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Abstract: The paper shows the steps for the preliminary studies of an AUV for shallow water: the first
part illustrates the vehicle architecture and the philosophy that permeates the various design choices.
In the second part illustrates an innovative method for increasing longitudinal stability based on
Takagi-Sugeno (T-S) Fuzzy Inference System: it saves a lot of computational time and, by simplifying
the calculation, it is also suitable for remarkably simple computers such as Arduino. in the third part
is simulated the behavior of the AUV: thanks to the data taken from the previous hydrodynamic
simulation, we can establish the behavior of its longitudinal stability and the computational savings
due to the T-S method.
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1. Introduction

The purpose of the paper is to study a drone capable of autonomous exploration of
the sea. The vehicle differs from the others because from the environmental point of view
it is designed for shallow waters: areas that are exceedingly difficult to reach with ordinary
autonomous underwater vehicles (AUVs). It is imagined and so designed to perform
many activities currently neglected because expensive to execute with traditional systems
as, e.g., marine traffic control missions, monitoring of sandy/rocky coast, search and
tracking of schools of fish, control of oil pipelines and submarine cables. For these missions
it is necessary to have small vehicles but with extremely powerful engines, of compact
architecture: most of the existing drones only partially satisfy any of these requirements.

The study went through several phases: outline and detailed drawing, design of the
control and attitude system. Since the classic algorithms are very time consuming, one
of the main innovative objectives of this part of the work is to find “light” or simplified
algorithms that allow the use of simple, easily reprogrammable and inexpensive systems
such as Arduino thought the application of fuzzy logic to the attitude control system [1].

Our work is divided into three main parts: in the first part we describe the general
architecture design of an underwater drone for shallow water. The second part illus-
trates a mathematical method to increase the longitudinal stability control system which
saves computational effort and is based on Takagi-Sugeno Fuzzy Inference System to use
small computing systems to make development flexible and simple. In the last part, the
fluid dynamic simulation of the CAD model it gives us important data that we then use
for the simplified calculation procedures and algorithms that we will later simulate in
real conditions.
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State of the Art

Sampling the oceans has traditionally been conducted from ships: the first global
oceanographic research cruise was carried out with the ship HMS “Challenger” which led
to a great number of discoveries like the mid-Atlantic ridge or the Challenger Deep in the
Mariana Trench to name only a few. It took over 23 years to compile the results from this
cruise: obviously, these are times that are no longer acceptable today [1–4].

Autonomous vehicles today represent the spearhead of underwater exploration sys-
tems. After the pioneering era of diving bells and bathyscaphe (which endangered the life
of the human crew), submarine research immediately turned to automatic systems: useful
robots that can carry out even the most difficult and risky missions. It is also necessary
to note that we have also relied on non-proximity exploration systems such as airplanes
and, above all, satellites with a payload optimized for observations on seas and oceans.
The ROVs (Remote Operate Vehicle) were the first semi-autonomous vehicles used for the
exploration of the deep waters but the presence of the umbilical cord places great limits
both to maneuverability and to the maximum reachable depth; on the other hand, they
have the advantage of sending sensor data in real time: often, however, the cost of the sup-
port vessel makes them highly uneconomic. The buoys (lagrangian and semi-lagrangian)
present themselves as excellent means of exploration: unfortunately, their ability to move
is influenced only by external factors such as currents and tides. In the last ten years,
underwater gliders have made great strides: they allow the exploration of large volumes of
water for extremely long times: unfortunately, their intrinsic dynamics do not allow them
to be used near coastal shallows (see Figure 1a for comparison) [5–8].
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The AUVs have established themselves for their flexibility of use, given that the tech-
nology of the driving and control systems has become very advanced. These vehicles can
explore large areas in complete decision-making autonomy, complete difficult missions by
counting an advanced artificial intelligence that allows them to no longer be banal execu-
tors of orders but sometimes, they are able to make creative and sophisticated decisions.
This obviously within the limits of their programming and setting.

Historically, the development of these devices has been severely held back by inade-
quate technology and by the difficulties, including economic ones, linked to field tests of
AUVs. Today, everything related to drones is in turmoil, design, controls, sensors because
modern electronic technologies make it possible to obtain previously unimaginable results
but, the research and the development has been principally focused on AUVs for large
offshore cruises, developing several interesting prototypes [9,10]. On the contrary, both
because the technological challenges for deep water AUVs is more stimulating and because
certain activities are more easily carried out by divers or wire-guided ROVs, the research
activity for specialized drones in shallow waters was not very intense, so neglecting all the
exigencies of this world in which there is the most part of marine life and marine biodi-
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versity which are strongly affected by the impact of human activities and of the climate
change [11,12]. Even other human activities could be strongly supported by these devices,
some more economically important, as the monitoring of pipelines so as submarine power
lines, some emerging, as the monitoring of the coast to contrast the drug traffic or the
human trafficking, some humanly important such as underwater archeology. Currently,
all these activities are or occasionally performed or scheduled but never are continuously
performed while it would be allowed by an autonomous drone. The use of autonomous
underwater vehicles (AUV’s) provides flexibility and scalability in conducting seabed
surveys overcoming many of the objective limitations. Some AUVs for shallow water have
been already realized as, e.g., the Sirius AUV realized by the University of Sydney [13], the
Woods Hole Oceanographic Institute realized the system called ABE [14] and the Girona
500 AUV developed at the University of Girona [15]. These systems have been happily
tested in depths greater than 10 m, but show struggle to perform in shallower environments
moreover their dimensions oblige to use a significant logistic support as vessels at the
surface for deployment and recovery.

An already existing platform, the Starbug Mk3, has been specifically adapted to
meet the exigencies of shallow water giving live to the model Starbug X. It is a small
and portable AUV that can be deployed even from small inflatable vessels [16,17], but its
intrinsic performance prevents a use for long measurement autonomous campaign.

Cause their use, the longitudinal stability of the AUVs is really important and a study
on it typically accompanies the design of a new AUV [18,19].

Unfortunately, all these analyses are tailored for the specific AUV under study be-
cause they are strongly influenced by the shape and by the weight distribution of the
specific device.

Our vehicle has the task to explore coastal areas full of obstacles (see Figure 1b
for comparison) [20–23] and for longer lasting measurement cruises and its design is
accompanied by a specific longitudinal-stability analysis.

2. Materials and Methods

The need to face shallow seabed and turbulent waters led us to the idea of developing
a peculiar and completely new project. The architecture of our project is therefore far from
all the previous ones due to the use of technical solutions which, although not original
in the sense that we cannot claim authorship (e.g., the annular wing), have never been
concentrated in one vehicle. Very tapered thin wings, widely used for similar drones, have
proved completely unsuitable for our environment. The same can be said for the power
installed on board: we need two counter-rotating propellers to overcome local speed peaks
due to the turbulent state of the sea near straits or areas full of rocks. The project solutions
are detailed below, explaining the choice of each part of the architecture [24–28].

2.1. The Vehicle

The underwater vehicle was named Albacore (Thunnus Alalunga) due to the extreme
similarity in both size and shape with the tuna well widespread in the Mediterranean: it
was designed for use in shallow, high turbulence waters, in the presence of natural obstacles
(rocks and shoals) but also wrecks or breakwaters, etc. (See Figure 2a,b). For all these
reasons we decided to equip it with two powerful engines that operate counter-rotating
propellers and an elliptical wing, sturdy and stiff.

The estimated general characteristics and performances of the vehicle are shown in
the following Table 1.
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Figure 2. Two views of the drone (a) port side view; (b) starboard prospective view.

Table 1. AUV Albacore: characteristics and performances (estimated).

Displacement Length Beam 1 Wingspan Cruise Speed Range 2 Endurance 2 Depth

59 0.920 0.22 0.445 18 34 ~5700 168 200
kg m m m knots km/h km h m

1 Without annular wing. 2 At cruise speed.

The tasks of the vehicle are several and various: first of all the surveillance of fish
schools and fishing operations (thanks to the neural network) then it can monitor a well-
defined area, being able to detect oil spills or biological contamination.

The vehicle is also able to partially emerge as an “autonomous periscope” for the
purpose of optically monitoring short-range ship traffic.

The architecture of the AUV is extremely essential: a fuselage supports an annular
wing and is propelled by two counter-rotating propellers (see Figure 3).
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Figure 3. Section of AUV Albacore.

2.1.1. The Fuselage

The fuselage of the Albacore is roughly cylindrical, composed of milled aluminum
6061 class: in the front, we have designed an elliptical radome act to contain the payload
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that consists on several biochemical sensors arranged in a “nostril” that has the purpose of
protecting the instrumentation without exposing it directly to the outside.

In the lower section, there is a transparent porthole in polymethylmethacrylate (Plexi-
glas): it is the window for the camera (GoPro class) and the relative lighting system.

The central part supports the supports of the elliptical wing and is further stiffened by
a series of internal battens. The terminal cone (this too stiffened in the same way) supports
the fletching and the thrust of two counter-rotating propellers.

The fuselage is composed by four coaxial cylindrical compartments (or bays):

• Payload bay
• Navigation bay
• Engines bay and
• Propulsion bay.

2.1.2. The Payload Bay

The Payload Bay is, in essence, a “radome”, which contains the “nostril” (see Figure 4)
whose channel in turn houses the chemical and biological sensors: the data collected are
managed by a PC-104 computer card, which also has the task of sending them to the
central computer (Arduino). It was decided to incline the “nostril” by 20◦: after a series of
hydrodynamic simulations, we decided to place it at 20◦ as the discharge flow would not
have involved the annular wing, worsening its performance (see Figure 5b).
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Underneath there is a large window that allows a digital camera (Go-Pro class) an
excellent FOV (Field of View): this also allows the recognition of underwater objects or
ships on the surface. The lighting of the scene is provided by a flat LED of 106 candles, as it
is intended for use in murky port waters. The LED is mounted on a bulkhead and is placed
on the shoulder of the camera which dissipates the heat generated.

2.1.3. The Nostril in Detail

The “nostril” is nothing more than a channel in which the water that laps the drone
is forced to pass: in this flow, several sensors are immersed that analyze the water so
that they can operate correctly while being sheltered. In fact, they were not placed on the
external surface of the hull because, being operated by unskilled personnel, they could
suffer shocks, breakages, or improper handling (see Figure 5a). The first sensor present is
the pitot tube, also known as pitot probe: is a flow measurement device used to measure
fluid flow velocity.

Later we have provided a series of sensors to detect the different types of hydrocarbons,
in order to detect the “oil spills”. The payload is a “proposal”: we imagined the use of the
drone as a sea contamination detector. The probes can be easily replaced with other “ad
hoc” ones.

Finally, we have provided a laser opacimeter to measure the degree of transparency of
sea water.

The sensors produce a large mass of data which then must be correlated not with time
but with the position and attitude of the drone: their processing is delegated to a PC-104
card which will then also take care of data storage. In addition, many sensors are equipped
by the parent company with dedicated software to manage the output of you, which runs
only on a PC. It is singular that a higher computing power is required than that necessary
for navigation which, instead, is delegated to a simple Arduino (redundant).

2.1.4. The Navigation Bay

The Navigation Bay contains two Arduino units: due to their quality level COTS
(Commercial Off-The-Shelf), it was decided to put them in Main and Redundant config-
uration. The second unit (redundant) is placed in “hot stand by” despite being fed and
while managing the same data flow, it is not called to play the role of OBDH (On Board
Computer and Data Handling) as instead the Main Unit does: this allows, in the event of a
malfunction, to take over the latter in a completely transparent manner to the rest of the
devices to which they are interfaced (see Figure 4a). The bay also contains the two main
rechargeable batteries: one supplies power to the ODBH and the other to the payload. The
differentiation was necessary because, in the event of a serious failure of the first battery,
the second, disconnecting all non-essential services, can supply the energy needed by
the Arduino computer to be able to lead the vehicle to the surface and to manage any
recovery procedures.

2.1.5. The Engine Bay

The engine bay contains two identical but counter-rotating electric motors (CW and
CCW) which in turn operate the two propellers, also these counter-rotating (Figure 6a).
The movement is transmitted by two concentric drive shafts: the first (CW) is internal and
moves the propeller at the end, the second (CCW) is hollow and allows the rotation of the
first and moves the propeller closer to the hull. Due to the length of the drive shafts, two
bearings were placed to attenuate any vibrations, one at the auxiliary battery cluster and
another near the tail.
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2.1.6. The Propulsion Bay

The propulsion bay contains first and foremost the battery cluster, the drive shafts of
the engines, the fletching and the two counter-rotating propellers. The battery cluster is
composed of a canister that supports 12 “D” type accumulators of a completely different
technology compared to the two main batteries so that, given the same environment, it has
a completely different reliability (electromechanical degradation) response. Thanks to a
small engine, it is possible to slide the chassis backwards so that the center of mass of the
vehicle moves quite far from the hydrostatic center and so the hull can assume the “nose
up” position for biochemical measurements (see Figure 6b).

The cruciform fins (see Figure 6c,d) have no dihedral and have been prolonged to act
as a guard for the propellers, thus preventing them from being sized in the presence of tufts
of algae or wandering nets. They are fully mobile (full floating) whose movement regulates
the direction of the drone. The fulcrum of the mobile surface is placed beyond the pressure
center: to restore the stability, the appendages which serve to protect the propellers also
have the function of “dynamic balancing” of the control surface. Finally, the propellers
are counter-rotating to counteract the strong torque of the engines, which are especially
slow-moving because we are in the absence of a large wingspan that can counteract them.
The terminal propeller has an angle of attack (AoA) greater than the previous one to have
the same performance as the previous one, being lapped by a flow already in rotation.

2.1.7. The Wing

Following a careful study, an elliptical annular wing was chosen for the vehicle: the
peculiarity of the configuration was dictated by extremely strict requirements. First of all,
with this solution we have practically halved the wingspan, greatly reducing the moment
of inertia on the longitudinal axis: this apparent “lack of stability” is largely compensated
for the presence of spoilers that guarantee the vehicle’s dynamic stability.
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One of the possible applications of the AUV is that of the underwater inspection of
fishing nets, submerged systems and submarine cables: the fact of having a ring-shaped
wing guarantees the fact that it does not get caught in possible underwater obstacles.

Among the main requirements, it was considered that the vehicle can be used by
unskilled personnel with equipment not specially adapted: it will be sufficient, therefore, to
be able to set sail on board, to have a simple winch: in this case the wing has been strength-
ened to operate as a “bumper” and withstand without damage possible minor bumps
against the ship’s rail. Finally, the elliptical annular wing gives the vehicle great dynamic
stability, a modest induced resistance, a dimensional compactness: this is supported by
four cross-shaped bracing that also act as a further element of stability.

2.2. Dynamic Force Balance

In this section, we consider the dynamic balance of forces on the vertical plane (X, Y):
in these conditions the drone proceeds at a constant speed, in the discussion the variation
of density and viscosity of the water with the variation of the depth will not be considered,
nor of the relative variation in propeller efficiency. We will consider these constant elements
with reasonable approximation in a non-negligible depth interval [29,30].

The drone emerging at constant speed (see Figure 7): xb and yb axis are referred to the
body of the drone, xw and yw are absolute axis.
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At the equilibrium, the balance of the forces referred to xw and yw axis are, at con-
stant speed: {

0 = T cos γ− D
0 = T sin γ + L−Wtot

(1)

where

T : thrust (due to the propellers)
D: drag (due to the shape of the vehicle)
v: drone relative speed (referred to water)
L: lift (due to the wing)
γ: angle of attack
Wtot: total weight

The complete expression for the drag is:

D =
1
2

ρv2SCD (2)

where:

ρ : seawater density (average 1.025 kg/L)
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S: drone wing surface
v: drone relative speed (refer to water)
CD : coefficient of drag

According to Taylor’s method, the last member can be separated in:

CD = CD0 + CDγ γ (3)

where:

CD0 : coefficient of drag at γ = 0
CDγ : coefficient of drag at γ 6= 0

so the Equation (2) becomes:

D =
1
2

ρv2S
(

CD0 + CDγ γ
)

(4)

The expression for the lift is:

L =
1
2

ρv2SCL (5)

where:

CL: coefficient of lift

According to Taylor’s method as per Equation (3):

CL = CL0 + CLγ γ (6)

where:

CL0 : coefficient of lift at γ = 0
CLγ : coefficient of lift at γ 6= 0

so the Equation (5) becomes:

L =
1
2

ρv2S
(

CL0 + CLγ γ
)

(7)

For the weight we have
Wtot = WDW − BGB (8)

where

WDW : dry weight of the drone
BGB : buoyancy of the drone

so, for the Equation (1) we have: 0 = T cos γ− 1
2 ρv2S

(
CD0 + CDγ γ

)
0 = T sin γ + 1

2 ρv2S
(

CL0 + CLγ γ
)
−WDW + BGB

(9)

Now we evidence the thrust: T cos γ = + 1
2 ρv2S

(
CD0 + CDγ γ

)
T sin γ = − 1

2 ρv2S
(

CL0 + CLγ γ
)
+ WDW − BGB

(10)

So we have:  T =
+ 1

2 ρv2S(CD0+CDγ γ)
cos γ

T =
− 1

2 ρv2S(CL0+CLγ γ)+WDW−BGB
sin γ

(11)
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Upper and lower member are the same, so:

+ 1
2 ρv2S

(
CD0 + CDγ γ

)
cos γ

=
− 1

2 ρv2S
(

CL0 + CLγ γ
)
+ WDW − BGB

sin γ
(12)

Now, in order to isolate the angle of attack:

sin γ

cos γ
=
− 1

2 ρv2S
(

CL0 + CLγ γ
)
+ WDW − BGB

+ 1
2 ρv2S

(
CD0 + CDγ γ

) (13)

Then

tan γ =
− 1

2 ρv2S
(

CL0 + CLγ γ
)
+ WDW − BGB

+ 1
2 ρv2S

(
CD0 + CDγ γ

) (14)

In case of “straight and level” trajectory we have γ = 0 so the expression becomes

0 =
− 1

2 ρv2SCL0 + WDW − BGB

+ 1
2 ρv2SCD0

(15)

and
0 = −1

2
ρv2SCL0 + WDW − BGB (16)

Posing

κ =
1
2

ρSCL0 (17)

we have:
κ·v2 = WDW − BGB (18)

so for the speed:

v =

√
WDW − BGB

κ
(19)

In, the graph in Figure 8, we see the trend of the function:
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The limits for v are:

0 < v <

√
WDW

κ
(20)
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the speed goes from zero to the maximum: this does not mean that the drone cannot go at
higher speeds but only that it is the limit for straight and level “flight”. To reach higher
speeds in horizontal paths it is necessary to choose negative angles of attack because the
lift of the wing would bring the vehicle upwards.

The limits for BGB are:
0 < BGB < WDW (21)

The variation BGB of buoyancy is obtained by means of a small external bladder which
is filled and emptied of oil if necessary, by means of a small electric pump. Its limits are
absolutely evident: a bladder that gives a hydrostatic thrust greater than the weight itself
would lead the drone to float on the surface without construct.

The zero limit, on the other hand, can be overcome by appropriately ballasting the
drone and obtaining a negative buoyancy: even in this case, we will have that the vehicle
is over ballasted and would sink directly. This type of set-up is allowed for a sub-glider
but not for a classic drone.

In Figure 9 we see the trend composed of the speed, the buoyancy, and the k-factor:
we see that the curve decreases as k increases but not linearly as there are non-linear
parameters inside [31].
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2.3. TS Convergence

Now we apply the Takagi-Sugeno (T-S) convergence method to evaluate the longitu-
dinal stability of our drone. Longitudinal stability is extremely important as it affects the
motion and attitude of the vehicle. Its resolution in “closed” (exact) form is not always
possible and it requires a high number of mathematical steps and this, in addition to ab-
sorbing a large slice of computing power, imposes a lower dynamic to the “flight envelope”
of the vehicle [32].

2.3.1. General Conditions

The longitudinal stability depends on few equations: the wrong combination of these
critical parameters leads to the drone’s instability. We will use a simplified mathematical
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model of the vehicle: this is allowed by to the low dynamics of the system and to by the
high density (and viscosity) of the fluid in which it is immersed.

The expression for the lift is (see Equation (7)):

L =
1
2

ρv2SCL =
1
2

ρv2S
(

CL0 + CLγ γ
)

(22)

where:

ρ = seawater density (average 1.025 kg/L)
S = drone surface
v = drone relative speed (refer to water)
CL = coefficient of lift

We evaluated the vehicle’s coefficient of lift CL by inserting the CAD model (developed
with SolidWorks®) into its fluid dynamics application (see Figure 10), changing the angle
of attack [33,34].
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This was necessary as it is not possible to carry out a satisfactory fluid dynamic
analysis by examining only the annular wing and ignoring its interference with the fuselage.
Furthermore this type of simulation allowed us to examine in detail the hydrodynamic
behavior with various angles of attack has been started. This is because we cannot in any
case verify neither the tail effect nor the strongly tapered fuselage effect.

Our CD model was inserted into a constant velocity water flow (V∞ = 10 m/s) where
CL and CD were calculated for a large number of angles of attack.

The result of the research has provided the two graphs represented in Figure 11a,b.
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2.3.2. Fuzzy Stabilization

The red zone shows the linear interval for the angle of attack γ (Figure 11b).
The Equation (22) can be linearized expressed as:

L =
1
2

ρv2SCL0 +
1
2

ρv2SCLγ γ =
1
2

ρv2SCL0 +
1
2

ρv2Skγ =
1
2

ρv2S
(
CL0 + kγ

)
(23)

The speed is between the stall speed and the maximum speed.
We can express the longitudinal stability interval as:{ .

xH = v
L ∼= 1

2 ρv2S
(
CL0 + kγ

) (24)

and they can be written as:

.
xM =

[
x1
x2

]
=

[ .
xH
L

]
=

[
1 0

ρvSkγ 1
2 ρv2Sk

]
·
[

v
γ

]
(25)

Here v and α are nonlinear terms in the last expressions and our fuzzy variables.
So, we can express the Equation (25) as:[

1 0
ρvSkγ 1

2 ρv2Sk

]
=

[
1 0
z1 z2

]
(26)
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The nonlinear terms limits are:{
v ∈

[
vstall vmax

]
γ ∈

[
−4.5 8

] (27)

So, Equation (26) at the limits become:

max z1
v, γ

= 8ρvmaxSk

min z1
v, γ

= −4.5ρvstallSk

max z2
v, γ

= 1
2 ρvmax

2Sk

min z2
v, γ

= 1
2 ρvstall

2Sk

(28)

Therefore v and α can be represented by for membership functions M1, M2, N1 and
N2 as follows:

z1 = M1(z1)·(8ρvmaxSk) + M2(z1)·(−4.5ρvstallSk)

z2 = N1(z2)·
(

1
2

ρvmax
2Sk
)
+ N2(z2)·

(
1
2

ρvstall
2Sk
) (29)

where {
M1(z1) + M2(z1) = 1

N1(z2) + N2(z2) = 1
(30)

The model rules are:

RULE #1: IF z1 is “high” AND z2 is “big” THEN
.
xM = A1·xM

RULE #2: IF z1 is “high” AND z2 is “small” THEN
.
xM = A2·xM

RULE #3: IF z1 is “low” AND z2 is “big” THEN
.
xM = A3·xM

RULE #4: IF z1 is “low” AND z2 is “small” THEN
.
xM = A4·xM

where:

A1 =

 1 0
max z1 max z2

z1 ∈ high z2 ∈ big

 =

[
1 0

8ρvmaxSk 1
2 ρvmax

2Sk

]
(31)

A2 =

 1 0
max z1 max z2

z1 ∈ high z2 ∈ small

 =

[
1 0

8ρvmaxSk 1
2 ρvstall

2Sk

]
(32)

A3 =

 1 0
max z1 max z2

z1 ∈ low z12 ∈ big

 =

[
1 0

−4.5ρvstallSk 1
2 ρvmax

2Sk

]
(33)

A4 =

 1 0
max z1 max z2

z1 ∈ low z12 ∈ small

 =

[
1 0

−4.5ρvstallSk 1
2 ρvstall

2Sk

]
(34)

Now,
.
xM can be derived out of defuzzifcation process as:

.
xM = h1(z) A1·xM + h2(z) A2·xM + h3(z) A3·xM + h4(z) A4·xM (35)
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where 
h1(z) = M1(z1) × N1(z2)
h2(z) = M1(z1) × N2(z2)
h3(z) = M2(z1) × N1(z2)
h4(z) = M2(z1) × N2(z2)

(36)

This fuzzy model exactly represents the nonlinear system in the region[
vstall vmax

]
×
[
−4.5 8

]
(37)

in the v, γ space.
As shown in Equations (35) and (36), the original equations are followed exactly by

the proposed fuzzy model, which therefore represents the physical domain within the
bounded interval (see Figure 12) of v and γ (out of the linearization).
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Figure 12. The T-S solution in v, γ space dominion.

It is interesting that Figure 12 highlights the stability solution of the T-S method. The
drone, in the first linear zone is extremely unstable or the zero position “on top of the hill”
(the elliptical zone) represents the unstable balance of the wing as, at low angles of attack,
the beneficial and stabilizing effect is not felt of the tail which, instead, begins to show itself
in the “saddle” of stability (green area).
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3. Results

We simulated the behavior of the drone’s navigation system by entering real data from
another project to see how it would respond to our method. To do this, we obviously had
to enter the static and dynamic model of the drone (center of gravity, moments of inertia
on the main axes, fluid dynamics analysis, etc.): for this, we had to absolutely detail our
project and study its behavior once immersed in a movement, as was shown in the initial
part of our work.

To estimate the error on the angle of attack, we simulated its linear and quasistatic
variation in the [−4.5, 8] interval, then we evaluated the deviation (error).

Figure 13 shows us the error that is made between the exact value that is calculated
with the canonical formula and the approximation that is made with the T-S system. We
see that we arrive at an extremely mild and very acceptable error in the face of a rather
high calculation speed since in the second method everything is solved with a multipli-
cation between matrices. We also see that on the error function another periodic error is
“modulated” due to the sampling of the measurement which has been suitably corrected.
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Figure 13. Error between the exact solution and the approximate solution vs angle of attack.

Regarding the processing time, we took a “data strip” lasting 40 s and sampled every
0.5 s, evaluating and comparing the results. In Figure 14, we see the result one of the
simulations: the calculation time of the “exact” solution is visible (red line), while the T-S
method (blue line) allows a saving of calculation time of the order of 60%. The green line
represents the time difference between the two methods.

We took 50 40-s (non-overlapping) samples of a real data strip at 50 different initial
times. For each of these data samples we performed the same simulation: the real data refer
to an evolving drone and therefore involve the most varied and diverse set-up situations.
We then recorded the data: in particular for the delta (time difference between the two
calculation methods) we made a statistical correlation with the intervals: the result (visible
in the Figure) Comforts us because 83.95% of the results fall within the interval 7.91–8.70 ms.



Sensors 2021, 21, 1866 17 of 19

Sensors 2021, 21, x FOR PEER REVIEW 17 of 20 
 

 

high calculation speed since in the second method everything is solved with a multiplica-

tion between matrices. We also see that on the error function another periodic error is 

“modulated” due to the sampling of the measurement which has been suitably corrected. 

 

Figure 13. Error between the exact solution and the approximate solution vs angle of attack. 

Regarding the processing time, we took a “data strip” lasting 40 s and sampled every 

0.5 s, evaluating and comparing the results. In Figure 14, we see the result one of the sim-

ulations: the calculation time of the “exact” solution is visible (red line), while the T-S 

method (blue line) allows a saving of calculation time of the order of 60%. The green line 

represents the time difference between the two methods. 

 

Figure 14. One of the results of the computational time simulation: the T-S method (blue line), the “exact” solution (red 

line) and the difference (green line). 
Figure 14. One of the results of the computational time simulation: the T-S method (blue line), the “exact” solution (red line)
and the difference (green line).

In Figure 15, we see the delta distribution through the various tests in percentage.
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This saving of time and reducing the computing effort has led to use a simple Arduino
system instead of other much more powerful and sophisticated computers.



Sensors 2021, 21, 1866 18 of 19

4. Conclusions

As part of a preliminary study for a self-propelled AUV, designed for a marine
environment composed of turbulent and shallow waters, we have proposed a rather
compact vehicle architecture. Having chosen an annular wing, this ensures a rigid and
robust structure, which is why it can also be handled by unskilled labor. The entire front
part (payload bay) can be completely customized or, depending on the use, can be “loaded”
with suitable sensors.

From this general model a detailed model drawn with CAD (Solidworks) was obtained:
the model in turn was subjected to simulated fluid dynamics tests to establish its behavior
in a water flow with different angles of attack (AoA).

Since one of the critical points of this vehicle is the reduced “wingspan” which leads
to a certain intrinsic instability in certain attitudes, we have placed a particular study in
longitudinal stability for which we have dedicated a separate section. Then we dedicated
ourselves to deepen a simplified stability method so that it could be digested by a simple
“Arduino-like” machine: the method for increase the longitudinal stability, which saves a
lot of computational effort, is based on Takagi-Sugeno Fuzzy Inference System in order to
use small computing systems and make further developments quite simple.

In the third and last part, we evaluated the possible calculation effort of a machine,
inserting a series of real data and evaluating the error made in the simplification or the
“cost” of truncating the calculation. Then we evaluated the machine processing times by
comparing the calculation periods of both the exact method and the one based on the T-S.
Both tests gave positive and extremely encouraging results for future further studies.
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et al. A Simple Takagi-Sugeno Fuzzy Modelling Case Study for an Underwater Glider Control System. In Proceedings of the 2018
IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea), Bari, Italy, 8–10
October 2018; pp. 262–267.

29. Humphreys, D.E. Improvement of the low-speed control authority of an AUV through hull shaping. In Proceedings of the IEEE
Symposium on Autonomous Underwater Vehicle Technology (AUV’94), Cambridge, MA, USA, 19–20 July 1994; pp. 434–438.
[CrossRef]

30. Petritoli, E.; Leccese, F.; Cagnetti, M. High accuracy buoyancy for underwater gliders: The uncertainty in the depth control.
Sensors 2019, 19, 1831. [CrossRef] [PubMed]

31. Petritoli, E.; Leccese, F. Precise takagi-sugeno fuzzy logic system for UAV longitudinal stability: An industry 4.0 case study for
aerospace. Acta IMEKO 2020, 9, 106–113. [CrossRef]

32. Petritoli, E.; Leccese, F. High accuracy attitude and navigation system for an autonomous underwater vehicle (AUV). Acta IMEKO
2018, 7, 3–9. [CrossRef]

33. Küchemann, D. The Aerodynamic Design of Aircraft; Pergamon International Library of Science, Technology, Engineering and Social
Studies; Pergamon Press: Oxford, UK, 1978.

34. Song, S.; Kim, T.; Sung, M.; Yu, S. Attitude Control of AUV using Multiple Buoyancy Engines for Exploration and Water Column
Profiling. In Proceedings of the 2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV), Porto, Portugal, 6–9
November 2018; pp. 1–5. [CrossRef]

http://doi.org/10.1109/OCEANS-Genova.2015.7271362
http://doi.org/10.1109/OCEANS.2007.4449428
http://doi.org/10.1155/2016/7428361
http://www.webbresearch.com/
http://doi.org/10.4031/MTSJ.47.5.4
http://doi.org/10.1109/AUV.2014.7054401
http://doi.org/10.1175/1520-0426(1992)009&lt;0264:TALCE&gt;2.0.CO;2
http://doi.org/10.1109/AUV.1994.518608
http://doi.org/10.3390/app8122459
http://doi.org/10.1109/MetroAeroSpace.2019.8869618
http://doi.org/10.1109/AUV.1994.518611
http://doi.org/10.1109/AUV.1994.518656
http://doi.org/10.3390/s19081831
http://www.ncbi.nlm.nih.gov/pubmed/30999627
http://doi.org/10.21014/acta_imeko.v9i4.723
http://doi.org/10.21014/acta_imeko.v7i2.535
http://doi.org/10.1109/AUV.2018.8729827

	Introduction 
	Materials and Methods 
	The Vehicle 
	The Fuselage 
	The Payload Bay 
	The Nostril in Detail 
	The Navigation Bay 
	The Engine Bay 
	The Propulsion Bay 
	The Wing 

	Dynamic Force Balance 
	TS Convergence 
	General Conditions 
	Fuzzy Stabilization 


	Results 
	Conclusions 
	References

