
sensors

Article

Simulation of Upward Jump Control for One-Legged Robot
Based on QP Optimization

Dingkui Tian, Junyao Gao *, Chuzhao Liu and Xuanyang Shi

����������
�������

Citation: Tian, D.; Gao, J.; Liu, C.;

Shi, X. Simulation of Upward Jump

Control for One-Legged Robot Based

on QP Optimization. Sensors 2021, 21,

1893. https://doi.org/10.3390/

s21051893

Academic Editors: Abolfazl Zaraki

and Hamed Rahimi Nohooji

Received: 12 January 2021

Accepted: 4 March 2021

Published: 8 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Mechatronical Engineering, Intelligent Robotics Institute, Beijing Institute of Technology,
Beijing 100081, China; tiandingkui@bit.edu.cn (D.T.); 3120150091@bit.edu.cn (C.L.);
shixuanyang@bit.edu.cn (X.S.)
* Correspondence: gaojunyao@bit.edu.cn

Abstract: An optimization framework for upward jumping motion based on quadratic programming
(QP) is proposed in this paper, which can simultaneously consider constraints such as the zero
moment point (ZMP), limitation of angular accelerations, and anti-slippage. Our approach comprises
two parts: the trajectory generation and real-time control. In the trajectory generation for the launch
phase, we discretize the continuous trajectories and assume that the accelerations between the two
sampling intervals are constant and transcribe the problem into a nonlinear optimization problem.
In the real-time control of the stance phase, the over-constrained control objectives such as the
tracking of the center of moment (CoM), angle, and angular momentum, and constraints such as the
anti-slippage, ZMP, and limitation of joint acceleration are unified within a framework based on QP
optimization. Input angles of the actuated joints are thus obtained through a simple iteration. The
simulation result reveals that a successful upward jump to a height of 16.4 cm was achieved, which
confirms that the controller fully satisfies all constraints and achieves the control objectives.

Keywords: upward jumping; QP; ZMP; CoM; angular momentum; anti-slippage

1. Introduction

Jumping enables more flexibility and stronger terrain adaptability for robots in un-
structured terrain. Therefore, jumping motion is an important athletic ability in humanoid
technology.

To improve a robot’s jumping ability, Raibert and et al. designed a very innovative
controller in the 1980s and realized the hopping motion of a hydraulic robot [1,2]. An
existing legged robot can adjust the footing point by adjusting the step length and achieve
jumping motion on flat ground [3]. Poulakakis and Grizzle developed a two-level hybrid
controller that can be used on an spring-loaded inverted pendulum and induce a provably
stable gait on an spring-loaded inverted pendulum [4]. Based on a point-foot robot with
elastic legs and compliant hip joints, Hyon proposed a controller that does not require robot
dynamics or any pre-planned trajectories, and used precise nonlinear dynamics to realize
the robot’s continuous jump [5]. Haldane analyzed the ability of several arboreal mammals
and robots, constructed a jumping robot using a leg mechanism that enhances the power
modulation, achieved 78% of Gallago’s vertical jumping agility, and demonstrated the
jumping ability of the constructed robot through experiments [6]. Yim achieved accurate
and reliable leaping and landing on a narrow foot with the small one-legged jumping
robot Salto-1P [7]. The above-mentioned robots have very light-weight legs, the torso of
the robot accounts for the major proportion of the total mass and the torso mass of the
robot is concentrated. Because these robots have point foot or negligible foot in size, these
approaches cannot include constraints, such as stability, non-slippage, and limitation of
angular acceleration in the launch or landing phase. Therefore, the robots in [1–7] cannot
satisfy the requirements of humanoid robots’ jumping motion.

Sensors 2021, 21, 1893. https://doi.org/10.3390/s21051893 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s21051893
https://doi.org/10.3390/s21051893
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21051893
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/5/1893?type=check_update&version=2

Sensors 2021, 21, 1893 2 of 19

To investigate the jump motion of robots with the mass distribution of human legs,
Nunez proposed a simplified mathematical model of a humanoid robot and applied a
simple control scheme based on the sliding modes to achieve jumping motion [8]. Aoustin
decomposed the jumping process into the launch phase, flight phase, and landing phase,
derived the mathematical model for a one-legged robot without a foot [9] and with a mass-
less foot [10], and applied torques to the actuated joints to keep the center of moment (CoM)
of the mechanism always placed on the same vertical line. Geyer [11], Tamaddoni [12], and
Xiong [13] simplified the jumping motion of the robot as a spring mass model and achieved
the jumping motion of the robot. However, none of the above-mentioned approaches
considered the stability and angular moment of the robot during the jump.

To theoretically solve the stability of the jumping robot, Barkan completed a jump
simulation and experiment for a robot using the online trajectory generation method
based on the Eulerian Zero Moment Point (ZMP) Resolution. The undesired torso angle
fluctuation was greatly reduced without forcing the angular moment to be zero [14–16].
Kajita conducted a ZMP-based running pattern generation simulation at 3 km/h and an
experiment on one-time hopping motion with both legs [17]. Barkan and Kajita prevented
the robot from falling down by performing ZMP tracking for the desired trajectories instead
of only constraining the ZMP inside the support polygon, but their algorithm has poor
scalability and compatibility. This means that it is difficult to add various constraints, which
should have been considered but were ignored in this scheme, such as the anti-slippage
and limitation of the angle and angular accelerations, or add other tasks such as joint
tracking. In [18–20], offline nonlinear optimization methods were used to generate the
robot jumping trajectories and perform experiments on the robot, but it was difficult to use
the controller on the robot in real time.

In jumping motion, stability is a prerequisite. The control of angular momentum,
anti-slippage, and limitation of angular acceleration are also very important. Although
existing studies have considered some of the above-mentioned problems, few studies
have addressed all of them under a single framework. With consideration to the above-
mentioned problems, a framework based on quadratic programming (QP) is proposed in
this paper to achieve vertical jump motion for a robot. The main contributions of this study
are as follows:

(1) A framework based on QP optimization for solving the vertical jump problem is
proposed and successfully unifies the hard constraints and over-constrained goals in
the jumping process.

(2) The restriction of ZMP instead of tracking, non-slippage, limitation of angular acceler-
ation, are added to the optimization framework as hard constraints.

The simplified simulation model and main scheme of jumping are presented in
Section 2. The preparation of the upward jump motion is introduced in Section 3. The
real-time control of the jump and the results are disscussed in Sections 4 and 5, respectively,
followed by the discussion and conclusion.

2. Simplified Jump Model and Main Scheme of Jumping
2.1. Simplified Jump Model

In the design and manufacturing process of humanoid robots, the robots are generally
arranged symmetrically in the sagittal plane. Hence, the first simplification for the robot is
that the movement, external force, and torque on both sides of the robot are exactly the
same. Although humanoid robots can possess more than 30 actuated joints, similar to
humans, this study only considered the robot leg joints. Hence, the second simplification is
that only the hip, knee, and ankle joints of the robot can move while the other joints are
fixed. The two above-mentioned simplifications allowed us to establish the three-link robot
presented in Figure 1 as our jump model.

Sensors 2021, 21, 1893 3 of 19Sensors 2021, 21, x FOR PEER REVIEW 3 of 20

Figure 1. Humanoid robot model in simulation and its geometry. (a) Simulation model; (b) geo-
metric model of the simplified robot.

As shown in Figure 1, in practical applications, the torso of the robot was equipped
with an inertial measurement unit (IMU) and accelerometer used in the simulation to
measure the absolute position and posture of the robot after the foot leaves the ground. In
the ankle joint, six dimensional force torque (F-T) sensors are implemented to detect the
forces and torques applied to the robot. The robot consists of three links (shrunk, thigh,
and torso). In the stance phase, the robot possesses three actuated joints at the ankle, knee,
and hip joint, which are denoted as 1θ , 2θ , and 3θ , respectively. The absolute pitch and

positions of the frame attached to the ankle joint are denoted as a bθ , fx , and fy , re-

spectively. Although abθ and 1θ can be considered as identical in the stance phase, they

are not necessarily equal in the flight phase. Additionally, comx and comy represent
the CoM’s horizontal and vertical position in global coordinates.

Using the above notation, we define []1 2 2= , ,θ θ θΘ . By applying the Newton-Euler
method, the dynamic equation of the robot in the stance phase can be obtained as follows:

() ()(,) GM V τΘ Θ+ Θ Θ + Θ =
 (1)

where 3 3M R ×∈ is the inertial matrix, 3V R∈ is the centripetal and Coriolis vector,
3G R∈ is the gravity vector, and 3Rτ ∈ is the torque vector.

In the stance phase, it is assumed that the foot is always in contact with the ground
and will not slide off, the robot possesses three degrees of freedom (DoF) and three actu-
ated joints which are placed at respectively, the ankle, the knee and the hip joint, so it is
fully actuated. During the flight phase, the robot possesses five DoFs and only two actu-
ated joints, i.e., the knee and hip joint, which means that the robot is underactuated and
is subjected to some restrictions, viz. two holonomic constraints resulting from the fact
that CoM tracks a parabolic trajectory, and one non-holonomic constraint resulting from
the angular momentum conservation.

The robot’s mass and inertia and the length of the ith link are denoted as im ,

i
cI , and il , respectively. The distance from CoM of each link of the robot to the prox-

imal joint coordinate system is denoted as cil . The inertial parameters of the robot used
in the simulation are listed in Table 1.

Figure 1. Humanoid robot model in simulation and its geometry. (a) Simulation model; (b) geometric
model of the simplified robot.

As shown in Figure 1, in practical applications, the torso of the robot was equipped
with an inertial measurement unit (IMU) and accelerometer used in the simulation to
measure the absolute position and posture of the robot after the foot leaves the ground.
In the ankle joint, six dimensional force torque (F-T) sensors are implemented to detect
the forces and torques applied to the robot. The robot consists of three links (shrunk,
thigh, and torso). In the stance phase, the robot possesses three actuated joints at the
ankle, knee, and hip joint, which are denoted as θ1, θ2, and θ3, respectively. The absolute
pitch and positions of the frame attached to the ankle joint are denoted as θab, x f , and
y f , respectively. Although θab and θ1 can be considered as identical in the stance phase,
they are not necessarily equal in the flight phase. Additionally, xcom and ycom represent the
CoM’s horizontal and vertical position in global coordinates.

Using the above notation, we define Θ = [θ1, θ2, θ2]. By applying the Newton-Euler
method, the dynamic equation of the robot in the stance phase can be obtained as follows:

M(Θ)
..
Θ + V(Θ,

.
Θ) + G(Θ) = τ (1)

where M ∈ R3×3 is the inertial matrix, V ∈ R3 is the centripetal and Coriolis vector, G ∈ R3

is the gravity vector, and τ ∈ R3 is the torque vector.
In the stance phase, it is assumed that the foot is always in contact with the ground

and will not slide off, the robot possesses three degrees of freedom (DoF) and three actuated
joints which are placed at respectively, the ankle, the knee and the hip joint, so it is fully
actuated. During the flight phase, the robot possesses five DoFs and only two actuated
joints, i.e., the knee and hip joint, which means that the robot is underactuated and is
subjected to some restrictions, viz. two holonomic constraints resulting from the fact that
CoM tracks a parabolic trajectory, and one non-holonomic constraint resulting from the
angular momentum conservation.

The robot’s mass and inertia and the length of the ith link are denoted as mi, Ii
c,

and li, respectively. The distance from CoM of each link of the robot to the proximal
joint coordinate system is denoted as lci. The inertial parameters of the robot used in the
simulation are listed in Table 1.

Sensors 2021, 21, 1893 4 of 19

Table 1. Inertial robot parameters.

Link (i) mi (Kg) Ii
c (K·m2) li (m) lci (m)

Shank (1) 14.01 0.333 0.33 0.1454
Thigh (2) 13.04 0.718 0.34 0.1363
Torso (3) 16.38 0.8169 0.6 0.2141

2.2. Main Scheme of Jumping

The entire jumping process can be divided into three phases in chronological order,
namely, the launch phase, flight phase, and landing phase [21]. The launch phase and
landing phase can be merged into the stance phase because the foot is always in contact
with the ground. As shown in Figure 2, the jumping motion of the robot consists of two
parts: the first part is the preparation of the upward jump motion, which is divided into
the offline trajectory generation in the launch phase and online trajectory generation in the
flight phase and landing phase. The second part is the real-time control of jumping motion,
which consists of flight phase control and stance phase control.

Sensors 2021, 21, x FOR PEER REVIEW 4 of 20

Table 1. Inertial robot parameters.

Link (i) im (Kg)
i
cI (K·m2) il (m) c il (m)

Shank (1) 14.01 0.333 0.33 0.1454
Thigh (2) 13.04 0.718 0.34 0.1363
Torso (3) 16.38 0.8169 0.6 0.2141

2.2. Main Scheme of Jumping
The entire jumping process can be divided into three phases in chronological order,

namely, the launch phase, flight phase, and landing phase [21]. The launch phase and
landing phase can be merged into the stance phase because the foot is always in contact
with the ground. As shown in Figure 2, the jumping motion of the robot consists of two
parts: the first part is the preparation of the upward jump motion, which is divided into
the offline trajectory generation in the launch phase and online trajectory generation in
the flight phase and landing phase. The second part is the real-time control of jumping
motion, which consists of flight phase control and stance phase control.

Figure 2. Control block diagram of robot; Θ and Θ are the actuated joint angle and acceleration vector, respectively.

In the offline trajectory nonlinear optimization, the angular accelerations of the
actuated joint are considered to be constant at each sampling interval (4 ms) [22,23].
Therefore, we selected the joints’ accelerations as the state vector. If the accelerations and
torques of the joints’ reference trajectories are too large and exceed the capacity of the
saturate torques of motors, it will be difficult to control the robot to track the reference
trajectory. Therefore, we need to consider the indispensable constraints, such as the max-
imum accelerations and maximum torques. In order to minimize the integration of the
joints’ accelerations and torques and avoid high-frequency oscillations, we penalized
accelerations, torques and changes in torque respectively. So the launch problem can be
described as a standard nonlinear optimization problem. By using a standard nonlinear
optimization solver, the desired trajectories of the actuated joints can be obtained and the
CoM can be calculated. To ensure the continuity of the actuated joint trajectory and the
real-time calculation in the begining of the flight phase and landing phase, the trajectories
are generated online and represented by cubic polynomial interpolation.

In the real-time control of the stance phase, the jumping motion of the robot can be
simplified as the jumping of CoM, so the jumping goal needs to track the desired trajectory
of CoM in x-axis direction and the y-axis direction. It is difficult to control the angular
momentum of the robot respect to CoM to zero when the robot’s foot leaves the ground,
the jumping goal needs to limit the angular momentum within a smaller range. To avoid

Figure 2. Control block diagram of robot; Θ and
..
Θ are the actuated joint angle and acceleration vector, respectively.

In the offline trajectory nonlinear optimization, the angular accelerations of the actu-
ated joint are considered to be constant at each sampling interval (4 ms) [22,23]. Therefore,
we selected the joints’ accelerations as the state vector. If the accelerations and torques of
the joints’ reference trajectories are too large and exceed the capacity of the saturate torques
of motors, it will be difficult to control the robot to track the reference trajectory. Therefore,
we need to consider the indispensable constraints, such as the maximum accelerations
and maximum torques. In order to minimize the integration of the joints’ accelerations
and torques and avoid high-frequency oscillations, we penalized accelerations, torques
and changes in torque respectively. So the launch problem can be described as a standard
nonlinear optimization problem. By using a standard nonlinear optimization solver, the
desired trajectories of the actuated joints can be obtained and the CoM can be calculated.
To ensure the continuity of the actuated joint trajectory and the real-time calculation in the
begining of the flight phase and landing phase, the trajectories are generated online and
represented by cubic polynomial interpolation.

In the real-time control of the stance phase, the jumping motion of the robot can be
simplified as the jumping of CoM, so the jumping goal needs to track the desired trajectory
of CoM in x-axis direction and the y-axis direction. It is difficult to control the angular
momentum of the robot respect to CoM to zero when the robot’s foot leaves the ground,
the jumping goal needs to limit the angular momentum within a smaller range. To avoid
the robot in undesirable configuration and high-frequency oscillations, the jumping goal

Sensors 2021, 21, 1893 5 of 19

must penalize the joints’ deviation from the desired trajectories and changes in joints’
accelerations, respectively. There are 4 control goals but only 3 control variables, i.e.,
the actuated joints’ accelerations, which leads us to unify this over-constrained jumping
problem into a framework based on QP optimization with different weights and many
constraints. We divided the control problem into Cartesian space and joint space. In
Cartesian space, CoM tracking and angular momentum tracking are used as the task goal.
Instead of implementing ZMP tracking for the robot, the ZMP is limited within the support
polygon of the foot to prevent the robot from tipping over, which is used as a constraint.
Additionally, the contact force is exerted within the friction cone to prevent slippage and is
used as an additional constraint. In the joint space, joint tracking and the prevention of the
joints’ high frequency oscillation are used as the task goals, while the joint accelerations
within the limitation range are used as constraints. The task goals consist of nine equations
and the robot has only three actuated joints, that is, three unknown variables, which is
obviously an over-constrained and occasionally conflicting problem. To achieve a real-time
solution in each sampling interval (4 ms), we were inspired by the solution method for
the robot’s walking pattern in [24–26] and unified the indispensable constraints and over-
constrained goals into a framework based on QP optimization with different weights in
front of each objective to embody the priority of the task goals. Therefore, the actuated
angular acceleration in each sampling interval can be estimated and the input angles of the
actuated joints can then be obtained through a simple iterative process. In the real-time
control of the flight phase, we only execute the planned angle of the actuated joints.

3. Preparation of Upward Jump Motion

The preparation of the upward jump motion comprises three parts: the launch phase,
flight phase, and landing phase. The trajectory optimization in the launch phase is tran-
scribed into a nonlinear optimization problem. We can specify the joints’ positions and
easily solve the joints’ velocities on the basis of the conservation of angular momentum
and linear momentum at the end of the flight phase. Joints’ positions and velocities at the
end of the landing phase can be specified. Additionally, the positions and velocities of the
joints can be obtained from the sampled joint data at the initial moments of the flight phase
and the landing phase. We have obtained the position and velocity of joints at the initial
and final moments in the flight and landing phase, and joints’ positions and velocities
at intermediate time are unknown, so the trajectories in the flight and landing phase can
be obtained using a polynomial instead of spline interpolation and Bessel interpolation.
The first and quadratic polynomials are not sufficiently smooth, and the calculation of
high-order polynomials is not easy and quick enough to implement on computer online.
The cubic polynomial is smooth enough and quick to calculate online in real time, so the
cubic polynomial was chosen.

3.1. Trajectory Planning in Launch Phase

We assumed that the acceleration of each joint between the two sampling intervals is
approximately constant and selected the joint accelerations as the state vector. If the initial
angle and velocity of the joint are known and the joint acceleration is solved, the angle and
velocity of the actuated joints at each sampling time can be iteratively derived using the
solved accelerations, initial given angle, and velocity; e.g., the angle and velocity at the
(i + 1)th sampling time can be recursively obtained from the position, velocity, and solved
acceleration at the ith sampling time, as follows: θ

[K+1]
i = θ

[K]
i +

.
θ
[K]
i ∆t +

..
θ
[K]
i

∆2
t

2
.
θ
[K+1]
i =

.
θ
[K]
i +

..
θ
[K]
i ∆t

(2)

Here, θ
[K]
i ,

.
θ
[K]
i , and

..
θ
[K]
i denote the angle, velocity, and acceleration of the joint at the

Kth sampling time, and ∆t is the sampling time equal to 4 ms in our calculations.

Sensors 2021, 21, 1893 6 of 19

3.1.1. Decision Vector

The decision vector is defined as follows:

U = [
..
Θ

[0]
,

..
Θ

[1]
, · · · ,

..
Θ

[N−1]
,

..
Θ

[N]
]
T

(3)

where
..
Θ

[K]
=

[
..
θ
[K]
1 ,

..
θ
[K]
2 ,

..
θ
[K]
3

]
, k indicates the kth discretized time interval, and N is the

number of time intervals.

3.1.2. Constraints in Launch Phase

(1) Initial constraints in launch phase

The initial restrictions in the joint space of the launch phase are characterized by the
following relationships: {

Θ = Θ0.
Θ =

.
Θ0

t = tlaunch
initial (4)

where Θ0 ∈ R3×1 and
.

Θ0 ∈ R3×1 are the initial angle and velocity vector; tlaunch
initial is the

initial time in the launch phase.

(2) Terminal constraint

Because this study focused on the vertical jump, the horizontal CoM component in
the terminal launch phase was formulated as follows:

xcom = 0
.
xcom = 0
..
xcom = 0

t = tlaunch
f inal (5)

where, xcom,
.
xcom, and

..
xcom denote the position, velocity, and acceleration of the horizontal

CoM component; tlaunch
f inal is the terminal time of the launch phase.

After the foot of the robot leaves the ground, no external force acts on the robot except
gravity and the CoM tracks a ballistic parabola trajectory, which means that the vertical
force acting on the robot only needs to overcome gravity. Therefore, the sign of switching
from the launch phase to the flight phase is the vertical acceleration component being equal
to the acceleration caused by gravity. Because the vertical position and velocity of the CoM
at the end of launch phase determines the shape of the ballistic parabola of the CoM in the
flight phase, the terminal constraints in the vertical component are expressed as follows:

ycom = Ylaunch
f inal

.
ycom =

√
2gh

..
ycom = −g

t = tlaunch
f inal (6)

where ycom,
.
ycom, and

..
ycom denote the position velocity and acceleration of the vertical CoM

component; g is the acceleration caused by gravity; h is the jump height of the CoM; Ylaunch
f inal

is the vertical CoM component at the end of the launch phase.
If the foot leaves the ground, the robot system conserves the angular momentum rela-

tive to the CoM. Thus, successful landing becomes difficult when the angular momentum
of the robot is very large, and a good course of action is to keep the angular momentum
LCoM at zero when the robot foot leaves the ground, as follows:

LCoM = 0 t = tlaunch
f inal (7)

(3) Constraints of horizontal CoM position

Sensors 2021, 21, 1893 7 of 19

Because this study focused on upward jumping, the CoM position does not change in
the horizontal direction, and the following relationships hold:

xcom = 0
.
xcom = 0
..
xcom = 0

t ∈ [0, tlaunch
f inal) (8)

(4) Boundary constraints for joints

To better perform the practical jumping of the robot, the joint cannot exceed the angle,
velocity, and acceleration limits, and the linear inequality constraints should be as follows:

Θmin ≤ Θ ≤ Θmax.
Θmin ≤

.
Θ ≤

.
Θmax..

Θmin ≤
..
Θ ≤

..
Θmax

t ∈ [0, tlaunch
f inal) (9)

where, Θmin ∈ R3 and Θmax ∈ R3 represent the lower and upper angle boundary, respec-
tively;

.
Θmin ∈ R3 and

.
Θmax ∈ R3 represent the lower and upper joint velocity boundary,

respectively;
..
Θmin ∈ R3 and

..
Θmax ∈ R3 denote the lower and upper joint acceleration

boundary, respectively.

(5) Ground reaction force constraints

Throughout the launch phase, the vertical force fY acting on the robot is always
vertical to the ground, and the horizontal force fX is always opposite to the direction of
motion and parallel to the ground, as follows:{

fX = Mt
..
xcom

fY = Mt
(..
ycom + g

)
≥ 0

t ∈ [0, tlaunch
f inal) (10)

where Mt is the total mass of the robot. From Equation (8), we can get the horizontal force
fX = 0 in the whole launch phase.

To ensure that the foot will not tip over and cause the robot to fall down, the ZMP
should be kept inside the support polygon of the foot, which can be expressed as follows:

lmin ≤ ZMPx ≤ lmax t ∈ [0, tlaunch
f inal) (11)

To ensure that the foot does not slip and stays firmly on the ground, the horizontal
force should not exceed the friction and cause the robot to slip, as follows:

| fX | ≤ us fY t ∈ [0, tlaunch
f inal) (12)

where us is the static friction coefficient. Because of fX = 0, Equation (12) can always be
satisfied in the launch phase.

The maximum amplitude of the contact force must not exceed the maximum value
fmax to avoid damaging the mechanical structure of the robot.√

f 2
X + f 2

Y ≤ fmax t ∈ [0, tlaunch
f inal) (13)

(6) Torque constraints

With regard to the capacity of the motor and gearbox, it is meaningful to limit the
output torques of the robot’s joints; therefore, the following torque constraints are imposed:

τmin ≤ τ ≤ τmax t ∈ [0, tlaunch
f inal) (14)

Sensors 2021, 21, 1893 8 of 19

where τmin ∈ R3 and τmax ∈ R3 are the lower and upper boundary of the torque vector,
respectively.

(7) Changes in vertical position

Similar to the launch process of a human, the robot should continuously expand its
body to increase the CoM position throughout the launch phase. Therefore, the vertical
position of the CoM in each sampling time is higher than the previous one, as follows:

y[k]com ≤ y[k+1]
com t ∈ [0, tstance

f inal) (15)

where, y[k]com, and y[k+1]
com denote the vertical position of the CoM in the kth and (k + 1)th

discretized time interval.

3.1.3. Cost Function

To minimize the total joint accelerations, the acceleration is penalized as follows:

Jdqq =
N

∑
k=1

(
‖

..
Θ

[k]
‖

2
∆t

)
(16)

The torques are penalized as follows:

Jτ =
N

∑
k=1

(
‖τ[k]‖

2
∆t

)
(17)

Torque changes are penalized to avoid high frequency oscillations, as follows:

Jτch =
N−1

∑
k=1
‖τ[k] − τ[k+1]‖

2
(18)

3.1.4. Nonlinear Optimization Problem

With consideration to the difference in priority, different weighting factors are added
in front of each penalty. Therefore, the nonlinear optimization problem can be formulated
as follows: min

U

(
wddq Jddq + wτch Jτch + wτ Jτ

)
s.t. equations(3) ∼ (14)

(19)

The trajectory planning parameters are summarized in Tables 2 and 3.

Table 2. The scalar parameters in trajectory planning.

tlaunch
initial (s) tlaunch

f inal (s) Ylaunch
f inal (m) g

(
kg/m2) h(m) lmin(m)

0 0.2 0.63 −9.8 0.2 −0.1
wddq wτch wτ us fmax(N) lmax(m)

1 0.001 0.01 0.6 1000 0.12

Table 3. The vector in the optimization of trajectory planning.

Θ0(rad).
..
Θ0(rad/s) Θmin(rad)

.
Θmin(rad/s)

..
Θmin

(
rad/s2)

[0.75, 1.95, −1.13] [0, 0, 0] [0.43, 0, −1.56] −[160, 360, 200] −[360, 560, 500]
τmin(N ·m) τmax Θmax(rad)

.
Θmax(rad/s)

..
Θmax

(
rad/s2)

−[460, 600, 350] [460, 600, 350] [1.57, 2.28, 0] [160, 360, 200] [360, 560, 500]

As shown in Figure 3, from the beginning to the end of the launch phase, the ankle,
knee, and hip of the robot begin to accelerate and push the CoM to increase until the robot’s

Sensors 2021, 21, 1893 9 of 19

vertical component of acceleration is completely capable of overcoming gravity under
various constraints, which is intuitively satisfactory for achieving human-like take-off
motion. The ZMP is always inside the support polygon and the actuated joints always
remain within the range of hardware capabilities.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 20

Table 3. The vector in the optimization of trajectory planning.

()0 ra dΘ . ()0 /rad sΘ ()m in ra dΘ ()min /rad sΘ ()2min /rad sΘ

[0.75, 1.95, −1.13] [0, 0, 0] [0.43, 0, −1.56] −[160, 360, 200] −[360, 560, 500]

()min N mτ ⋅ maxτ ()m a x r a dΘ ()max /rad sΘ ()2max /rad sΘ

−[460, 600, 350] [460, 600, 350] [1.57, 2.28, 0] [160, 360, 200] [360, 560, 500]

As shown in Figure 3, from the beginning to the end of the launch phase, the ankle,
knee, and hip of the robot begin to accelerate and push the CoM to increase until the ro-
bot’s vertical component of acceleration is completely capable of overcoming gravity un-
der various constraints, which is intuitively satisfactory for achieving human-like take-off
motion. The ZMP is always inside the support polygon and the actuated joints always
remain within the range of hardware capabilities.

(a) (b)

Figure 3. Trajectories of the joints and center of moment (CoM) in the launch phase. (a) trajectory
of joints in the launch phase; (b) trajectories of CoM and zero moment point (ZMP) in the launch
phase.

3.2. Trajectory Planning in Flight Phase
When the robot’s foot leaves the ground in the launch phase, we can obtain the joint

position launch
fina lΘ and velocity launch

fina lΘ according to the joints’ code sensors, and calculate

the position (),launch launch
com final com finalx y→ → , velocity (),launch launch

com final com finalx y→ → , and angular mo-

mentum
launch
fina lL with respect to the CoM.

When the robot touches the ground, we assume that the robot lands successfully and
there is no slippage between the foot and the ground. Therefore, we can specify the angle
vector f l i g h t

f in a lΘ with the torso perpendicular to the ground, and thereby the following re-
lationship holds.

= flight flight
final finalt tΘ Θ = (20)

The robot’s angular momentum is conserved during the entire flight phase; therefore,
the following equation holds:

() () ()1 1 2 2 3 3 =
l a u n c h f l i g h t
f i n a l f i n a lA A A L t tθ θ θΘ + Θ + Θ =

 (21)

Because the torso is selected to be perpendicular to the ground, the velocity of the
three actuated joints must satisfy the following equation:

1 2 3 0 flight
finalt tθ θ θ+ + = =

(22)

Figure 3. Trajectories of the joints and center of moment (CoM) in the launch phase. (a) trajectory of joints in the launch
phase; (b) trajectories of CoM and zero moment point (ZMP) in the launch phase.

3.2. Trajectory Planning in Flight Phase

When the robot’s foot leaves the ground in the launch phase, we can obtain the

joint position Θlaunch
f inal and velocity

.
Θ

launch
f inal according to the joints’ code sensors, and cal-

culate the position
(

xlaunch
com→ f inal , ylaunch

com→ f inal

)
, velocity

(.
xlaunch

com→ f inal ,
.
ylaunch

com→ f inal

)
, and angular

momentum Llaunch
f inal with respect to the CoM.

When the robot touches the ground, we assume that the robot lands successfully
and there is no slippage between the foot and the ground. Therefore, we can specify the
angle vector Θ f light

f inal with the torso perpendicular to the ground, and thereby the following
relationship holds.

Θ = Θ f light
f inal t = t f light

f inal (20)

The robot’s angular momentum is conserved during the entire flight phase; therefore,
the following equation holds:

A1(Θ)
.
θ1 + A2(Θ)

.
θ2 + A3(Θ)

.
θ3 = Llaunch

f inal t = t f light
f inal (21)

Because the torso is selected to be perpendicular to the ground, the velocity of the
three actuated joints must satisfy the following equation:

.
θ1 +

.
θ2 +

.
θ3 = 0 t = t f light

f inal (22)

During the entire flight phase, the horizontal component of the CoM is not affected by
any external force; therefore, the horizontal speed of the CoM remains constant, as follows:

.
xcom(Θ) =

.
xlaunch

com→ f inal t = t f light
f inal (23)

The angular velocity at the moment of landing can be easily solved according to
Equations (20)–(23). To solve the actuated joint trajectories in real-time, θ2 and θ3 can be
expressed by a cubic polynomial function.

As shown in Figure 4, during the initial phase of the flight, the two actuated joints
continue to stretch owing to the large velocity caused by the launch phase. Then, to ensure
that the robot is not in a singular configuration and prevent the impact force from causing

Sensors 2021, 21, 1893 10 of 19

great damage to the robot’s mechanical structure at touchdown, the actuated joints start to
accelerate in the reverse direction and slowly move to the specified position.

Sensors 2021, 21, x FOR PEER REVIEW 10 of 20

During the entire flight phase, the horizontal component of the CoM is not affected
by any external force; therefore, the horizontal speed of the CoM remains constant, as
follows:

()= launch flight
com com final finalx x t t→Θ =

(23)

The angular velocity at the moment of landing can be easily solved according to
Equations (20)–(23). To solve the actuated joint trajectories in real-time, 2θ and 3θ
can be expressed by a cubic polynomial function.

As shown in Figure 4, during the initial phase of the flight, the two actuated joints
continue to stretch owing to the large velocity caused by the launch phase. Then, to ensure
that the robot is not in a singular configuration and prevent the impact force from causing
great damage to the robot’s mechanical structure at touchdown, the actuated joints start
to accelerate in the reverse direction and slowly move to the specified position.

Figure 4. Trajectories of actuated joints in the flight phase.

3.3. Trajectory Planning in Landing Phase
When the robot’s foot contacts the ground again at the end of the flight phase, the

foot is firmly placed on the ground. Therefore, we can obtain the joint position la nd
in itia lΘ

and velocity la n d
in it ia lΘ through the joints’ codes, and calculate the position

(),land land
com initial com initialx y→ → and velocity (),land land

com initial com initialx y→ → . The desired CoM trajecto-

ries and the hip angle can be expressed by using cubic polynomials, considering that the
initial joint positions and velocities are known and the terminal positions and velocities
of the CoM and hip are given.

As shown in Figure 5, to avoid the rebound of the robot, which is caused by the touch-
impact between the ground and the foot, and reduce the force acting on the foot, the ac-
tuated joints push the vertical CoM component to drop at the beginning of the landing
phase. Then, the CoM starts to increase, which effectively prevents the robot from squat-
ting too low and causing the knee to exceed the hardware capabilities.

Figure 4. Trajectories of actuated joints in the flight phase.

3.3. Trajectory Planning in Landing Phase

When the robot’s foot contacts the ground again at the end of the flight phase, the foot
is firmly placed on the ground. Therefore, we can obtain the joint position Θland

initial and ve-

locity
.

Θ
land
initial through the joints’ codes, and calculate the position

(
xland

com→initial , yland
com→initial

)
and velocity

(.
xland

com→initial ,
.
yland

com→initial

)
. The desired CoM trajectories and the hip angle

can be expressed by using cubic polynomials, considering that the initial joint positions
and velocities are known and the terminal positions and velocities of the CoM and hip
are given.

As shown in Figure 5, to avoid the rebound of the robot, which is caused by the
touch-impact between the ground and the foot, and reduce the force acting on the foot, the
actuated joints push the vertical CoM component to drop at the beginning of the landing
phase. Then, the CoM starts to increase, which effectively prevents the robot from squatting
too low and causing the knee to exceed the hardware capabilities.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 20

(a) (b)

Figure 5. Trajectories of joints and CoM in landing phase. (a) Joint trajectories in the landing phase; (b) trajectory of CoM
in the landing phase.

4. Real-Time Control of Jump Motion
In the stance phase, we assume that the robot’s foot is always in contact with the

ground without sliding. Hence, the three-link robot is fully actuated and the controllers
in the launch phase and landing phase are the same. In the stance phase, the robot needs
to track the well planned reference trajectories, limit angular momentum with respect to
CoM into a small range, and satisfy many constraints, such as ZMP, anti-slippage and so
on. In the iterative method for solving nonlinear equations, constraints cannot be consid-
ered. Therefore, the optimization method was chosen. The sampling interval for the jump-
ing robot is 4ms or even shorter. The solutions cannot be obtained in real time by using
nonlinear optimization method, the more efficient QP algorithm was selected. Eigen-
QuadProg can solve the QP problem within 0.6 ms on the quadcore computer (Intel
Celeron J1900, 1.99 GHz), which completely satisfy to obtain the solution online [27]. In
the flight phase, the planned trajectories of two actuated joints are directly given to the
servo control blocks at the actuator level.

4.1. Controller in Stance Phase
4.1.1. Cartesian Space Controller

In the stance phase, we are concerned with whether the CoM of the robot can realize
the kinematic performance of an inverted pendulum, as described in the previous section.
Therefore, we applied PD feedback controllers such that the CoM trajectory could track
the planned motion of the inverted pendulum in the vertical and horizontal direction,
respectively.

The derivative and acceleration of the robot’s CoM in the horizontal directions is ex-
pressed as follows:

=
= +

com x

com x x

x J
x J J

 Θ

Θ Θ

(24)

In the vertical directions, the CoM acceleration is expressed as follows:

=

= +
com y

com y y

y J

y J J

 Θ

Θ Θ

(25)

where
xJ and

yJ are the Jacobian vectors of the CoM in the horizontal and vertical com-
ponent, respectively.

In the horizontal direction, the input
*
comx can be calculated as follows:

() ()* = d d d
com px com com dx com com ddx comx k x x k x x k x− + − +

(26)

Figure 5. Trajectories of joints and CoM in landing phase. (a) Joint trajectories in the landing phase; (b) trajectory of CoM in
the landing phase.

4. Real-Time Control of Jump Motion

In the stance phase, we assume that the robot’s foot is always in contact with the
ground without sliding. Hence, the three-link robot is fully actuated and the controllers
in the launch phase and landing phase are the same. In the stance phase, the robot needs
to track the well planned reference trajectories, limit angular momentum with respect to
CoM into a small range, and satisfy many constraints, such as ZMP, anti-slippage and

Sensors 2021, 21, 1893 11 of 19

so on. In the iterative method for solving nonlinear equations, constraints cannot be
considered. Therefore, the optimization method was chosen. The sampling interval for
the jumping robot is 4ms or even shorter. The solutions cannot be obtained in real time
by using nonlinear optimization method, the more efficient QP algorithm was selected.
Eigen-QuadProg can solve the QP problem within 0.6 ms on the quadcore computer (Intel
Celeron J1900, 1.99 GHz), which completely satisfy to obtain the solution online [27]. In the
flight phase, the planned trajectories of two actuated joints are directly given to the servo
control blocks at the actuator level.

4.1. Controller in Stance Phase
4.1.1. Cartesian Space Controller

In the stance phase, we are concerned with whether the CoM of the robot can realize
the kinematic performance of an inverted pendulum, as described in the previous section.
Therefore, we applied PD feedback controllers such that the CoM trajectory could track
the planned motion of the inverted pendulum in the vertical and horizontal direction,
respectively.

The derivative and acceleration of the robot’s CoM in the horizontal directions is
expressed as follows: { .

xcom = Jx
.

Θ
..
xcom =

.
Jx

.
Θ + Jx

..
Θ

(24)

In the vertical directions, the CoM acceleration is expressed as follows:{ .
ycom = Jy

.
Θ

..
ycom =

.
Jy

.
Θ + Jy

..
Θ

(25)

where Jx and Jy are the Jacobian vectors of the CoM in the horizontal and vertical compo-
nent, respectively.

In the horizontal direction, the input
..
x∗com can be calculated as follows:

..
x∗com = kpx

(
xd

com − xcom

)
+ kdx

(.
xd

com −
.
xcom

)
+ kddx

..
xd

com (26)

The input
..
y∗com is defined as follows:

..
y∗com = kpy

(
yd

com − ycom

)
+ kdy

(.
yd

com −
.
ycom

)
+ kddy

..
yd

com (27)

where xd
com,

.
xd

com, and
..
xd

com are the desired position, velocity, and acceleration of the CoM
in the horizontal direction; yd

com,
.
yd

com, and
..
yd

com are the desired position, velocity, and
acceleration of the CoM in the vertical direction.

The optimization problem for the desired horizontal trajectory of CoM tracking is
expressed as follows:

min..
Θ
‖ ..

xcom −
..
x∗com‖

2
(28)

The vertical trajectory tracking can be formulated as follows:

min..
Θ
‖ ..

ycom −
..
y∗com‖

2
(29)

With regard to upward jumping, it is much easier for the angular momentum to
remain close to zero before the foot leaves the ground, compared with compensating for
the angular momentum by the motion of the actuated joints in the flight phase. Therefore,

Sensors 2021, 21, 1893 12 of 19

we need to add a controller to constrain the angular momentum close to zero. The angular
momentum of the robot is given as follows:

LCoM = JL
.

Θ (30)

The input
..
L
∗
CoM can be calculated as follows:

.
L
∗
CoM = kpL

(
Ld

CoM − LCoM

)
+ kiL

t∫
0

(
Ld

CoM − LCoM

)
dt (31)

where JL denotes the Jacobian vectors of angular momentum, and Ld
CoM is the desired

angular momentum position. Because the ultimate goal is that the angular momentum
should reach zero, we set Ld

CoM equal to zero.
The optimization problem for the angular momentum in the launch phase can be

expressed as follows:

min..
Θ
‖

.
LCoM −

.
L
∗
CoM‖

2
(32)

4.1.2. Joint Space Controller

In addition to CoM tracking for the planned inverted pendulum’s kinematic trajectory,
we also expect that the joints of the robot can track the planned joints’ trajectory.

The input
..
Θ
∗

can be calculated as follows:

..
Θ
∗
= kpΘ(Θd −Θ) + kdΘ

(.
Θd −

.
Θ
)
+ kddΘ

..
Θd (33)

where Θd ∈ R3,
.

Θ
d
∈ R3, and

..
Θ

d
∈ R3 are the desired position, velocity, and acceleration

vector of the actuated joints; kpΘ ∈ R3×3, kdΘ ∈ R3×3, and kddΘ ∈ R3×3 are gains.
The joint tracking problem can be formulated as follows:

min..
Θ
‖

..
Θ −

..
Θ
∗
‖

2
(34)

Penalizing the changes of the actuated joint accelerations is an effective way of pre-
venting the high frequency oscillation of the actuated joints, as follows:

min..
Θ
‖

..
Θ −

..
Θ

N−1
‖

2
(35)

where
..
Θ

N−1
denotes the joint acceleration in the last sampling interval.

4.1.3. Constraints

As shown in the Figure 6, the supporting leg of the inverted pendulum intersects the
x-axis at the support point O, whose coordinate is (ZMPx, 0, 0), and the moment of CoM
acting on the support point around the z axis is applied as follows:

τz = Mt
(..
yCoM + g

)
(xCoM − ZMPx)−Mt

..
xCoMyCoM (36)

Sensors 2021, 21, 1893 13 of 19

Sensors 2021, 21, x FOR PEER REVIEW 13 of 20

21min - N−

Θ
Θ Θ

(35)

where 1N−Θ denotes the joint acceleration in the last sampling interval.

4.1.3. Constraints
As shown in the Figure 6, the supporting leg of the inverted pendulum intersects the

x-axis at the support point O, whose coordinate is (), 0, 0xZMP , and the moment of CoM
acting on the support point around the z axis is applied as follows:

()()z t CoM CoM x t CoM CoMM y g x ZMP M x yτ = + − − (36)

Figure 6. The inverted pendulum model.

Since the moment of CoM acting on the support point around the z axis is zero, the
equation of ZMP can be expressed as follows:

com com com com com
x

com

x g x y x yZMP
g y

+ −=
+

 (37)

To ensure the margin of control during the launch phase, a smaller support polygon

constraints minl and maxl are selected in the trajectory planning. Now, we select the

support polygon constraints minL and minL according to the simulation model. There-
fore, the ZMP constraints can be expressed as follows:

min maxxL ZMP L≤ ≤ (38)

So ZMP are restricted as follows:

min max
com com com com com

com

x g x y x yL L
g y

+ −≤ ≤
+

(39)

To prevent the horizontal slippage of the foot, the friction constraint is applied as
follows:

()com s comx u y g≤ +

(40)

The joint acceleration cannot exceed the limitation; therefore, the upper and lower
bounds of the state variables are restricted as follows:

m in m a xΘ ≤ Θ ≤ Θ
 (41)

Figure 6. The inverted pendulum model.

Since the moment of CoM acting on the support point around the z axis is zero, the
equation of ZMP can be expressed as follows:

ZMPx =
xcomg + xcom

..
ycom −

..
xcomycom

g +
..
ycom

(37)

To ensure the margin of control during the launch phase, a smaller support polygon
constraints lmin and lmax are selected in the trajectory planning. Now, we select the support
polygon constraints Lmin and Lmin according to the simulation model. Therefore, the ZMP
constraints can be expressed as follows:

Lmin ≤ ZMPx ≤ Lmax (38)

So ZMP are restricted as follows:

Lmin ≤
xcomg + xcom

..
ycom −

..
xcomycom

g +
..
ycom

≤ Lmax (39)

To prevent the horizontal slippage of the foot, the friction constraint is applied as
follows: ∣∣ ..xcom

∣∣ ≤ us
(..
ycom + g

)
(40)

The joint acceleration cannot exceed the limitation; therefore, the upper and lower
bounds of the state variables are restricted as follows:

..
Θmin ≤

..
Θ ≤

..
Θmax (41)

There are two task goals in Cartesian space and two task goals in joint space, but
the robot has only three actuated joints, which is obviously an over-constrained and
occasionally conflicting problem that can be solved through optimization with different
weights applied to the optimization problems to distinguish the priority of different goals.
Hence, the problem can be formulated as follows:

min..
Θ

[
‖wx

(..
xcom −

..
x∗com

)
‖

2
+ ‖wy

(..
ycom −

..
y∗com

)
‖

2
+ ‖wL

(..
LCoM −

..
L
∗
CoM

)
‖

2
+ ‖wΘ

(..
Θ −

..
Θ
∗)
‖

2
+ ‖w f re_osc

(
..
Θ−

..
Θ

N−1
)
‖

2
]

s.t.

Lmin ≤

xcomg+xcom
..
ycom−

..
xcomycom

g+
..
ycom

≤ Lmax∣∣ ..xcom
∣∣ ≤ us

(..
ycom + g

)
..
Θmin ≤

..
Θ ≤

..
Θmax

(42)

where, wx, wy, wΘ, w f re_osc and wL are weights for different optimization tasks.

Sensors 2021, 21, 1893 14 of 19

4.1.4. Transformation from Nonlinear Optimization Problem to QP Optimization Problem

The convergence of QP optimization is sufficiently fast for obtaining the solution in
real time. Therefore, we selected QP as the method for solving this optimization problem.
The problem formulated in Equation (42) can be transformed into a standard QP problem,
and the following relationships can be obtained:

min..
Θ

[
w2

x‖Jx
..
Θ +

(.
Jx

.
Θ− ..

x∗com

)
‖

2
+ w2

y‖Jy
..
Θ +

(.
Jy

.
Θ− ..

y∗com

)
‖

2
+ w2

L‖JL
..
Θ +

(.
JL

.
Θ−

..
L
∗
CoM

)
‖

2
+ w2

Θ‖
..
Θ−

..
Θ
∗
‖

2
+ w2

f re_osc‖
..
Θ−

..
Θ

N−1
‖

2]

s.t.

[
(Lmin − xcom)Jy + ycom Jx

] ..
Θ ≤ −(Lmin − xcom)g− (Lmin − xcom)

.
Jy

.
Θ− ycom

.
Jx

.
Θ[

−(Lmax − xcom)Jy − ycom Jx
] ..
Θ ≤ (Lmax − xcom)g + (Lmin − xcom)

.
Jy

.
Θ + ycom

.
Jx

.
Θ(

Jx − us Jy
) ..
Θ ≤ −

.
Jx

.
Θ + us

.
Jy

.
Θ + usg

−
(

Jx + us Jy
) ..
Θ ≤

.
Jx

.
Θ + us

.
Jy

.
Θ + usg

−
..
Θ ≤ −

..
Θmin

vspace3pt
..
Θ ≤

..
Θmax

(43)

4.2. Flight Phase

In the trajectory generation of the robot’s flight phase, it is considered that the robot is
only subjected to gravity in the vertical direction, the linear momentum is in the horizontal
direction, and the angular momentum with the CoM is conserved. Therefore, we only need
to feed the well-planned angles to the actuated joint in each sampling period to achieve
the desired ballistic dynamics of the robot and prepare for landing on the ground with the
desired configuration.

5. Simulation Results

To validate the upward jump control method for the three-link planar biped robot, a com-
puter simulation was conducted using Matlab/Simulink. In the simulation, Lmin = −0.13
and Lmax = 0.13, which are determined by the size of the designed robot’s foot. The
weights wx, wy and wL respectively determine the relative priorities of tracking of CoM in
the directions of the x-axis and y-axis and tracking of angular momentum; a higher relative
priority is indicated by a larger value. So we choose the larger wx and wy. w f re_osc penalizes
the change in the angular acceleration of the joints between two consecutive time steps,
and wΘ determines the relative priority of the joints’ tracking of the desired trajectories.
In the weighting matrices w f re_osc and wΘ, only the diagonal elements corresponding to
the joints are set to non-zero values. Firstly, because the priority of CoM is higher and
the priority of angular momentum and joints is lower, wx = wy = 1, wL = 0.0006 and
w f re_osc = wΘ= diag([0.0006,0.0006, 0.0006]) were chosen as the initial weights. Then, due
to the poor tracking of CoM at the initial weights, wx and wy were manually increased
according to the simulation results. The CoM tracked the desired trajectory very well
at wx = wy = 1.6. Because of the poor joints’ changes and large angular momentum,
w f re_osc, wΘ and wL were manually increased under fixed wx and wy, angular momentum
fluctuated within a small range and the changes of joints’ positions are consistent with the
desired trajectories at wL = 0.001 and w f re_osc = wΘ= diag([0.001,0.001, 0.001]).

The initial joint parameters, weights, and gains are listed in Tables 4–6, respectively.
The simulation results are presented in Figures 7–11.

Table 4. Initial joint parameters in simulation.

Link Initial Position (rad) Initial Velocity (rad/s)

Ankle 0.7494 0
Knee 1.9450 −0.0017
Hip −1.1334 0

Sensors 2021, 21, 1893 15 of 19

Table 5. Simulation weights.

wx wy wΘ w f re_osc wL

1.6 1.6 diag [0.001, 0.001, 0.0016] diag[0.001, 0.001, 0.001] 0.001

Table 6. Simulation gains.

kpx kdx kddx kpy kdy kddy

891 672 6 837.98 1726.27 5
kpL kiL kpΘ kdΘ kddΘ
91 16 diag ([26, 27, 25]) diag ([33, 36, 39]) diag ([6, 10, 5])

Sensors 2021, 21, x FOR PEER REVIEW 16 of 20

Figure 7. Screenshots of robot’s vertical jump motion.

Figure 8. Reaction force and height of foot.

The response ZMP is illustrated in Figure 9a, the green, red, and blue plots are the
upper and lower bounds of the support polygon and the ZMP plot, respectively. As can
be seen, the ZMP response was always within the support polygon. Hence, it can be con-
cluded that the robot was stable in the stance phase. Figure 9b shows the plot of the foot’s
horizontal component. As can be seen, in the stance phase, the sliding of the robot’s foot
was less than 0.5 cm. With regard to the touchdown impact, the movement of the foot in
the horizontal component is almost negligible. Figure 9c shows that the angular momen-
tum in the stance phase had a relatively small range, the maximum angular momentum
did not exceed 2 N⋅m⋅s, and the angular momentum in the flight phase was less than 0.5
N⋅m⋅s. Therefore, it is concluded that fall and foot slippage prevention were successfully
added to the constraints of the optimization problem, and the penalty function of the an-
gular momentum was added to the cost function constraint’s angular momentum within
a small range.

Figure 7. Screenshots of robot’s vertical jump motion.

Sensors 2021, 21, x FOR PEER REVIEW 16 of 20

Figure 7. Screenshots of robot’s vertical jump motion.

Figure 8. Reaction force and height of foot.

The response ZMP is illustrated in Figure 9a, the green, red, and blue plots are the
upper and lower bounds of the support polygon and the ZMP plot, respectively. As can
be seen, the ZMP response was always within the support polygon. Hence, it can be con-
cluded that the robot was stable in the stance phase. Figure 9b shows the plot of the foot’s
horizontal component. As can be seen, in the stance phase, the sliding of the robot’s foot
was less than 0.5 cm. With regard to the touchdown impact, the movement of the foot in
the horizontal component is almost negligible. Figure 9c shows that the angular momen-
tum in the stance phase had a relatively small range, the maximum angular momentum
did not exceed 2 N⋅m⋅s, and the angular momentum in the flight phase was less than 0.5
N⋅m⋅s. Therefore, it is concluded that fall and foot slippage prevention were successfully
added to the constraints of the optimization problem, and the penalty function of the an-
gular momentum was added to the cost function constraint’s angular momentum within
a small range.

Figure 8. Reaction force and height of foot.

Figures 7 and 8 show that the robot performed a successful jump motion; the height of
the upward jump was 16.4 cm and the time in the flight phase was 0.35 s. The zero ground
reaction force in the flight phase indicates that the robot went through a successful launch
phase. The successful landing of the robot demonstrates that the online planning of the
flight phase trajectory is reasonable and effective. Moreover, the touch-down impact, which
is harmful to the mechanical structure of the robot, can be observed. The touch-down
impact was 4256 N, which is approximately 9.5 times the weight of the mechanical structure
of robot’s body.

Sensors 2021, 21, 1893 16 of 19Sensors 2021, 21, x FOR PEER REVIEW 17 of 20

Figure 9. ZMP, horizontal foot position, and angular moment.

The trajectories in the horizontal and vertical position of the CoM and the corre-
sponding errors are shown in Figure 10. The sharp edges in the CoM and the correspond-
ing errors were observed at the moment of touch-down owing to the touch-down impact.
Because the CoM was not controlled during the flight phase, the CoM error disappeared
in the flight phase. The CoM’s error trajectories indicate that the maximum error in the
horizontal position was 0.038 m at 0.244 s, while that in the vertical position was 0.076 m
at 0.212 s. Therefore, it is concluded that the response trajectories are in good agreement
with previously obtained results.

Figure 10. Trajectory of CoM and its simulation error.

As shown in Figure 11, the joint trajectories exhibit smooth variation within the joints’
limitations, except at the initial landing phase owing to the touch-down impact. The hip,
knee, and ankle have different degrees of sharp edges at the moment of touch-down. The

Figure 9. ZMP, horizontal foot position, and angular moment.

Sensors 2021, 21, x FOR PEER REVIEW 17 of 20

Figure 9. ZMP, horizontal foot position, and angular moment.

The trajectories in the horizontal and vertical position of the CoM and the corre-
sponding errors are shown in Figure 10. The sharp edges in the CoM and the correspond-
ing errors were observed at the moment of touch-down owing to the touch-down impact.
Because the CoM was not controlled during the flight phase, the CoM error disappeared
in the flight phase. The CoM’s error trajectories indicate that the maximum error in the
horizontal position was 0.038 m at 0.244 s, while that in the vertical position was 0.076 m
at 0.212 s. Therefore, it is concluded that the response trajectories are in good agreement
with previously obtained results.

Figure 10. Trajectory of CoM and its simulation error.

As shown in Figure 11, the joint trajectories exhibit smooth variation within the joints’
limitations, except at the initial landing phase owing to the touch-down impact. The hip,
knee, and ankle have different degrees of sharp edges at the moment of touch-down. The

Figure 10. Trajectory of CoM and its simulation error.

The response ZMP is illustrated in Figure 9a, the green, red, and blue plots are the
upper and lower bounds of the support polygon and the ZMP plot, respectively. As
can be seen, the ZMP response was always within the support polygon. Hence, it can
be concluded that the robot was stable in the stance phase. Figure 9b shows the plot of
the foot’s horizontal component. As can be seen, in the stance phase, the sliding of the
robot’s foot was less than 0.5 cm. With regard to the touchdown impact, the movement
of the foot in the horizontal component is almost negligible. Figure 9c shows that the
angular momentum in the stance phase had a relatively small range, the maximum angular
momentum did not exceed 2 N·m·s, and the angular momentum in the flight phase was
less than 0.5 N·m·s. Therefore, it is concluded that fall and foot slippage prevention were
successfully added to the constraints of the optimization problem, and the penalty function

Sensors 2021, 21, 1893 17 of 19

of the angular momentum was added to the cost function constraint’s angular momentum
within a small range.

Sensors 2021, 21, x FOR PEER REVIEW 18 of 20

sharp edges of the knee joint and ankle joint are larger, which demonstrates that the im-
pact force causes more severe damage to the knee and ankle joints.

Figure 11. Joint trajectories in simulation.

6. Discussion
Similar to the vertical jumping motion of humans, in the process of the robot’s verti-

cal jump, constraints such as the stability, anti-slippage, and joint angular accelerations
must be simultaneously considered. However, a method that considers all of these issues
and integrates them into the jumping motion does not exist.

The proposed method is based on QP optimization and has good scalability. The
above-mentioned restrictions, which must be considered, are unified into the proposed
framework. In this paper, the trajectory optimization in the launch phase was first tran-
scribed into an offline nonlinear optimization, and the trajectories in the flight phase and
land phase were represented online using cubic polynomial interpolation. Moreover, an
online QP-based framework was designed based on three-link dynamics to realize the
robot’s upward jump motion, and successfully unified hard constraints such as the ZMP
limitations and anti-slippage, and over-constrained tasks such as CoM, joint, and angular
momentum tracking.

In this paper, an online QP optimization framework was designed based on three-
link dynamics to realize a robot’s upward jump motion and successfully unify hard con-
straints, such as ZMP limitations and anti-slippage, and over-constrained tasks such as
CoM, joint, and angular momentum tracking. The following results were obtained:
(1) The robot achieved a successful upward jump to the height of 16.4 cm.
(2) Throughout the stance phase, the ZMP was always limited inside the support poly-

gon instead of tracking the desired value. Additionally, the movement of the foot in
the horizontal component was almost negligible.

(3) The angular momentum in the stance phase had a relatively small range, the maxi-
mum angular momentum did not exceed 2 N·m·s, and the angular momentum in the
flight phase was less than 0.5 N·m·s.
In future work, we will extend the jump algorithm to running robots. To this end, a

substantial amount of work must be carried out. For example, the control of the simplified
model in the jumping motion should be extended to the control of a full dynamics model
in the running robot. In the support phase, the movement of the swinging leg should be
controlled in addition to controlling the movement of the supporting leg. Owing to the
compatibility and scalability of the QP-based framework, the extension of the jumping

Figure 11. Joint trajectories in simulation.

The trajectories in the horizontal and vertical position of the CoM and the correspond-
ing errors are shown in Figure 10. The sharp edges in the CoM and the corresponding
errors were observed at the moment of touch-down owing to the touch-down impact.
Because the CoM was not controlled during the flight phase, the CoM error disappeared
in the flight phase. The CoM’s error trajectories indicate that the maximum error in the
horizontal position was 0.038 m at 0.244 s, while that in the vertical position was 0.076 m at
0.212 s. Therefore, it is concluded that the response trajectories are in good agreement with
previously obtained results.

As shown in Figure 11, the joint trajectories exhibit smooth variation within the joints’
limitations, except at the initial landing phase owing to the touch-down impact. The hip,
knee, and ankle have different degrees of sharp edges at the moment of touch-down. The
sharp edges of the knee joint and ankle joint are larger, which demonstrates that the impact
force causes more severe damage to the knee and ankle joints.

6. Discussion

Similar to the vertical jumping motion of humans, in the process of the robot’s vertical
jump, constraints such as the stability, anti-slippage, and joint angular accelerations must
be simultaneously considered. However, a method that considers all of these issues and
integrates them into the jumping motion does not exist.

The proposed method is based on QP optimization and has good scalability. The above-
mentioned restrictions, which must be considered, are unified into the proposed framework.
In this paper, the trajectory optimization in the launch phase was first transcribed into an
offline nonlinear optimization, and the trajectories in the flight phase and land phase were
represented online using cubic polynomial interpolation. Moreover, an online QP-based
framework was designed based on three-link dynamics to realize the robot’s upward jump
motion, and successfully unified hard constraints such as the ZMP limitations and anti-
slippage, and over-constrained tasks such as CoM, joint, and angular momentum tracking.

In this paper, an online QP optimization framework was designed based on three-link
dynamics to realize a robot’s upward jump motion and successfully unify hard constraints,
such as ZMP limitations and anti-slippage, and over-constrained tasks such as CoM, joint,
and angular momentum tracking. The following results were obtained:

(1) The robot achieved a successful upward jump to the height of 16.4 cm.

Sensors 2021, 21, 1893 18 of 19

(2) Throughout the stance phase, the ZMP was always limited inside the support polygon
instead of tracking the desired value. Additionally, the movement of the foot in the
horizontal component was almost negligible.

(3) The angular momentum in the stance phase had a relatively small range, the maxi-
mum angular momentum did not exceed 2 N·m·s, and the angular momentum in the
flight phase was less than 0.5 N·m·s.

In future work, we will extend the jump algorithm to running robots. To this end, a
substantial amount of work must be carried out. For example, the control of the simplified
model in the jumping motion should be extended to the control of a full dynamics model
in the running robot. In the support phase, the movement of the swinging leg should
be controlled in addition to controlling the movement of the supporting leg. Owing
to the compatibility and scalability of the QP-based framework, the extension of the
jumping algorithm to running robots can be successfully incorporated into the proposed
algorithmic framework.

Author Contributions: Conceptualization, D.T. and J.G.; formal analysis, D.T. and X.S.; funding
acquisition, J.G.; methodology, D.T. and C.L.; resources, J.G. and C.L.; software, D.T.; writing—
original draft, D.T.; writing—review and editing, D.T. and J.G. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under Grant 91748202 and Grant 61973039 and the Beijing Municipal Science and Technology Project
under Grant Z191100008019003.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: The authors appreciate guidance from Xuechao Chen and Qiang Huang and help
from other colleagues at the Beijing Advanced Innovation Center for Intelligent Robots and Systems.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Raibert, M.H. Legged Robots That Balance. IEEE Expert 1986, 1, 89. [CrossRef]
2. Raibert, M.H. Hopping in legged systems—Modeling and simulation for the two-dimensional one-legged case. IEEE Trans. Syst.

Man Cybern. 1984, 14, 451–463. [CrossRef]
3. Hodgins, J.; Raibert, M. Adjusting step length for rough terrain locomotion. IEEE Trans. Robot. Autom. 1991, 7, 289–298. [CrossRef]
4. Poulakakis, I.; Grizzle, J.W. The Spring Loaded Inverted Pendulum as the Hybrid Zero Dynamics of an Asymmetric Hopper.

IEEE Trans. Autom. Control. 2009, 54, 1779–1793. [CrossRef]
5. Hyon, S.-H.; Emura, T. Energy-preserving control of a passive one-legged running robot. Adv. Robot. 2004, 18, 357–381. [CrossRef]
6. Haldane, D.W.; Plecnik, M.M.; Yim, J.K.; Fearing, R.S. Robotic vertical jumping agility via series-elastic power modulation. Sci.

Robot. 2016, 1, eaag2048. [CrossRef] [PubMed]
7. Yim, J.K.; Singh, B.R.P.; Wang, E.K.; Featherstone, R.; Fearing, R.S. Precision Robotic Leaping and Landing Using Stance-Phase

Balance. IEEE Robot. Autom. Lett. 2020, 5, 3422–3429. [CrossRef]
8. Nuñez, V.; Nadjar-Gauthier, N. Control strategy for vertical jump of humanoid robots. In Proceedings of the 2005 IEEE/RSJ

International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 2–6 August 2005; pp. 2253–2258.
9. Aoustin, Y.; Formalskii, A.M. Modeling, control and simulation of upward jump of a biped. Multibody Syst. Dyn. 2012, 29,

425–445. [CrossRef]
10. Aoustin, Y.; Formalskii, A. Upward jump of a biped. Int. J. Human. Robot. 2013, 10, 1350032. [CrossRef]
11. Geyer, H.; Seyfarth, A.; Blickhan, R. Spring-mass running: Simple approximate solution and application to gait stability. J. Theor.

Biol. 2005, 232, 315–328. [CrossRef] [PubMed]
12. Tamaddoni, S.H.; Jafari, F.; Meghdari, A.; Sohrabpour, S. Biped Hopping Control Based on Spring Biped Hopping Control Based

on Spring Loaded Inverted Pendulum ModeL. Int. J. Human. Robot. 2010, 7, 263–280. [CrossRef]
13. Xiong, X.; Ames, A. Bipedal Hopping: Reduced-Order Model Embedding Via Optimization-Based Control. In Proceedings

of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018;
pp. 3821–3828.

http://doi.org/10.1109/MEX.1986.4307016
http://doi.org/10.1109/TSMC.1984.6313238
http://doi.org/10.1109/70.88138
http://doi.org/10.1109/TAC.2009.2024565
http://doi.org/10.1163/156855304773822464
http://doi.org/10.1126/scirobotics.aag2048
http://www.ncbi.nlm.nih.gov/pubmed/33157854
http://doi.org/10.1109/LRA.2020.2976597
http://doi.org/10.1007/s11044-012-9319-6
http://doi.org/10.1142/S0219843613500321
http://doi.org/10.1016/j.jtbi.2004.08.015
http://www.ncbi.nlm.nih.gov/pubmed/15572057
http://doi.org/10.1142/S0219843610002106

Sensors 2021, 21, 1893 19 of 19

14. Ugurlu, B.; Kawamura, A. ZMP-Based Online Jumping Pattern Generation for a One-Legged Robot. IEEE Trans. Ind. Electron.
2009, 57, 1701–1709. [CrossRef]

15. Ugurlu, B.; Kawamura, A. Eulerian ZMP resolution: Real-time jogging and jumping trajectory planning for bipedal robots. In
Proceedings of the 2009 IEEE/ASME International Conference on Advanced Intelligent, Singapore, 14–17 July 2009; pp. 150–155.

16. Ugurlu, B.; Kawamura, A. Real-time Jumping Trajectory Generation for a One Legged Jumping Robot. In Proceedings of the 2008
34th Annual Conference of IEEE Industrial Electronics, Orlando, FL, USA, 10–13 November 2008.

17. Kajita, S.; Kaneko, K.; Morisawa, M.; Nakaoka, S.; Hirukawa, H. ZMP-based Biped Running Enhanced by Toe Springs. In
Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 10–14 April 2007.

18. Wu, T.Y.; Yeh, T.J.; Hsu, B.H. Trajectory Planning of a One-Legged Robot Performing a Stable Hop. Int. J. Robot. Res. 2011, 30,
1072–1091. [CrossRef]

19. Guo, Q.; Macnab CJ, B.; Pieper, J.K. Hopping with Nearly-Passive Flight Phases. In Proceedings of the 2008 IEEE Conference on
Robotics, Automation and Mechatronics, Chengdu, China, 21–24 September 2008.

20. Kajita, S.; Nagasaki, T.; Kaneko, K. A hop towards running humanoid biped. In Proceedings of the IEEE International Conference
on Robotics and Automation, 2004—ICRA ’04, New Orleans, LA, USA, 26 April–1 May 2004.

21. Ahn, D.; Cho, B.-K. Optimal Standing Jump Trajectory Generation for Biped Robots. Int. J. Precis. Eng. Manuf. 2020, 21, 1–9.
[CrossRef]

22. Chen, X.; Yu, Z.; Zhang, W.; Zheng, Y.; Huang, Q.; Ming, A. Bioinspired Control of Walking with Toe-Off, Heel-Strike, and
Disturbance Rejection for a Biped Robot. IEEE Trans. Ind. Electron. 2017, 64, 7962–7971. [CrossRef]

23. Li, Q.; Yu, Z.; Chen, X.; Meng, L.; Huang, Q.; Fu, C.; Chen, K.; Tao, C. A compliance control method based on viscoelastic model
for position-controlled humanoid robots. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; pp. 3518–3524.

24. Feng, S.; Whitman, E.; Xinjilefu, X.; Atkeson, C.G. Optimization-based Full Body Control for the DARPA Robotics Challenge. J.
Field Robot. 2015, 32, 293–312. [CrossRef]

25. Aceituno-Cabezas, B.; Mastalli, C.; Dai, H.; Focchi, M.; Radulescu, A.; Caldwell, D.G. Simultaneous Contact, Gait and Motion
Planning for Robust Mul-ti-Legged Locomotion via Mixed-Integer Convex Optimization. IEEE Robot. Autom. Lett. 2017, 3,
2531–2538.

26. Shi, X.; Gao, J.; Lu, Y.; Tian, D.; Liu, Y. Simulation of Disturbance Recovery Based on MPC and Whole-Body Dynamics Control of
Biped Walking. Sensors 2020, 20, 2971. [CrossRef] [PubMed]

27. Joint Japanese-French Robotics Laboratory. Eigen-QuadProg. 2020. Available online: https://github.com/jrl-umi3218/eigen-
quadprog (accessed on 1 October 2019).

http://doi.org/10.1109/TIE.2009.2032439
http://doi.org/10.1177/0278364910385587
http://doi.org/10.1007/s12541-020-00360-6
http://doi.org/10.1109/TIE.2017.2698361
http://doi.org/10.1002/rob.21559
http://doi.org/10.3390/s20102971
http://www.ncbi.nlm.nih.gov/pubmed/32456320
https://github.com/jrl-umi3218/eigen-quadprog
https://github.com/jrl-umi3218/eigen-quadprog

	Introduction
	Simplified Jump Model and Main Scheme of Jumping
	Simplified Jump Model
	Main Scheme of Jumping

	Preparation of Upward Jump Motion
	Trajectory Planning in Launch Phase
	Decision Vector
	Constraints in Launch Phase
	Cost Function
	Nonlinear Optimization Problem

	Trajectory Planning in Flight Phase
	Trajectory Planning in Landing Phase

	Real-Time Control of Jump Motion
	Controller in Stance Phase
	Cartesian Space Controller
	Joint Space Controller
	Constraints
	Transformation from Nonlinear Optimization Problem to QP Optimization Problem

	Flight Phase

	Simulation Results
	Discussion
	References

