control, removing human involvement.

Figure 13. Our testbed for experiment of our P2P energy trading on Ethereum blockchain.

The execution of the functions in a smart contract may result in events which can be
detected by all participating nodes. The events are usually declared in the smart contract.

Figure 14 shows our testbed representation made of 5 Raspberry Pis which act as 2
prosumers, 2 consumers and a DSO. Figure 15 shows the GUI built with MATLAB for the
DSO in the testbed. It shows requests to sell, requests to purchase from two prosumers,
two consumers and the DSO. The DSO can choose “k” value and it determines the price
curve in the center-right. The graph at the bottom shows the change of price as trading
periods progress.

Figure 14. Testbed for experimentation.

https://github.com/skj1080/energy_trading
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Figure 15. A GUI built with MATLAB for experimentation.

5.4. Create Persona from Real Prosumers and Consumers

We create personas from real prosumers and consumers at 5 microgrids in Toronto,
Canada [13]. Table 3 shows an average supply per hour by 5 prosumers and Table 4 shows
an average demand per hour by 5 consumers. We chose the 24th hour to illustrate how our
energy trading is actually implemented in each trading period. Total energy supply from
the 5 prosumers is 336 kWh, and total energy demand is 228 kWh. We assume total energy
supply is the aggregate from the 5 prosumers in Table 5. Similarly, total energy demand is
the aggregate from 5 consumers.

Table 3. Average total energy supply per hour per day from 5 chosen microgrids.

Average Energy Supply per Hour

Hour 1 2 3 4 5 6 7 8 9 10 11 12
kWh 388 386 401 416 442 468 503 538 573 608 637 665
Hour 13 14 15 16 17 18 19 20 21 22 23 24
kWh 696 727 736 745 738 731 695 658 596 534 435 336

Table 4. Average total energy demand per hour per day from 5 chosen microgrids.

Average Energy Demand per Hour

Hour 1 2 3 4 5 6 7 8 9 10 11 12
kWh 336 324 330 335 353 370 406 442 493 544 580 616
Hour 13 14 15 16 17 18 19 20 21 22 23 24
kWh 651 686 702 718 707 696 657 618 530 442 335 228

Table 5. Supply and demand presented by prosumers and consumers.

Prosumer Supply Consumer Demand

1 71 kWh 1 50 kWh
2 55 kWh 2 53 kWh
3 60 kWh 3 35 kWh
4 100 kWh 4 60 kWh
5 50 kWh 5 30 kWh

Total 336 kWh Total 228 kWh
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The experiment is performed according to the trading procedure in Section 4. Transac-
tion results are recorded in the form of BigNumber {s: sign, e: exponent, c: value} through
event detection. BigNumber is a Javascript library for arbitrary-precision arithmetic [27].
The state of energy is displayed as 0: register, 1: injected, 2: board, 3: match, and 4:
purchased. More details about the experiment as follows.

5.4.1. Inject Energy

In this procedure, a prosumer injects the energy into the ESS of the DSO and sends
a message to the DSO using Whisper. The DSO receives the message which contains the
prosumer’s account and the amount of injected energy. Upon receipt of the message, the
DSO sends a transaction to execute the “inject” function after physical checking of injected
energy. After that, a new element is appended to the prosumer’s ownership array.

5.4.2. Aggregation

Prosumers and consumers make requests to sell or purchase energy by sending trans-
actions. Five prosumers and five consumers present supply (sell) and demand (purchase)
as shown in Table 5.

When a consumer’s transaction is confirmed as valid, each consumer deposits tokens
(each consumer’s demand multiplied by the maximum price 130) to the smart contract address.

5.4.3. Matching

After the aggregation, the DSO computes total supply (request to sell), total demand
(request to purchase) and the ratio q (total demand/total supply). If total supply is 336 kWh
and total demand is 228 kWh as in our example, the ratio q is 0.68. Since total supply
(S) is greater than total demand (D) each prosumer is able to sell q × S (matched supply)
and remainder (unmatched supply) is injected back to itself. Refer to the state diagram
in Figure 3. Table 6 shows a result of matching. All matched supply and demand are
appended to the ownership array as an element with the state of “match”. All unmatched
supplies are appended as an element with the state of “injected” to each array.

Table 6. Matching results for all prosumers and consumers.

Prosumer Matched
Supply

Unmatched
Supply Consumer Matched

Demand

1 48 kWh 23 kWh 1 50 kWh
2 37 kWh 18 kWh 2 53 kWh
3 41 kWh 19 kWh 3 35 kWh
4 68 kWh 32 kWh 4 60 kWh
5 34 kWh 16 kWh 5 30 kWh

Total 228 kWh 108 kWh Total 228 kWh

5.4.4. Settlement

One single price is used for a trading period. The price is determined by Equation (6)
with R(t) is equal to q = ED(t)/ES(t). If we assume k = 3, p(t) = 98.9 Tokens/kWh. When
the DSO sends a transaction to execute the “Trade” function, each prosumer is paid p(t)
times the matched supply. Each consumer is refunded its deposit minus matched demand
times p(t). The results are shown in Table 7.
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Table 7. The number of tokens paid to prosumers and the refund to consumers.

Prosumer Paid Consumer Refund

1 4747.2 1 1555
2 3659.3 2 1648.3
3 4054.9 3 1088.5
4 6725.2 4 1866
5 3362.6 5 933

Total 22,549.2 Total 7090.8

5.5. Ethereum Gas Cost

Table 8 shows Ethereum gas (gas) consumption for major functions in our implemen-
tation along with their monetary cost in US dollars (if we assume our system runs on the
public Ethereum network). As of 4 January 2021, 1 ether costs around $969 and the average
price of unit gas is 190 Gwei (190 × 10−9 ether) according to Etherscan [28]. This estimate
of gas consumption serves as a measure for the complexity of our system. The Deployment
function is performed only once at the start of the trading system while other functions
may be performed in each round.

Table 8. Gas consumption for the functions in our system assuming the public Ethereum network.

Function Gas Consumption Gas Cost ($)

Deployment 3,003,112 552.90
Register 160,284 29.51

Inject 131,679 24.24
Request to Buy 23,523 4.33
Request to Sell 23,591 4.34

Matching 354,520 65.27
Transfer 25,574 4.71

In Table 9, we show total gas consumption during a period in our implementation.
We also estimate total gas consumption for np prosumers and nc consumers. However, the
gas consumption per user remains the same.

Table 9. Total gas consumptions per trading period.

Total Gas Consumptions

4 Prosumers and 4 Consumers np Prosumers, nc Consumers

3,003,112 3,003,112
1,282,272 (np + nc) × 160,284
526,716 np × 131,679
94,092 nc × 23,523
94,364 np × 23,591

354,520 354,520
204,592 (np + nc) × 25,574

5,559,668 3,357,632
+ np × 341,128 + nc × 209,381

Table 10 shows that the total gas consumption in our system is smaller than Galal
and Youssef [29] by 41%. Note that our system removes the ZKP(Zero Knowledge Proof)
related functions needed for security of bidding in Galal and Youssef [29].
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Table 10. Comparison of our system against Galal and Youssef [29] in terms of gas consumption.

Our System Galal and Youssef [29]

Function Gas Consumption Function Gas Consumption

Deployment 3,003,112 Deployment 3,131,261
Register 160,284 Bid 130,084

Inject 131,679 Reveal 132,849
Request to Buy 23,523 ClaimWinner 166,288
Request to Sell 23,591 ZKPCommit 656,689

Matching 354,520 ZKPVerify 2,002,490
Transfer 25,574 VerifyAll 46,580

Withdraw 47,112
Total 3,722,283 Total 6,313,353

Figure 16 compares a progressive gas consumption of our system against Galal and
Youssef [29] with 5 prosumers and 5 consumers for up to 10 rounds. As the number
of trading rounds increase, saving of gas in our system against Galal and Youssef [29]
increases by as much as 78%.

Figure 16. Progressive gas consumption of our system compared against Galal and Youssef [29].

Table 11 shows how to estimate needed storage as a function of participants (np and
nc). In Ethereum, there are 2256 different keys and each key can store 32 bytes. So, that is
a total of 2261 bytes that could be stored [15]. We may store as many as 2261 bytes inside
an EVM. We need (np × 468 + nc × 340 + 2144) bytes for trading with np prosumers and
nc consumers. The constraint for the number of prosumers and in terms of storage can be
represented as in Equation (13).

2261 ≥ np × 468 + nc × 340 + 2144 (13)

Table 11. Need storage as a function of participants.

Participant Contents Per Participant np Prosumers and
nc Consumers Size

Prosumer Energy ownership states
(5 key/value pairs) + Account

5 × 64 bytes + 52 bytes = 372
bytes np × 372 bytes

Consumer Energy ownership states
(3 key/value pairs) + Account

3 × 64 bytes + 52 bytes = 244
bytes nc × 244 bytes

DSO Management
(ex. Price Setting) 2 KB 2 KB

Smart Contract Registration of participants 96 bytes per participant (np + nc + 1) × 96 bytes

Total - - (np × 468 + nc × 340 + 2144) bytes
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The storage capacity required in our system increases with the number of participants.
The following table shows the smart contract storage used for each participant.

The storage requirement increases by 468 bytes per prosumer and 340 bytes per
consumer. The storage limit of the smart contract is 2261. In this case, there is a big
difference between storage requirement and storage limitation. Therefore, we expect that
there will be no problem in terms of storage in our system.

In R. Skowronski [16], the number of transactions for Bitcoin is derived as in Equation (14)

τ = (
β

µ
× ρ

θ
) (14)

where β, µ, ρ and θ denote block size, transaction size, block creation interval and time
frame. The transactions per second (tps) can be obtained by dividing τ by θ. Our trading
system is built on Ethereum and the number of transactions is usually limited by the
maximum allowable gas per block [4].

Assume we have np prosumers and nc consumers. Each prosumer consumes gp gas
and each consumer consumes gc gas per trading period. The gas limit per block is gb.
Then we need

(
gpnp + gcnc

)
/gb blocks to perform one trading period. If we assume ρ to

be a block interval time in seconds, we may represent trading matches per second as in
Equation (15)

gb
(gpnp + gcnc)

× 1
ρ

(15)

where np and nc denote the number of prosumers and consumers, respectively. We multiply
86,400 (24 × 60 × 60) to the number in Equation (15) to obtain the maximum number of
trading matches per day. Recently, the maximum gas limit per block, gb, is usually set
to 12,500,000 [28]. In our trading system experiment, gp is around 200,000 and gc is
around 30,000.

In our current implementation, we have only a few states for which we have enu-
merated all possible state changes. So, we do not expect any inevitable disturbances.
However, if unthinkable technical faults erupt, then the gas limit is the last resort. We
limit gas allowance to only covering valid transactions to avoid fatal damage. To deal with
unexpected changes in demand, we only allow manageable numbers of prosumers and
consumers to join our trading system on a private Ethereum blockchain.

6. Conclusions

In this paper, we propose a smart contract-based P2P energy trading system with a
dynamic pricing model. The smart contract resides on the blockchain shared by participants
and hence guarantees exact execution of trade and keeps immutable transaction records.
It removes high costs and overheads needed against hacking or tampering in traditional
server-based P2P energy trade systems.

Double sale is prevented by maintaining the state of energy inside the smart contract.
Furthermore, we create a dynamic pricing model which enables the DSO to make a trade-
off between convergence speed and exactness of balancing between supply and demand
within a microgrid.

We create personas participating in energy trading and conduct virtual simulations
on a testbed with 5 prosumers, 5 consumers and the DSO. Our system saves gas needed to
operate by as much as 78% compared with a known bidding style energy trading system
on blockchain.
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