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Abstract: This paper presents matheuristics for routing a heterogeneous group of capacitated un-
manned air vehicles (UAVs) for complete coverage of ground areas, considering simultaneous
minimization of the coverage time and locating the minimal number of refueling stations. Whereas
coverage path planning (CPP) is widely studied in the literature, previous works did not combine
heterogeneous vehicle performance and complete area coverage constraints to optimize UAV tours
by considering both objectives. As this problem cannot be easily solved, we designed high-level path
planning that combines the multiobjective variable neighborhood search (MOVNS) metaheuristic
and the exact mathematical formulation to explore the set of nondominated solutions. Since the exact
method can interact in different ways with MOVNS, we evaluated four different strategies using
four metrics: execution time, coverage, cardinality, and hypervolume. The experimental results show
that applying the exact method as an intraroute operator into the variable neighborhood descent
(VND) can return solutions as good as those obtained by the closest to optimal strategy but with
higher efficiency.

Keywords: area coverage; multi-UAVs routing problem; multiobjective optimization; matheuristics;
charging location

1. Introduction

As mobile sensing systems, unmanned aerial vehicles (UAVs) are a fast and efficient
option to perceive the environment due to their quick response capabilities. The UAVs can
assume autonomous behaviors performing complex tasks at a low operational cost, provid-
ing strong motivations to adopt these vehicles for various activities such as environmental
monitoring, search and rescue activities, and precision agriculture.

Despite the remarkable benefits of using UAVs in such applications, it is important
to highlight inherent limitations of the different UAV platforms, which must be consid-
ered when planning paths to cover a target area. Nowadays, the UAVs are classified
as fixed-wing, rotary-wing (single and multirotor), and hybrids. Fixed-wing UAVs are
characterized by their long endurance and fast flight speed, suitable for extensive area
coverage applications such as monitoring power lines, roads, and pipelines. This UAV
type requires some setup time to be launched, as this process usually has to be performed
manually [1]. Some models are electric with four hours of endurance [2], and others use a
fuel-injected engine that extends the flight time to up to 24 h [3]. However, they cannot
perform vertical take-off and landing (VTOL). The multirotors are popular due to their
maneuverability, hovering, and VTOL capability, but their low endurance usually restricts
their flight range. The most common multirotor UAVs use battery technology that allows
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flights of 20 to 30 min, reaching 75 min on more advanced models [4]. The single-rotors
have VTOL capability as do multirotors, but they are more efficient with longer endurance
and greater payload capacity. Their power source can be combustion engines, allowing
some models to fly for up to 4.8 h [5]. The hybrid UAVs combine the characteristics of fixed-
and rotary-wing UAVs, such as the tilt-rotor-like aircraft. This configuration allows tilting
the rotors to achieve the same VTOL capability as rotary-wing UAVs or flight dynamics as
the fixed-wing, significantly improving its endurance [6]. Another hybrid configuration is a
fixed-wing UAV with dedicated rotors to perform VTOL. An electric example of fixed-wing
hybrid VTOL can achieve 2.5 h of flight time [7]. Notwithstanding the various types of
UAVs and their performance differences, this paper proposes a high-level method that is
able to plan coverage routes for all such types in a heterogeneous fleet. By properly setting
up the input parameters of our method, the constraints inherent to each type of UAV can
be incorporated.

In a different direction, some current solutions for route planning in coverage tasks
tend to mitigate the limitations of using a particular UAV. An area decomposition strategy
to generate paths with the minimum number of turns for fixed-wing UAVs, aiming to
maximize coverage capability, was explored by Avellar et al. [1]. Since this type of UAV is
manually prepared and launched, the authors proposed a mission planning methodology
that considers human operator setup time capacity to adjust the number of vehicles to be
deployed to minimize the total mission time.

A solution for planning routes to complete coverage using multirotors is presented
in [8]. Unlike the decomposition strategy adopted in [1], the grid pattern map decomposi-
tion used by the authors cannot ensure a minimal number of turns. Each vehicle is assigned
to a base where its mission starts and ends and its battery is recharged. As the bases can be
installed in a set of cells predefined as potential bases, this strategy defines the path and the
cell locations for opening the bases that minimize the maximum travel time for all UAVs.

The possibility of recharging the UAVs in different cells of the grid is presented
in [9]. However, different from [8], the routing problem was not explored. In this case,
the proposed method searches for the open paths that connect all grid cells, locating the
recharging stations to minimize the vehicle’s energy consumption and the time to cover
some high priority cells. Although this previous method was designed for long-term
complete area coverage, it cannot be applied to planning missions that require the return
of all vehicles to the base in a set minimum time, which is common in monitoring missions
in areas without network infrastructure. In this case, the mission finishes when the sensing
data are gathered after all vehicles return to the base station. An example is the protected
areas in the Brazilian Amazon forest, which are remote regions without network coverage
and with limited access to electricity.

Assunção et al. [10] indicated that remote-sensing-based monitoring and law enforce-
ment significantly impact reducing the Amazon’s deforestation. Although using satellite
imagery to identify forest cover changes provided significant advances in monitoring, this
system has technical limitations, such as the lack of image resolution to identify forest
losses in contiguous areas of less than 25 hectares. The study indicated a possible change
in strategy to escape detection by the increase in the deforestation of small areas [11–13].

Thus, to improve the Brazilian environmental command and control strategy, the
development of strategies, which can be used to plan fast and effective monitoring oper-
ations supplying the governmental authorities with precise information to identify and
control small-scale deforestation and forest degradation, must be promoted [14]. Planning
strategies for this kind of operation must ensure that the entire area is completely covered
as quickly as possible, as detecting such damage earlier is critical for combat teams to act
more effectively on site. In this case, the cellular decomposition method used in [1] is more
appropriate since it ensures complete area coverage with an exact representation, reduces
the UAV’s energy expenditure in the turns, and requires fewer vertices to represent the
area than grid-based methods.
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In this paper, we adopt the same area decomposition strategy as explored earlier by our
team [1] and propose extending the previous path planning by presenting a matheuristic
to deal with long-term coverage applications and heterogeneous UAVs. We design a high-
level path planning method that defines the UAV routes for the coverage task and the
recharging stations to be opened. As a high-level planner, the UAV particularities of fixed-
and rotary-wing vehicles such as refueling time, curvature restriction, coverage altitude,
the impact of take-off and landing method (autonomously or manually), and camera
parameters are abstracted from the path planning method. In this case, all low-level factors
must be mapped to the application by setting the proposed method’s input parameters
adequately for each vehicle, such as flight time, speed, and the recharging ratio.

Due to the high costs of installing the recharging stations in the preservation areas, this
high-level planner aims to minimize both the longest route among all the routes planned
for the team and the number of necessary recharging stations, locating the places to open
such facilities. Note that both minimization objectives (the longest flight time and the
number of recharge stations) can be conflicting. Decreasing the number of recharging
stations can force a UAV to make a detour to recharge, thereby increasing its coverage time.

The applied decomposition method represents each coverage row by a pair of vertices
at its extremities. As the vehicle must visit these vertices, we use their positions as references
to the recharging station locations. A conventional methodology to find the optimal
solution for this multiobjective problem is to reduce it to a sequence of mono-optimization
problems that can be modeled and theoretically solved by a commercial solver. However,
the costs to compute a proven optimal solution is prohibitive in practice since this routing
problem is known to be nondeterministic polynomial-time (NP)-hard.

We propose and evaluate four matheuristics distinguished by different forms of inter-
actions between the multiobjective variable neighborhood search (MOVNS) metaheuristic
and the exact method to solve this problem. The first matheuristic implemented uses the
MOVNS to divide the coverage area among the UAVs and apply the exact method to build
their routes. Every modification performed by the MOVNS is rerouted and evaluated to
check if an improvement is obtained, which results in a high call rate of the exact method.
This issue was mitigated by adopting heuristics to rearrange the route on the MOVNS and
perform the route evaluation regardless of the exact method. One of these uses the exact
method to build only the initial solution, and the other two strategies apply it to improve
the solution at specific steps in the method. To evaluate the effect of these modifications,
we analyzed the algorithm’s performance considering the computation time to return its
solutions and their quality regarding the coverage, cardinality, and hypervolume metrics.

The main contributions of this paper are: (1) presenting a multiobjective approach
for routing long-term complete area coverage mission with multiple heterogeneous UAVs,
simultaneously considering the time to complete the mission and the number of recharging
station to optimize the coverage tours; (2) locating the recharging stations that can be
shared among the vehicles; (3) developing, evaluating, and comparing different heuristics
that return the set of nondominated solutions to minimize the longest time among all the
vehicles and the number of recharging stations.

The remainder of this work is organized as follows: In Section 2, a review of rele-
vant related works is provided. A brief definition of the problem under investigation is
provided in Section 3. A mixed-integer linear programming (MILP) formulation for the
problem is presented in Section 4. The matheuristics to solve it are proposed in Section 5.
Computational experiments to evaluate the proposed heuristics and a discussion on pro-
posed strategies are presented in Section 6. Conclusions and final remarks are presented in
Section 7.

2. Related Work

Coverage path planning (CPP) has been addressed by several studies, usually for
robot applications in monitoring/surveillance missions that require the coverage of some
determined target points in the environment. In particular cases, these monitoring missions
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must persist for a long time, following a path that maximizes each target’s visit frequency.
Persistence is usually solved by implementing speed controllers for the robots to stay
perpetually monitoring the environment, as proposed in [15]. The authors formulated a
linear program (LP) that provides a solution for speed control in a dynamic environment.
The robot path is planned a priori, and the proposed controllers adjust its speed to handle
different levels of attention in different parts of the environment, keeping the coverage
frequency bounded. Cassandras et al. [16] presented an optimal controller for a multiagent
system in persistent monitoring. The focus was to control the multiple agents movements
to minimize the uncertainty on the mission space. A deterministic finite-state formulation
for this problem is presented in [17]. The authors proposed a branch and bound algorithm
that quantifies the coverage quality in a finite prediction horizon.

A mixed-integer linear program (MILP) to find the fastest trajectory to cover a
preassigned set of waypoints considering the collision avoidance constraints for UAV
is presented in [18]. This solution was extended [19] by combining task assignment
and trajectory planning for a fleet of UAVs, minimizing the mission time consider-
ing heterogeneous UAVs, different types of waypoints, time, and space constraints.
Gonçalves et al. [20] and Keller et al. [21] explored the problem of collision avoidance for
intersecting paths. The work in [20] was further extended in [22] to consider minimum
spatial separation, acceleration constraints, and uncertainty in the speeds and positions of
the vehicles.

Dille and Singh [23] proposed a heuristic for planning road coverage trajectory in
sparse environments considering motion-constrained vehicles such as fixed-wing UAVs.
In this case, road monitoring using an exhaustive sweeping movement is not considered
the most appropriate. Thus, the authors converted the edge-oriented road graph into a
node-graph representation (roads as nodes) and then built the solution based on a traveling
salesman problem (TSP), ensuring the complete coverage of the roads by visiting all nodes.
Unlike the previous node-based solution, Oh et al. [24] approached road patrolling with
multiple fixed-wing UAVs considering it as an arc routing problem. An MILP formulation
and an approximation algorithm based on the modified Dubins Chinese postman problem
(mDCPP) as strategies to minimize the flight time were proposed.

Guerriero et al. [25] presented a multiobjective approach to the dynamic routing
problem using UAVs. This strategy combines the task scheduling problem with the motion
planning problem in a multicriteria optimization model. Their objectives considered the
minimization of the distance traveled, the maximization of the customers visited, and the
minimization of the number of UAVs, ensuring both spatial and temporal coverage of
specific targets in the environment.

An important issue in practice that emerged from monitoring missions is the limited
capacity of the vehicles. In this case, long-term coverage applications must consider
the vehicle’s capacity constraints and possible tour interruptions for replenishment. As
observed from the literature, several related works have investigated routing strategies
using multiple depots to replenish the vehicles in logistic operations [26–31]. Another
class of approaches simultaneously considers the routing and depot-locating problems.
Generally, the objectives are defining the locations of the depots and assigning each one to
a route so that path costs and the number of depots are minimized [32–35].

A particular case of this locating problem considers the depots as recharging stations
due to the vehicle fuel constraint. This approach is usually applied for routing electric
vehicles (EVs), which may require regular recharging, which can be a potential issue for EV
applications. In this sense, Chung et al. [36] presented an optimization model for planning
new charge station facilities over time, identifying predefined sites that maximize the total
coverage flow. An approach for ranking these sites considering a multicriteria evaluation
process integrated with a multiobjective method was proposed [37]. Riemann et al. [38]
addressed the location of wireless charging facilities for roadway electrification. In this
case, the EV equipped adequately with this technology can be recharged when driven over
this type of road, also known as charging lanes. The authors formulated a mathematical
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model to locate a specific number of wireless charging lanes that maximizes the road traffic
flow. Chen et al. [34] investigated the optimal deployment of the charging infrastructure
that combines the static charging stations and the wireless charging lanes. The charging
planning for autonomous vehicle logistic system was combined with the scheduling prob-
lem [39]. Ammous et al. [40] investigated the customers trip delay due to the charging
time for an EVs allocation system, presenting a routing scheme that considers the charging
station queues to minimize the expected overall trip time for all customers’ overall routes
relative to their trip time, not considering the delay required for in-route charging.

For UAVs with VTOL capability, a different charging station technology was pro-
posed [41,42], enabling vehicles to autonomously dock, recharge, and return to their
missions. Another more advanced alternative is the station technology that swaps the
battery, replacing the depleted battery with one fully charged [43]. It is not required to
wait for the battery recharging that usually takes more time than the UAV’s flight time. As
the most common UAVs have short endurance, determined by their battery capacity, such
technologies have been considered in several solutions, especially for persistent missions.

The strategic deployment of such stations has been explored for package delivery ser-
vices [44–46]. Hong et al. [44] proposed solutions to locate a limited number of recharging
stations to maximize the customer’s coverage demand. Huang and Savkin [45] focused on
minimizing the number of charging stations keeping the customer demand ratio and the
connectivity among stations and the depot. Cokyasar [46] presented a mixed-integer non-
linear programming (MINLP) model that minimizes long-term investment and operational
cost by defining delivery routes to customers using UAVs, trucks, or both vehicles (not
for the same order). For the UAVs delivery, the charging stations are optimally localized
to minimize their quantity, considering the UAV’s congestion costs at recharging stations
and limited supply of batteries to be swapped. Due to the UAV payload restriction, such
delivery works are constrained by one UAV delivering only one package to a customer at
a time. The vehicle departs from the origin (warehouse) with the package and uses the
charging structure to reach one target destination (customer), performing the same path to
return to the origin. Thus, although some strategies for delivery can also be used in the
context of surveillance, it is not straightforward to apply them in the problem considered
in this work. In this paper, we propose to address the charging station locating problem
jointly with the heterogeneous UAVs routing problem in a scenario that requires reaching
more than one target in each UAV tour.

The routing considering the UAVs energy constraint was approached in some works as
the fuel-constrained UAV routing problem (FCURP). Sundar and Rathinam [47] presented
an MILP formulation and an approximated algorithm for FCURP to find a path for the
UAV that visits all targets and some recharging stations, when required to satisfy the fuel
constraint, keeping the recharging demand minimal. Mitchell et al. [48] extended the
previous fuel constraint MILP formulation to multiple heterogeneous vehicles providing
solutions for the multirobot persistent coverage problem (MRPCP). Two arc-based and two
node-based MILP formulations for the extended FCURP for multiple UAVs (FCMURP)
were analyzed [49]. In this case, the authors observed that the arc-based formulations
outperformed the node-based formulations in computing the optimal solution for any
instance of the problem. Another MILP formulation for a similar fuel constraint problem
was proposed [50]. In this case, the authors aimed to minimize the overall costs to inspect
critical locations when considering installing battery supply stations. The uncertainties in
the fuel consumption by the UAVs for the FCMURP were investigated [51] by modeling
the UAVs’ fuel consumption as a two-stage stochastic program that minimizes, in the first
stage, the travel distances for all vehicles and, in the second, the additional costs to recharge
when the vehicle fuel is inadequate to complete the route defined by the first stage.

A more specific robotic mission in CPP is the complete coverage problem, which
requires the decomposition of the area into cells that the robot must entirely visit. Galceran
and Carreras [52] presented several decomposition strategies, and the majority was classi-
fied as approximate or exact cellular decomposition, following [53]. Choset’s taxonomy
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mainly differentiates between decomposition types by their representation level of the
target area.

Approximate decomposition is used by grid-based methods to represent the area
with a set of uniform cells. This grid representation is only an approximation of the real
area shape. In this case, the coverage is completed by visiting all cells, but the coverage
completeness depends on the grid resolution. Albeit simple, the grid-based representation
is not scalable due to the exponential growth in memory usage [54]. It also demands an
accurate localization to maintain the coherency of the grid map for the coverage task, which
becomes more challenging to apply to large areas [55,56].

Exact cellular decomposition [57] splits the free space into nonoverlapping cells that
exactly fit the space geometry when joined. A simple way to perform this space coverage
is using a sequence of back-and-forth movement (zigzag) inside each cell. The sequence of
the coverage among the cells can be solved by representing the decomposed space with an
adjacency graph and then applying a graph search algorithm to determine the coverage
order. The robot achieves complete area coverage by combining the navigation among the
cells following the specified sequence and the zigzag movement inside each cell. Some
works explored the direction of the zigzag movement to optimize the robot path, as seen in
Li et al. [58], who explored the optimal coverage path in exact decomposition, finding the
sweep direction that minimizes the UAV’s turns. The authors proved that for area coverage
using UAVs, decreasing the number of turns increases the path’s efficiency in terms of
length, duration, and fuel consumption. The sweep direction problem was also explored
in [59], considering operations with multiple UAVs.

Avellar et al. [1] presented a solution based on the vehicle routing problem (VRP) to
minimize the total mission time in a complete area coverage task using multiple fixed-wing
UAVs. In this case, the exact cellular decomposition method was performed to define the
set of coverage rows that minimizes the vehicle turns. An MILP formulation was presented
to route a team of UAVs considering practical issues to deploy this kind of vehicle, such
as the time needed to prepare and launch them manually (setup time). In this case, the
authors noted that the setup time has a relevant effect on the number of UAVs planned for
the mission, especially when the number of human operators is smaller than the number
of UAVs to be launched.

Similar area-coverage approaches using UAVs are reported in [8]. However, different
from [1], the authors used the approximated cellular decomposition, presenting an MILP
formulation to define the UAVs routes over the grid. This strategy of representing the
area by a grid was also used in [9,60,61], which, despite being designed for area coverage
applications, addresses different problems.

Li and colleagues [9,60] combined the environmental, fuel constraints, and charging
station location problem for persistent area surveillance with multiple UAVs. Given the
number of working vehicles and the number of charging stations to be opened, a genetic
algorithm was proposed to optimize the open paths for each UAV and the recharging
station placement to minimize the energy consumption and the flight time to visit some
high-priority cells.

Acevedo et al. [61], albeit not considering the recharging of the UAV out of its base,
proposed a distributed method for area division performed online among the UAVs. Each
vehicle is assigned to a cell whose size is adjusted as the vehicles share information with
their neighbors. All UAVs perform a planned closed path inside its cells that maximizes the
periodic communications among the UAVs. As the information is updated, the cell dimen-
sion is adjusted to optimize the inside path to maximize coverage frequency considering
the vehicles’ capacities.

Although some studies focused on the route optimization problems for multiple UAVs
in the complete area in terms of coverage operations and others locating the recharging
stations to extend the vehicle range in the mission, none of the above works considered
all the constraints together in a multiobjective approach in a heterogeneous fleet. To the
best of our knowledge, this work, for the first time, presents a multiobjective solution
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for routing long-term missions for complete area coverage with multiple heterogeneous
UAVs, simultaneously considering the minimization of the total time of the mission and the
localization of the minimum number of recharging stations. Note that the minimization of
the number of recharge stations is a relevant criterion due to the costs associated with these
facilities. However, the objectives may be conflicting, as reducing the number of recharging
stations may force the UAV to travel a longer path to recharge, thereby increasing the time
to complete the mission.

In our work, we are dealing specifically with a locating-route problem to guarantee
complete area coverage by UAVs, which is not only restricted to area-monitoring tasks.
The proposed methodology can be incorporated into the solution to other problems, such
as using UAVs to supply data communication in wireless sensor networks (WSNs). The
UAVs can also be used for data collection to support the transmission of the data gathered
by sensor nodes on the ground. In this case, the vehicle capacity to transmit data is limited
by the power consumption in the data transmission, flight speed, the available energy on
the UAVs, the deployment location, and various other factors investigated in the literature,
as presented in [62–65].

3. Problem Definition

Given an area to be monitored, it must be decomposed in several coverage rows
considering sweep direction, camera parameters, and the UAV flight altitude [1]. The
distance between any two rows is calculated as a function of the camera footprint width,
determined by the UAV flight altitude, the image sensor width, the camera focal length,
and the side overlap percentage. These parameters influence the captured image, and their
impact in the image reconstruction was previously assessed [66].

The area is covered by a team of k UAVs equipped with on-board cameras pointing
downward. The UAV flies at different heights to avoid collisions, which is compensated by
adjusting the camera focus to keep the same footprint width for all vehicles. The UAVs have
limited endurance and can reach at least one recharging station along their paths. They can
recharge as many times as needed and must be able to cover at least one coverage row.

The decomposed area is modeled by a graph G = (V, E), where V = T ∪ D is
the set of vertices, E is the set of edges, and N = |V| is the number of vertices of the
graph. Let T = {t1, t2, . . . , tn} be the set of targets in the extremities of the coverage
rows and D = {d0, d1, d2, . . . , dn} be the set given by the union of the depot and the
potential locations for recharging stations {d1, d2, . . . , dn}. The base station (depot) d0
denotes the vertex where the UAVs start and end their routes. All edges (i, j) ∈ E have
a non-negative value γi,j and we consider the Euclidean distance between the vertices i
and j. The distances are time-invariant, symmetric (γi,j = γj,i), and satisfy the triangle
inequality, i.e., γp,q + γq,r ≥ γp,r, ∀p, q, r ∈ V. The coverage rows, Lall ⊆ E, are required
edges defined by the decomposition method and must be covered once by some UAVs. The
vehicle endurance is denoted by Fk, quantified by total flight time at a constant speed of
vk. The flight time, Fk, is reduced proportionally to the edge length given by ck

i,j = γi,j / vk.
The time spent on the recharging station is considered proportional to the flight time, and
the proportionality constant qk denotes its ratio.

The impact of UAV altitude on the coverage row generation relies on our group’s
previous development [1]. The UAV’s low-level parameters are reflected in our model by
the high-level input parameters, such as the UAV flight time (Fk), speed (vk), the recharge
time ratio (qk), and the costs to traverse the edges (ck

i,j). Aspects concerning different
altitudes among vertices or extra costs to perform curves by specific vehicle models can be
embedded in the ck

i,j parameter. For instance, we can consider the length of the real path
that must be followed by a fixed-wing UAV to account for curvature constraints instead of
using the Euclidean distance between the nodes. Other particularities can be mapped to
their recharging time ratio qk.

The objective of this work was to find the UAVs’ routes and locate the necessary
recharging stations considering each vehicle’s performance, regardless of its hardware.
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Although the proposed method works independent of the UAV model, using either electric
or combustion engines, in the remaining text, we consider the use of electric vehicles that
complete their battery charge in the recharging stations available in the area.

Figure 1 illustrates a graph and the solution for area monitoring. The complete graph
in Figure 1a contains edges to connect every pair of different vertices in the set V. The
coverage rows Lall are all the continuous lines. Their ends (targets) must be numbered,
using odd numbers on one side of the area and even numbers on the other. The recharging
stations are aligned with the targets, being identified in the figure by letters (A–H) and
the UAVs depot (I). Figure 1b depicts an example of monitoring a protection area [67]. In
Brazil, this region has several hundred demarcated indigenous lands, which are essential
for the protection of indigenous peoples. Thus, as illustrated, the active monitoring of
these areas is crucial. The solution shows two routes for different UAV models that require
recharging to complete the coverage mission. Due to the cost associated with installing new
recharging stations in this location, more emphasis was placed on minimizing recharging
stations opening to the detriment of time to complete the longest route. In this case, the
solution that shares the recharging station at vertex E was considered the best one.
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(a)
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4 mi

UAV1

UAV 2

(b)

Figure 1. Example of the graph used to represent a coverage area and the solution illustrated in a preservation area image.
(a) The recharging stations that can be opened in the area are represented by A–H, the depot is the vertex (I), and the
targets are identified by the numbers 1–8. (b) An illustration of coverage routes applied to preservation area monitoring.
Deforestation map of the Amazon from the TerraBrasilis website [68].

Next, in Section 4, the mathematical formulation is presented to find the exact solution
for small areas and, in Section 5, matheuristic strategies are explained that quickly return
feasible solutions to cover larger areas.

4. Mathematical Formulation

The mathematical formulation presented in this work was inspired by [1] for area
coverage, by [49] for the arc-routing model, and by [48] for the heterogeneous vehicles
application. Besides combining these different characteristics to minimize the longest
route time, we also considered locating the recharging stations that can be open in the
vertices defined using the area decomposition method while simultaneously minimizing
the number of such stations.

The modeling of these two objectives is relevant. The first objective, which is to mini-
mize the longest vehicle route ( f1), is crucial for monitoring or search-and-rescue operations
that demand the accomplishment of the mission in the least time. The second objective ( f2),
which is to minimize the number of recharging stations, is important for practical reasons as
there might be financial costs associated with their installation, maintenance, and operation.
The minimization of the number of stations is essential for some scenarios, as observed for
fixed-wing UAVs, which might require a dedicated human operator responsible for the
launch and rescue of the vehicle.
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Let the decision variables be: xk
i,j ∈ {0, 1} (1 if the kth UAV flies from vertex i to j);

yd ∈ {0, 1} to indicate whether or not the recharging station d ∈ D\{d0} is used; zk
i,j ∈ R is

a flow variable that denotes the total flight time performed by the UAV k, starting the timing
at any vertex in D, which defines the time that the UAV reaches j after passing through
vertex i; and Pmax ∈ R is the longest time to finish the planned route among all UAVs. The
optimal coverage problem can be formulated as in (1)–(16), minimizing the mission time
( f1) and the openings of recharging stations ( f2) subject to the following constraints:

min f1 = Pmax (1)

min f2 = ∑
d∈D

yd (2)

Subject to:

∑
i∈V

∑
j∈V

(1 + qk)xk
i,jc

k
i,j ≤ Pmax, ∀k ∈ K, (3)

∑
i∈V

xk
i,j = ∑

i∈V
xk

j,i, ∀j ∈ V, k ∈ K, (4)

∑
k∈K

∑
i∈V

xk
i,j = 1, ∀j ∈ T, (5)

∑
i∈V

xk
d0,i = 1, ∀k ∈ K, (6)

yd ≤ ∑
k∈K

∑
i∈V

xk
d,i ≤ Nyd, ∀d ∈ D\{d0}, (7)

x(δ+(Sk
u)) ≥ yd, ∀k ∈ K d ∈ Sk

u ∩ D, Sk
u ⊂ V\{d0}, (8)

∑
j∈V

zk
i,j − ∑

j∈V
zk

j,i = ∑
j∈V

ck
i,jx

k
i,j, ∀i ∈ T, k ∈ K, (9)

zk
d,i = ck

d,ix
k
d,i, ∀i ∈ V, d ∈ D, k ∈ K, (10)

zk
i,j ≤ (Fk − tk

j )xk
i,j, ∀k ∈ K, j ∈ T, (i, j) ∈ E, (11)

zk
i,d ≤ Fkxk

i,d, ∀i ∈ V, d ∈ D, k ∈ K, (12)

zk
i,j ≥ (sk

i + ck
i,j)xk

i,j, ∀k ∈ K, i ∈ T, (i, j) ∈ E, (13)

∑
k∈K

xk
i,i+1 + ∑

k∈K
xk

i+1,i = 1, ∀i ∈ T\{2, 4, 6, . . . }, (14)

xk
i,j ∈ {0, 1}, ∀k ∈ K, (i, j) ∈ E, (15)

yd ∈ {0, 1}, ∀d ∈ D\{d0}. (16)

The objective in (1) is to minimize the longest time among the UAVs, Pmax. This is
a min-max problem where the decision variable Pmax is an upper bound on the UAV’s
time to cover the edges (xk

i,jc
k
i,j) plus its recharging time given by (qkxk

i,jc
k
i,j) in constraint (3),

where qk is the ratio of time for the UAV k to recharge given the time consumed to traverse
the edge. The second objective f2 is to minimize the total sum of recharging stations, each
one represented by yd, as stated in (2).

The degree constraint in (4) controls the flow through the vertices, ensuring whenever
a UAV k arrives at the vertex, it must leave it. Constraint (5) guarantees that each target is
visited by only one UAV. To enforce all UAVs leaving the base d0, the constraint (6) is used.

The constraint (7) guarantees the open status of the recharging stations yd = 1 if any
UAV departs from it (xk

di = 1); otherwise, it is kept closed yd = 0. An open station yd can be
connected with at least one and at most N vertices (total number of vertices in the graph).

Constraint (8) prevents subtours when recharge is required, keeping the solution
connected. Let, for any UAV k ∈ K, the subsets Sk

u, Sk
v ⊂ V, δ+(Sk

u) = {(i, j) ∈ E : i ∈
Sk

u, j ∈ Sk
v, Sk

u ∩ Sk
v = ∅} and x(A) = ∑i,j∈A xk

i,j, ∀A ⊆ E. This constraint eliminates the
subtours that can occur when some UAVs visit a recharging station. The subset of vertices
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Sk
u represents any subtours without the base d0, and the constraint (8) ensures at least one

departure of UAV k from a vertex in Sk
u to any vertex in other subtours represented by

Sk
v. The high number of restrictions can make the computational effort inefficient if we

add all the necessary restrictions during the MILP model’s construction. In this case, a
possible solution for this issue is to relax the constraint from the formulation, and whenever
a feasible integer solution is obtained, a callback method checks if it is violated. This
violation is identified if the solution has more than one strongly connected component
for any UAV, which means the occurrence of subtours in the vehicle route. All violated
constraints are then added to the model, and the optimization of the original problem
continues. More details about this method are provided in [49].

The constraint (9) defines the flow variables zk
i,j, setting the time that the UAV k visits a

vertex j from the target i. This restriction guarantees the order of visits, preventing subtours
over the targets. The constraints (10)–(13) guarantee that the tour time performed by a
vehicle until reaching any vertex in D (recharging station or depot) does not exceed its
flight capability, Fk. In this case, constraint (10) defines the flow value after the vehicle
leaves the recharging stations, setting the time to visit the vertex i. As the tour timing starts
from a vertex in D, the flow value is defined by the time the UAV spends to traverse the
edge given by ck

d,i.
As Fk defines the maximum flight time of vehicle k, the flow value zk

i,j to visit the target
j must guarantee a sufficient battery charge (flight time) to visit at least one vertex in D
after visiting the target j. In this case, the constraint (11) upper bounds the zk

i,j, as the UAV
should have at least the minimal battery charge on target j to reach its nearest vertex in
D, given by tk

j (tk
j = mind∈D cjd). The constraint (12) upper bounds the flow value to visit

a vertex in D from any vertex, as the UAV can only spend its maximum flight time Fk to
traverse a single edge if both vertices are in D. The constraint (13) lower bounds the flow
value to the minimum flight time required for the vehicle to reach the vertex j, considering
the minimal time required to arrive at target i. This is defined by the flight time from the
nearest vertex of i in D, given by sk

i (sk
i = mind∈D cdi).

Constraint (14) enforces the coverage row task. This is achieved by ordering target
visits given its numerical identification. Lastly, the constraints (15) and (16) impose the
decision variables xk

i,j and yk
d as binary restrictions.

5. Solution Strategies

As the computational cost to solve large instances with the exact method is restrictive
for practical applications, it is acceptable to use some heuristic strategies to efficiently
provide satisfactory solutions. Thus, this section presents four matheuristic approaches
based on MOVNS [69], since a similar metaheuristic was demonstrated to be effective for
solving vehicle routing problems [70].

The proposed matheuristics divide the original problem into smaller subproblems
that are easier to solve, and the exact method is used, depending on the strategy, to find
routes on subgraphs (clusters) or improve a solution. Here, the coverage rows, UAVs, and
the recharging stations are grouped in clusters, which should be distributed appropriately,
considering both objectives of this work.

The MOVNS works on the clustering problem, exploring the search space by making
systematic changes in the clusters. These changes are performed by the proposed neigh-
borhood functions, generating different routes by changing the distribution of coverage
rows, UAV models, and the recharging stations.

The different matheuristics were designed to check the effect over the quality and
time to compute the returned solutions. In the first approach, the neighborhood functions
perform simple movements like changing coverage rows and UAV models among routes or
shutting down some recharging stations. After that, the exact method is called for routing
every changed cluster. As this strategy is characterized by the intensive use of the exact
method, other approaches were designed to investigate the effect of different neighborhood
functions that also use heuristics for routing to mitigate the exact method calls. Such calls
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were significantly decreased in the second and third approaches and reduced to only once
in the last one. In the next sections, we provide the details of the proposed approaches.

5.1. Solution Representation

A candidate solution is represented by the set of routes X = {x1, x2, . . . , xk} for a fleet
of k UAVs, where xi = 〈v1, v2, . . . , v|xi |〉 is a sequence of vertices and v|xi | ∈ V. The set of
nondominated solutions is represented by Front = {X0,X1, . . . ,X|Front|}. All information
necessary to compute the route xi is encoded in a data structure we denote as a cluster.
The cluster i is composed of the subset of coverage rows L(xi) = {l1, l2, . . . , lm}, the UAV
model identifier m(xi), and S(xi), the set of recharging stations available in the cluster.

The vertices where the recharging stations can be installed are represented by d1, . . . , d|D|,
and the UAVs base station (depot) is identified by d0. All opened recharging stations for
the solution X is represented by Sall =

⋃k
i=1 S(xi), and the set of required edges called

coverage rows is represented by Lall =
⋃k

i=1 L(xi).

5.2. Multiobjective Variable Neighborhood Search (MOVNS)

The MOVNS is a metaheuristic that returns the set of nondominated solutions ex-
ploring the neighborhood changes systematically. In this case, the variable neighborhood
descent (VND) is performed as a local search with perturbation to escape from local mini-
mum [71]. The general steps of the proposed metaheuristics are described in Algorithm 1.

Algorithm 1: Multiobjective variable neighborhood search (MOVNS).
Input: imax
Output: Front

1 Front← InitialSolution();
2 while ∃X ∈ Front : IX = 0 do
3 i← 1 ;
4 IX ← 1;
5 while i ≤ imax do
6 X ′ ← Perturb(X );
7 X ′′ ← VND(X ′);
8 inserted← Update(Front,X ′′);
9 if inserted then

10 break;
11 end
12 else
13 i← i + 1;
14 end
15 end
16 end

The MOVNS receives the maximum number of iterations (imax) as input and returns
the nondominated solutions on the front set. After the initialization (line 1), the VNS is
performed for any nondominated solution on the front set for which the neighborhood was
not investigated, such that IX = 0 (lines 2–16). In each iteration, the solution is perturbed,
and the VND is performed. The perturbation (line 6) randomly operates in both processes:
the openings of recharging stations and the coverage rows shift among the routes. After the
current solution is perturbed, the VND is performed to find other nondominated solutions
(line 7). All solutions found by VND are evaluated, and the front is updated considering
the Pareto dominance relation (line 8). For any feasible solution X found by the VND,
the domination relationship evaluates both objectives: f1(X ), the cost of the longest flight
route; and f2(X ), the number of recharging station used in the route. In this case, it is
considered that X dominates another solution X ′ if ∃i ∈ {1, 2}, such that fi(X ) < fi(X ′)
and fi(X ) ≤ fi(X ′), ∀i ∈ {1, 2}. If any nondominated solution is inserted on the front,
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then the inner loop is broken (line 10) and the VNS is restarted considering another random
solution in the front that has not yet been investigated. More details are provided below.

5.2.1. Initialization

More generally, the initial solution is built by the clustering process, splitting the
original problem into clusters and then applying the exact method to find routes in each
one of such clusters. In Figure 2, the scheme to generate the initial solution is presented.
First, the clustering procedures are applied to assign the UAVs, the coverage rows, and
the recharging stations to the clusters, and then a two-stage exact method is applied in the
routing phase.

Exact Method

Stage I
(a) Split the row cluster into subsets
(b) Build subset model
(c) Solve subset model

Stage II
(a) Build start solution linking sub-routes
(b) Build cluster model with start solution
(c) Solve cluster model

Clustering
(a) Coverage rows
(b) Recharging stations

initial
clusters

sub-routes

Input
instance

Output
initial solution: X

Figure 2. Scheme of the methods used in initialization.

A. Clustering

The first step of the initialization is clustering, which assigns the coverage rows to
the UAVs considering their performance. The row set of all coverage rows Lall is split into
subsets given the UAV flight range, the distances between rows, and their lengths. After
defining the coverage row subset to every vehicle, the recharging stations they can visit are
identified and assigned to the recharging station subsets. These subsets and the vehicle
identifier compose a cluster, grouping all data required to build the UAV route.

To illustrate the initialization procedures as they are presented, Figure 3 is used to
exemplify the initial solution generation. Let the length of rows be A = B = C = D = 5 km,
E = F = G = H = 10 km, I = J = K = L = 2.5 km, and the distance between
the rows calculated by the area decomposition method [1] is 0.5 km. Consider that two
heterogeneous UAVs are available to perform this coverage task. The vehicle in cluster x1
has q(m(x1)) = 1, which means that it requires the same amount of its flight time capability,
F1, to completely charge the battery. The other vehicle in x2 has lower performance, with a
ratio q(m(x2)) = 2, which means it requires twice its flight time to charge its battery at a
recharging station.



Sensors 2021, 21, 1705 13 of 34

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

A B C D E F G H I J K L

Figure 3. Example of instance used to illustrate the initialization of the MOVNS.

The coverage rows assignment procedure is described in Algorithm 2 using the
instance problem shown in Figure 3 as an example of input. Initially, the total coverage
length, calculated as the sum of all row lengths, is divided among the vehicles considering
their performance (lines 1–7). A portion of the total coverage length is defined for each
UAV, rxi , limiting the assignment of rows with regards to their lengths. The variable rxi is
not bounded by the vehicle’s real flight capacity, Fx: this variable is only an estimate used to
balance the coverage row distribution, considering the row length and the relative vehicle
performance. The rxi of each UAV is based on the recharging-flight time ratio q(m(xi)),
assigning more coverage area to the vehicle with the lowest q-value (i.e., its coverage area
must be greater than that of other vehicles with a higher q-value). For this, the vehicle’s
performance is evaluated based on the q-value of the best model (line 3). Then, the amount
of coverage for each UAV is estimated by splitting the total coverage length according to
the ratio between the vehicle performance and the overall performance pxi ÷ pall (line 7).
In the example, the sum of all row lengths in Lall (total_length) is 70 km, qmin = 1, resulting
in rx1 = 0.67× 70 = 46.9 km and rx2 = 0.33× 70 = 23.1 km.

After, the rows are sorted from the longest to the shortest (line 8), resulting in the
sequence 〈E, F, G, H, A, B, C, D, I, J, K, L〉. The estimated coverage length assigned to the
vehicle is used to sort the clusters in descending order (line 9). In the example, this step
keeps the order as X = 〈x1, x2〉. Next, each UAV row set is assigned a row considering
the row length order and the vehicle performance (line 11). In the example, the first
rows assigned are L(x1) = {E} and L(x2) = {F}. After, rxi is updated (line 12), making
rx1 = 46.9− 10 = 36.9 km and rx2 = 23.1− 10 = 13.1 km. Then, li is removed from the set
Lall (line 13), finishing these iterations with Lall = 〈G, H, A, B, C, D, I, J, K, L〉.

Next, each cluster receives the nearest rows from the one previously assigned, while
the sum of their lengths does not exceed the current rxi (lines 15–26). The proximity
between coverage rows is measured by the distance from row l to every lu ∈ Lall . Since
the rows can have different lengths, the proximity is calculated as the sum of the distances
between their targets (line 17). Given two rows (l,lu), this distance function returns the least
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sum of both edges lengths connecting (l–lu) by their vertices. For example, the proximity of
the (E,I) rows is the sum of the lengths of edge (9, 17) and the edge (10, 18). After calculating
the proximity of rows represented by γl,lu , this measure is used to sort the coverage rows
(line 18). This sorting phase, in the example, as the first row assigned to the cluster x1
is E, returns the sequence 〈G, H, D, C, B, A, I, J, K, L〉. Afterward, the coverage row lu is
assigned to the cluster L(xi), following the distance order in Lall , while the row length does
not exceed the UAV current rxi (lines 19–25). At the end of these steps, the distribution
of the rows in the instance is L(x1) = {B, C, D, E, G, H} and L(x2) = {F, I, J, K, L}, with
the row A in Lall remaining. This row was not distributed as its length, 5 km, exceeds the
length control variable of both vehicles rx1 = 1.9 and rx2 = 3.1 km.

Algorithm 2: Coverage rows assignment.
Input: X , Lall

1 qmin ← min
xi∈X
{q(m(xi))}

2 foreach xi ∈ X do
3 pxi ←

qmin
q(m(xi))

;

4 pall ← pall + pxi ;
5 end
6 total_length← RowLengthsSum(Lall);
7 foreach xi ∈ X do rxi ← total_length× pxi

pall
;

8 sort Lall by the row length in descending order ;
9 sort X by rxi in descending order ;

10 for li ∈ Lall : i← 1 to |X | do
11 L(xi)← li ;
12 rxi ← rxi− RowLength (li) ;
13 Lall ← Lall \ {li } ;
14 end
15 foreach xi ∈ X do
16 l ← GetCoverageRow(L(xi));
17 foreach lu ∈ Lall do γl,lu ← Distance(l,lu);
18 sort Lall by γl,lu in ascending order;
19 for lu ∈ Lall : u← 1 to |Lall | do
20 if RowLength(lu) ≤ rxi then
21 L(xi)← L(xi) ∪ lu;
22 rxi ← rxi − RowLength (lu) ;
23 Lall ← Lall \ {lu};
24 end
25 end
26 end
27 while ∃lu ∈ Lall do
28 Let xi be the route with the UAV with the highest r;
29 L(xi)← L(xi) ∪ lu;
30 rxi ← rxi − RowLength (lu) ;
31 Lall ← Lall \ {lu} ;
32 end
33 return(X )

The remaining rows are incrementally assigned to the clusters with the highest r while
the set Lall is not empty (lines 27–32). In the example, as rx2 has the highest r-value, the
coverage row (A) is assigned to L(x2). Thus, the assignment procedure returns the clusters
with L(x1) = {B, C, D, E, G, H} and L(x2) = {A, F, I, J, K, L}.

The last procedure of the clustering phase is to assign a recharging station to every
target’s location. Given the set of clusters X , the recharging station procedure must be
able to open a set of stations denoted by S(xi) in all targets of L(xi). In this case, we add a
new vertex in the graph in the same location as the target vertices. After, these vertices are
assigned to the recharging station set of each UAV. This procedure adds an extra vertex to
each target in Figure 3, resulting in the sets S(x1) = {3′, 4′, 5, 6′, 7′, 8′, 9′, 10′, 13′, 14′, 15′, 16′}
and S(x2) = {1′, 2′, 11′, 12′, 17′, 18′, 19′, 20′, 21′, 22′, 23′, 24′}.
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B. Routing

The route is calculated by a two-stage approach aiming to speed up the optimization
process with a start solution. In the first stage, each row set L(xi) in the cluster xi is split
into smaller row subsets L(x1

i ), L(x2
i ), . . . , L(xv

i ) with a defined maximum number of rows.
Next, each model subset is solved by the exact method at Stage I. The subroutes are then
linked to create a start route used as a warm-start in exact method of Stage II. This start
solution may not be optimal, but it can offer a suitable starting point for the second stage,
reducing the computation time.

Given the row set of each cluster L(xi), determined by Algorithm 2, and the maximum
number of coverage rows into the subset lmax (a user-defined parameter), the first step of
the splitting procedure is defining the number of row subsets ni for each L(xi) to balance
its row number. Let lmax = 5 for the example shown in Figure 4. Each UAV was assigned
six coverage rows |L(x1)| = |L(x2)| = 6, which exceeds lmax = 5. In this case, the splitting
method divides the row set L(x1) into L(x1

1) and L(x2
1), both with the same number of

coverage rows (w1
1 = w2

1 = 3), and L(x2) was split into L(x1
2) and L(x2

2) with w1
2 = w2

2 = 3.
This coverage row distribution must define the number of subsets nu needed to keep as
many coverage rows as possible and with a balanced number of rows among them (wu

i ).
This procedure, for the example, avoids non balanced subclusters like w1

1 = 5 and w2
1 = 1

or adding a nonrequired subcluster resulting in w1
1 = 2, w2

1 = 2 and w3
1 = 2.

The number of the row subsets (ni) and their quantity of rows (wu
i ) are set up in the

initialization of Algorithm 3 (line 1). Next, the coverage row set L(xi) is divided into ni
subsets, and each subset u = {1, . . . , ni} is assigned at most wu

i coverage rows, considering
the vertex positions and the proximity among them (lines 2–17). The rows in L(x′i) are
sorted from the leftmost row to the rightmost (line 5). In the example shown in Figure 4b,
the sorting for splitting L(x2) returns the sequence 〈A, F, I, J, K, L〉. Afterward, the first row
of this sequence is assigned to the current subset L(xu

i ) (line 7). This step for L(x2) results
in L(x1

2) = {A}.

Algorithm 3: Splitting into subclusters.
Input: X , lmax

1 Given lmax defines, for each cluster, their subcluster number ni and their number
of coverage rows wi

u ;
2 foreach xi ∈ X do
3 x′i ← xi;
4 for u← 1 to ni do
5 sort L(x′i) by the row position from the leftmost to the rightmost ;
6 l ← GetFirstRow(L(x′i)) ;
7 L(xu

i )← L(xu
i ) ∪ l ;

8 L(x′i)← L(x′i) \ l;
9 foreach r ∈ L(x′i) do dr ← Distance(l, r);

10 sort L(x′i) by dr in ascending order;
11 while |L(xu

i )| ≤ wu
i do

12 l ← GetFirstRow(L(x′i)) ;
13 L(xu

i )← L(xu
i ) ∪ l ;

14 L(x′i)← L(x′i) \ l;
15 end
16 end
17 end
18 return(X );

The distances from the row l to the others on set L(x′i) are calculated (line 9) using
the same distance function described in Algorithm 2. The rows in L(x′i) are sorted by
their proximity measure dr in ascending order (line 10). In the example, the sort method
returns the sequence 〈F, I, J, K, L〉. Even with the coverage row F being the longest row, it is
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considered nearer to A than I, dF < dI (i.e., Distance(A, F) < Distance(A, I)). The nearest
rows are assigned to the subset L(xu

i ) and removed from the set L(x′i) (lines 11–15). After
running this internal while loop to the example of the coverage rows, the subset assignment
results in L(x1

2) = {A, F, I}. Then, the process continues to the next coverage row set,
L(x2

2). In the end, L(x1) is split into L(x1
1) = {B, C, D} and L(x2

1) = {E, G, H}, as shown
in Figure 4a; the rows in L(x2) are divided into L(x1

2) = {A, F, I} and L(x2
2) = {J, K, L}

subsets, as shown in Figure 4b.
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(a) Coverage rows assigned to L(x1
1) and L(x2

1).

1

2

11

12

17

18

19

20

21

22

23

24

A F I J K L

L(x1
2) L(x2

2)

L(x2)

(b) Coverage rows assigned to L(x1
2) and L(x2

2).
Figure 4. Splitting L(x1) and L(x2) into their respective subclusters L(x1

1), L(x2
1), L(x1

2), and L(x2
2).

After defining all subsets, the routing is solved through an MILP model. The mathe-
matical formulations used in both Stage I and Stage II are quite similar to the one presented
in Section 4 but with small modifications to solve a mono-objective problem for one vehicle.
In this case, the exact method is used only to minimize the route time.

The cluster subroutes computed in Stage I are linked by Algorithm 4, building an
approximated route for each UAV. These routes are used as a starter solution to build the
UAV optimal route in Stage II. Initially, the cluster i with the leftmost input vertex among
its subroutes is selected (line 3). In the example shown in Figure 5a, this step checks the
leftmost coverage row between B and E, which are the first coverage rows visited by the
UAVs in their respective subroutes x1

1 and x2
1. The route xi is initialized with the previously

selected subroute c (line 4). In the example, these steps assign to the current empty route x1
the subroute x1

1, which is represented by the vertices sequence x1 = 〈3, 4, 6, 5, 7, 8〉.
Next, the other subroutes in the cluster are selected and integrated into the route being

built, following its proximity (lines 5–13). The subroute xu
i selection is performed by line

6, considering the distance between the output vertex on the last covered row in route xi
and the first vertex visited by the vehicle on the remaining subroutes. This step for the
Figure 5b example checks the distance from vertex 8, the x1 output vertex, to vertex 9,
which is the input vertex in the x2

1 subroute. In this case, the battery charge of the UAV
to depart from the output vertex in xi must be sufficient to reach the input vertex of the
sub-route xu

i to link them directly (i.e., red rows in Figure 5) or by a path passing through
recharging stations, if necessary. The function LinkSubRouteOnRoute evaluates the vehicle
capacity and returns the appropriate links to connect the subroute xu

i in the route xi. If this
connection is infeasible, the built route is deleted, and the link process continues to the
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next cluster (lines 9–12). For the clusters with empty routes, the exact method in Stage II
builds the MILP model without an initial starting point.

Algorithm 4: Linking subroutes to build a start solution.
Input: X

1 feasible← true;
2 for i← 1 to |X | do
3 Let c be the subroute with leftmost input vertex among the subroutes in xu

i ;
4 xi ← c;
5 xu

i ← ∅;
6 while ∃xu

i 6= ∅ do
7 select subroute xu

i that the input vertex is nearest to the output in xi;
8 feasible← LinkSubRouteOnRoute(xu

i ,xi);
9 xu

i ← ∅;
10 if not feasible then
11 xi ← ∅;
12 break;
13 end
14 end
15 end
16 return(X );
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(a) Initial route for x1 linking the subroutes
x1

1 = 〈3, 4, 6, 5, 7, 8〉 and x2
1 = 〈9, 10, 14, 13, 15, 16〉.

1

2

11
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17
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19
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21

22

23
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x2

(b) Initial route for x2 linking the subroutes
x1

2 = 〈1, 2, 12, 11, 17, 18〉 and x2
2 = 〈19, 20, 22, 21, 23, 24〉.

Figure 5. Example of subroutes linked to build the route x1 and x2.

5.2.2. Variable Neighborhood Descent (VND)

In the proposed MOVNS-based matheuristic, the VND is the method that iteratively
alternates the functions developed to modify the current solution. These functions are
denoted as neighborhood functions, and the solution generated by a neighborhood is
called a neighbor. The neighborhood function is used to map the current solution to its
neighbor, which is another feasible solution. If the neighbor satisfies the update rules, then
it is accepted as a new incumbent solution [72].
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In this work, we implemented four neighborhood functions, as shown in Figure 6.
The Shift function moves a coverage row l ∈ L(xi) to other row set L(xj), as shown in
Figure 6a; the coverage row 6 from L(x2) is moved to L(x3). The Swap function exchanges
rows among routes, reallocating a row l1 ∈ L(xi) to L(xj) and a row l2 ∈ L(xj) to L(xi). In
Figure 6b, rows 2 and 4 change clusters. The row 2 from L(x2) is transferred to L(x1), and
row 4 from L(x1) is transferred to L(x2). UAV Swap was designed to interchange the UAV
models between two routes, transferring a vehicle of model m(xi) from route xi to route xj,
while the current UAV of model m(xj) assigned to xj is transferred to route xi. In Figure 6c,
the UAV of model 3 from route x1 is transferred to the route x2, and the UAV of the model
1 in x2 is transferred to x1. The Recharging Station Shutdown removes a recharging station
from all routes that use this station. In Figure 6d, recharging station 3 is removed from
routes x1 and x2.

L(x1) = { 1, 3, 4 }

L(x2) = { 2, 5, 6 }

L(x3) = { 7, 8, }

L(x1) = { 1, 3, 4 }

L(x2) = { 2, 5, }

L(x3) = { 7, 8, 6 }

m(x1) = { 3 }

m(x2) = { 1 }

m(x3) = { 2 }

S(x1) = { 1, }

S(x2) = { 1, 2, }

S(x3) = { 1, 2 }

3

3

(a) Shift (b) Swap (c) UAV Swap (d) Recharging Station
Shutdown

Figure 6. Illustration of actions executed by the neighborhood functions.

The general structure of the VND is shown in Algorithm 5. Initially, the set of routes
in the input solution X is assigned as the current best solution X ′ (line 1). After, the set of
neighborhood functions N is defined, where n1, n2, n3, and n4 are the Shift, Swap, UAV
Swap, and Recharging Station Shutdown functions, respectively (line 2).

Algorithm 5: Structure of the variable neighborhood descent (VND) search.
Input: X

1 X ′ ← X ;
2 Let N = {n1, n2, n3, n4} be the set of neighborhood functions;
3 i← 1;
4 while i ≤ |N | do
5 {X ′′, improved} ← ni(X ′);
6 if (improved) then
7 X ′ ← X ′′;
8 i← 1;
9 continue;

10 end
11 i← i + 1;
12 end
13 return(X ′);

At any given iteration, a neighborhood function is applied to search for a better
solution. If the function ni obtains any improvement, it returns the better solution X ′′ and
the flag improved is set to true. Next, the current best solution is updated (line 7), the index
i that controls the sequence of the neighborhood function is reset (line 8), and the VND
iteration is broken (line 9) and continues with the next VND iteration applying the Shift
function again. Otherwise, if the ni function obtains no improvement (improved = false),
the index i is incremented (line 11), and in the next VND iteration, the next neighborhood
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function is applied. The iteration of VND stops when all neighborhood functions obtain
no improvement.

5.2.3. Perturbation

The perturbation designed for this work implements two functions: one explores the
coverage row changes between routes, and the other function works to open recharging
stations. These functions are randomly applied, with it being possible to apply one or both
functions in any order for the last case.

The perturbation performed in the coverage row sets is based on the Shift neigh-
borhood function represented in Figure 6a. In this case, any row from a random route
is chosen and transferred to another route. The other perturbation function acts on the
recharging-station-locating process by opening some stations. Unlike Figure 6d, this op-
eration randomly chooses some shuttered stations to be opened. Next, the feasibility of
the opening operation is checked. A recharging station is only opened if any route time
is improved.

5.3. Matheuristics Approaches Based on MOVNS

The matheuristics proposed in this paper combine the MOVNS and mathematical
programming methods to find high-quality solutions. In addition to using the MILP
formulation to obtain the initial solution, the same two-stage method presented in the
initial routing phase interoperates with the VND in different ways in the first three strategies
presented in this subsection.

The designed modifications in the VND approach impact the matheuristic perfor-
mance regarding the quality of the generated fronts and the computation time. Each
matheuristic is classified according to the application of the exact method in the associated
VND. First, the MOVNS with the exact method for routing (EMR) is presented, which
uses the exact method to route all cluster changes. After, other approaches are proposed:
the method that applies the exact method selectively (exact method applied selectively
(EMAS)), the one in which the exact method acts as a neighborhood function (exact method
as neighborhood function (EMNF)), and the method that does not use the MILP formu-
lation in the VND (VND without exact method (WEM)). Table 1 summarizes the main
differences among these approaches.

Table 1. Differences among the proposed approaches.

Exact Method Application in the VND
Approaches

EMR 1 EMAS 2 EMNF 3 WEM 4

every routing call X
only in the best heuristic solution X

intraroute like a neighborhood
function X

not applied X
1 Exact Method for Routing. 2 Exact Method Applied Selectively. 3 Exact Method as Neighborhood Function.
4 Without Exact Method.

5.3.1. Exact Method for Routing (EMR)

The EMR is a matheuristic characterized by solving the MILP model to route every
change in a cluster performed by the neighborhood functions. Every new cluster designed
by the row exchange, UAV model change, or shutting down of some recharging stations
requires the exact method for routing. Next, we provide more details on the applied
neighborhood functions.

The change in the coverage row sets made by the EMR Shift function is described by
Algorithm 6. Initially, the longest route (highest time cost) xi is taken from the solution X
(line 1), and the set X ′ that is modified by the row shift is initialized (line 2). Next, as long
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as there is no improvement in the solution and for any other route xj not yet augmented by
the xi rows, a new set without l from L(xi) is assigned to the route x′i (line 5). The removed
row is inserted in the set L(x′j) of x′j (line 6).These new clusters are routed by the MILP
function (lines 7–8); the new solution X ′ and the value true are returned if an improvement
is found (lines 9–11).

Algorithm 6: Shift neighborhood function performed on exact method for
routing (EMR).

Input: X
1 xi ← arg max f (xi)xi ∈ X ;
2 X ′ ← X ;
3 foreach xj ∈ X ∧ (xi 6= xj) do
4 foreach l ∈ L(xi) do
5 L(x′i)← L(xi) \ l;
6 L(x′j)← L(xj) ∪ l;
7 MILP(x′i);
8 MILP(x′j);
9 if f (x′j) < f (xi) then

10 return(X ′, true);
11 end
12 end
13 end
14 return(X , f alse);

The Shift function not only performs the inter-route changes but also returns the first
improved solution obtained. Since this function tries to minimize the longest route, the
comparison between f (x′j) and f (xi) presented in (line 9) evaluates the flight time cost.
The same evaluation is performed in the Swap and UAV Swap function. The Recharging
Station Shutdown evaluates the number of recharging stations in the solution.

As this work deals with the multiobjective problem, the neighborhood functions
designed to minimize the longest route cost may also interfere with the other objective
modifying the number of recharging stations. In this case, these neighborhood functions
only change the incumbent solution if the route cost is improved and inserted into the
structure of all the nondominated solutions. The update function on MOVNS evaluates
the nondominated solutions found by the neighborhood functions on VND (see line 8 in
Algorithm 1).

The Swap function is structurally similar to the Shift. However, it acts to exchange
the coverage rows between x′i and x′j. For this reason, the route evaluation (line 9) in
Algorithm 6 must be modified in Swap to verify if one of the routes improves the solution
max{ f (x′i), f (x′j)} < f (xi).

The UAV Swap procedure exchanges the vehicles between two routes with different
models. As summarized in Algorithm 7, the routes with different UAVs m(xi) 6= m(xj)
(line 3) have their vehicles exchanged (lines 4–5). The MILP solver is then applied to reroute
the clusters with the new vehicles (lines 6–7). This new solution X ′ and the value true
are returned if the longest route’s cost is lower than the cost of the current longest one
(lines 8–10). Unlike the other neighborhood functions presented here (Shift and Swap),
changing the UAV models is not restricted to improving the maximum cost route because
it is expected that this route has already been assigned to the best-performing vehicle.

To shut down a recharging station on EMR, the function described in Algorithm 8 is
applied. This function has as the input the current solution X , and the set of all recharging
stations opened Sall in the solution (line) is defined in its initialization. At any given
iteration (lines 4–14), the feasibility of the shutting down operation of a recharging station
is checked. For this, each route xi ∈ X with the station s ∈ S(xi) is rerouted without the
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station (lines 6–9). The MILP function (line 8) assigns infinity to the unfeasible cases where
the vehicle does not have sufficient battery to cover its rows. If all routes in X ′ are feasible,
the set of all recharging stations S ′all is updated (line 11), and the new solution X ′ and the
true status are returned (line 12). If no recharging station was shuttered, the input solution
X is returned with the value f alse to the improved variable in the VND (line 15).

Algorithm 7: Unmanned air vehicles (UAV) Swap performed on EMR.
Input: X

1 X ′ ← X ;
2 foreach xi ∈ X do
3 foreach xj ∈ X ∧ (m(xi) 6= m(xj)) do
4 m(x′i)← m(xj);
5 m(x′j)← m(xi);
6 MILP(x′i);
7 MILP(x′j);
8 if max{ f (x′i), f (x′j)} < max{ f (xi), f (xj)} then
9 return(X ′, true);

10 end
11 end
12 end
13 return(X , f alse);

Algorithm 8: Recharging Station Shutdown performed on EMR.
Input: X

1 Let Sall be the set of all recharging station in X ;
2 X ′ ← X ;
3 S ′all ← Sall ;
4 foreach s ∈ Sall do
5 S ′all ← Sall \ s ;
6 foreach (xi ∈ X ) ∧ (s ∈ S(xi)) do
7 S(x′i)← S(xi) \ s;
8 MILP(x′i);
9 end

10 if IsAllRoutesFeasible(X ′) then
11 Sall ← S ′all ;
12 return(X ′, true)
13 end
14 end
15 return(X , f alse)

5.3.2. Other Approaches

As EMR calls the exact method to route each change performed by its neighborhood
functions on the clusters, we propose three other approaches that aim to reduce these
calls. Unlike the EMR, which first builds the clusters using heuristics and then applies
the exact method to the route (cluster first-route, second approach), these new approaches
are classified as improvement heuristics, as stated in [73]. In this case, a heuristic was
implemented to route the new clusters, and the exact method was executed only at different
steps of the algorithm, not on every new route generated by the VND.

The first approach proposed is the exact method applied selectively (EMAS), which
uses the exact method to improve only the solution returned by the routing heuristic. In this
case, its neighborhood functions build new routes, evaluate them, check their feasibility,
and then select one to be improved by the exact method.
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The Shift and Swap functions use the routing heuristic to compute the routes and
select the best route among the longest routes to be improved by the exact method. The
Swap function is described in Algorithm 9. After exchanging rows between routes (lines 8–
11), a heuristic is applied to recalculate such routes (lines 12–13). If the row swap produces
a better solution than the incumbent one, then the exact method is applied to improve only
these two routes, and the solution X ′ with the value true, indicating that an improvement
was found, is returned (lines 14–17). Otherwise, the best heuristic solution is assigned to
the X ′′, lines 19–24. Not finding a better solution than the current one, the MILP is applied
to the best routing heuristic results (lines 28–29). This solution X ′′ and the value true are
returned if it is better than the incumbent (lines 30–32). The EMAS Shift function algorithm
is similar to this Swap function, different only in the row shift displacement (removing
lines 10–11 from Algorithm 9).

Algorithm 9: Swap performed in EMAS.
Input: X

1 X ′ ← X ;
2 X ′′ ← X ′;
3 xi ← arg max f (xi), xi ∈ X ;
4 maxcost ← ∞;
5 foreach xj ∈ X ∧ (xi 6= xj) do
6 foreach l1 ∈ L(xi) do
7 foreach l2 ∈ L(xj) do
8 L(x′i)← L(xi) \ l1;
9 L(x′j)← L(xj) ∪ l1;

10 L(x′j)← L(x′j) \ l2;
11 L(x′i)← L(x′i) ∪ l2;
12 ComputeRouteHeuristic(x′i);
13 ComputeRouteHeuristic(x′j);
14 if max{ f (x′i), f (x′j)} < f (xi) then
15 MILP(x′i);
16 MILP(x′j);
17 return(X ′,true);
18 end
19 if max{ f (x′i), f (x′j)} < maxcost then
20 X ′′ ← X ′;
21 x′′i ← x′i ;
22 x′′j ← x′j;
23 maxcost ← max{ f (x′i), f (x′j)};
24 end
25 end
26 end
27 end
28 MILP(x′′i );
29 MILP(x′′j );
30 if max{ f (x′′i ), f (x′′j )} < f (xi) then
31 return(X ′′,true);
32 end
33 return(X , f alse);

The ComputeRouteHeuristic (lines 12–13) is applied to compute the changed route
in the EMAS neighborhood functions (Shift and Swap) and is used in the other two
approaches, EMNF and WEM. This heuristic builds the new route based on the current
one, rearranging each coverage row using removal and insertion procedures.
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The removal operation deletes the vertices and all links associated with a selected
coverage row, adding a new path linking its predecessor and successor vertices. This new
path must be a feasible route, ensuring that the UAV has enough charge to reach the next
recharging station or depot from the successor vertex (e.g., in Figure 7b, the removal of the
coverage row (11, 12) deletes its vertices and the edges (14, 12), (12, 11), and (11, 5) from the
route). A path search algorithm is used to link the vertices (14–5) considering the vehicle
constraint, ensuring that the UAV can reach the next recharging station or depot after the
successor vertex (vertex 5).

The insertion operation adds the coverage row vertices into the route and evaluates
different connections by interchanging the order in which the depot or the other coverage
rows are linked to this new row. The insertion procedure generates a new route for each
feasible linkage in its initial step, as shown in Figure 7c–f. Here, the original coverage
row directions are preserved, only adjusting the inserted row direction to fit the route, as
shown in Figure 7b. To build the route in Figure 7c, the edge to connect the first coverage
row in Figure 7b (depot, 13) is removed and the row (3, 4) is inserted. The new coverage
row direction is defined by the nearest vertex of the depot (vertex 3), and a feasible path
connecting the vertex (4, 13) is evaluated and inserted to close the route (in this case, a direct
edge). This process continues changing the connection order, as shown in Figure 7d–f (see
Figure 7d, where the inserted row (4, 3) is the second row visited in the route, Figure 7e
is the third, and so on). After evaluating all row interchanges, the lowest-cost route is
selected.

The row interchange considers the remaining UAV flight time to connect the inserted
row in the route. If the direct link violates this constraint, the path search algorithm is
applied to find the input and output links of this new coverage row (as previously stated,
its direction is set by the nearest vertex to connect to the route). A complete subgraph
is built by connecting its initial and final vertices to all available recharging stations in
both cases. A search algorithm is then applied to find a path that connects both vertices
considering the UAV flight time capacity, and recharges closer to the final vertex, aiming
to reach the next route segment with the maximum amount of charge. Once found, its
feasibility is evaluated, checking if the UAV can reach the next recharging station or the
depot after the inserted path.

The first step of the insertion procedure, intended to preserve the route’s original
structure by not changing its coverage row directions, can be a suitable strategy to generate
routes with approximate costs of the original route, especially when exchanging rows
similar in lengths and vertex alignments. However, as the routes can have quite different
rows, a second step to the insertion procedure is proposed to evaluate the route cost
by changing its row directions, as shown in Figure 8. First, in Figure 8a, as explained
before, the insertion of the new row (10,9) preserves the other row directions. Here, these
rows are organized into two route segments (A and B). Then, in this second step of the
insertion procedure, the same linkage process is performed, combining the inversion of
these segments, as illustrated in Figure 8b–d. If the new row is inserted at the beginning
or end of the route, only one segment is built (i.e., segment A), resulting in two routes
evaluated with (A and iA) row directions.

For all routes generated by the insertion procedure, only the best one is returned. If
no route is generated (all routes are infeasible), the heuristic continues evaluating the next
coverage row change performed by the current neighborhood function (i.e., Shift or Swap).
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Figure 7. Example of link evaluation heuristic performed on Swap to compute the route.
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Figure 8. Example of routes generated by changing the coverage row directions.
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The UAV Swap function applied to EMAS is described in Algorithm 10. In this case,
after the UAV model change (lines 4–5), the route edge costs (flight time) are updated
considering the vehicle performance, and the route feasibility is verified by checking the
capacity of the vehicle to cover its new route (lines 6–7). The improved solution, if found,
is returned together with the value true, flagging it as a better solution (lines 8–10).

Algorithm 10: UAV Swap performed on EMAS, EMNF, and WEM approaches.
Input: X

1 X ′ ← X ;
2 foreach xi ∈ X do
3 foreach xj ∈ X ∧ (xi 6= xj) do
4 m(x′i)← m(xj);
5 m(x′j)← m(xi);
6 RouteCostUpdate(x′i);
7 RouteCostUpdate(x′j);
8 if max{ f (x′i), f (x′j)} < max{ f (xi), f (xj)} then
9 return(X ′,true);

10 end
11 end
12 end
13 return(X , f alse);

The Recharging Station Shutdown on the EMAS neighborhood function is shown in
Algorithm 11. As explained for EMR, each iteration must check the feasibility of removing
a station from all routes containing them. However, in EMAS, instead of applying the exact
method to reroute, a procedure checks whether it is possible to deviate the recharging to
the nearest station in relation to the one under consideration for shutdown (line 8). The
station is shut down if all vehicles directed to it can perform this deviation (lines 10–16). In
this case, the MILP model is applied to improve the feasible solution (line 12).

Algorithm 11: Recharging Station Shutdown performed on EMAS.
Input: X

1 Let Sall be the set of all recharging stations in X ;
2 X ′ ← X ;
3 S ′all ← Sall ;
4 foreach s ∈ Sall do
5 S ′all ← Sall \ s ;
6 foreach (xi ∈ X ) ∧ (s ∈ S(xi)) do
7 S(x′i)← S(xi) \ s;
8 RechargingStationShutDown(x′i);
9 end

10 if IsAllRoutesFeasible(X ′) then
11 foreach (x′i ∈ X ′) ∧ (s ∈ S(x′i)) do
12 MILP(x′i);
13 end
14 Sall ← S ′all ;
15 return(X ′, true);
16 end
17 end
18 return(X , f alse);

All these modifications designed to the EMAS neighborhood functions are also used
on EMNF and WEM. The difference is that the EMAS uses the exact method on most
neighborhood functions to improve the selected routes. In the EMNF, the exact method
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is removed from the neighborhood functions and added to the VND as a neighborhood
function, acting as an intraroute operator performed on all incumbent solution routes.
Conversely, the WEM does not apply the exact method in any part of its neighborhood
structure. It is a matheuristic classified as a one-shot approach that applies the exact method
only in the initialization [73].

6. Experimental Results

This section presents the experimental results from the evaluation of the matheuristics
proposed in this paper. The algorithms and MILP formulations were implemented using
C++ and compiled with GCC 4.8.5. The MILP was solved with Gurobi version 8.1.1 [74],
using the default values. All experiments were performed on an Intel(R) Core(TM) i7
2.8 GHz computer with 8 GB RAM.

6.1. Test Problems and Performance Metrics

The performance of the MOVNS variations was evaluated using an experimental
set-up considering 22 problem instances ranging from 20 to 60 targets plus the same
number of recharging stations and one depot, being the number of vertices of the instance
|V| = 2× |T|+ 1. The size of the fleet used to cover the area varies with {3, 6} UAVs for
instances including up to 50 targets. For 60 targets, the possibility of using nine vehicles
resulted in fleets with {3, 6, 9} UAVs. Two classes of problems, as shown in Figure 9, were
analyzed: type C (Congruent) has vertically aligned targets in the plane, whereas type
D (Different) problems have targets oscillating on the y-axis. The travel cost is given by
the time spent to move from vertex i to vertex j, considering the distance between these
vertices and the flight speed of the UAV (ck

i,j = γi,j / vk). Regardless of the problem class (C
or D), the flight range to perform a row coverage was randomly defined between upper
and lower bound values considering the lowest-capacity UAV model, forcing the vehicles
to recharge to complete the task. The range upper bound was defined to ensure that the
UAV could cover any rows without a recharge, considering a fully charged battery. The
lower bound was set to half of the upper bound value. The coverage area of the instances
varied from 66.5 km2 (20 targets) to 203.1 km2 (60 targets) in C types instances and 58.5 km2

(20 targets) to 151 km2 (60 targets) in type D.
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Figure 9. Examples of type C and D instances.

All coverage missions were performed by heterogeneous fleets with three UAV models.
Model 1 is able to fly for F1 = 1800 s with flight speed v1 = 16 m/s and recharging time
with flight-time ratio of q1 = 2. Model 2 vehicles have a fuel capacity to fly for F2 = 1320 s
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with flight speed of v2 = 15 m/s and q2 = 2.73. The UAVs of model 3 have the lowest
coverage performance, flying for F3 = 1200 s at v3 = 15 m/s and with q3 = 3. The fleets
were all balanced: each one had the same number of vehicles of each model (e.g., a fleet
with six UAVs had two vehicles of the same model).

These instances were solved using the following proposed approaches: EMR, EMAS,
EMNF, and WEM. After preliminary tests, the constant imax of these algorithms was set to
imax = 50 (see Algorithm 1, line 5).

The relative performance of these approaches was assessed using the following metrics:

• Execution time: the computation time required for the algorithm to return the front.
• Cardinality: the number of solutions contained in the front.
• Hypervolume: estimates the proximity of the solutions to the Pareto optimal front.

The hypervolume is given by the sum of the hypercubes formed by the nondomi-
nated solutions obtained by the algorithms. It calculates the coverage region volume
between the solution points at the front and a given reference point. Although the
Pareto optimal front is not known for the problem addressed in this paper, the hy-
pervolume helps to measure the quality of one solution in relation to another, where
larger hypervolumes indicate better solutions [75]. In this work, the hypervolume (S)
was independently normalized to the interval (0, 1) for each problem.

• Coverage: measures the quality of one front in relation to another. Given two approxi-
mate Pareto fronts A and B, the coverage metric (C(A, B)) calculates the number of
B solutions that are weakly dominated by another A front given B’s cardinality. If
C(A, B) is equal to 1, all B solutions are dominated by A front solutions. If the value
returned is equal to 0, it indicates the opposite situation in which A dominates none
of B’s solutions [75]. A generalized version of the coverage of two sets, called cover-
age of many sets, is also used to simplify reporting the relative coverage values [76].
Instead of quantifying the amount by which one given algorithm covers another, this
generalized metric measures how much a given algorithm covers the union of the
final fronts returned by all algorithms, except itself.

Both the hypervolume and coverage metrics return values representing percentages,
whereas the cardinality metric provides absolute values.

6.2. Statistical Design

We employed statistical tests designed to detect significant differences among the
proposed approaches and to estimate their magnitude considering each quality metric.
The data used for this comparison included the values for the given metrics calculated for
the final Pareto fronts obtained on 15 independent trial runs of each algorithm on each
problem.

For each metric, the experiment was designed as a randomized complete block design
(RCBD) with the algorithms as the levels of the experimental factor and the problems as
blocking factors [77]. By treating the problems as blocks, it was possible to model and
remove the effects of different instances in the algorithm’s performance and obtain an
overall performance difference across all considered test instances. The null hypothesis of
an absence of differences among the algorithms evaluated on all problems was considered
against two-sided alternatives. For this experimental analysis, a significance level of 95%
(α = 0.05) was considered.

To avoid assumptions of the F-test, the Friedman test was used [78,79]. In this case,
the rejection of the null hypothesis implies that there is a significant difference among the
implemented algorithms in the metric evaluated.

After the Friedman test indicates significance, the Nemenyi’s post-hoc test was applied
to identify differences between the algorithms [80]. Then, for the pairs of algorithms
indicated as significantly different, the magnitude of the effect size was calculated by the
Hodges–Lehman estimator [81]. To perform an independent estimation of the effect size
for each algorithm, the estimators of the effect of the instance (block) were calculated using
the least squares and removed from the samples.



Sensors 2021, 21, 1705 28 of 34

6.3. Results and Discussion

The results obtained for the experimental comparison are summarized in Table 2,
which reports the mean and standard deviation values of the metrics (execution time
(s), coverage of many sets (CS), cardinality (Card), and hypervolume (S)) considered for
each problem; and Table 3 summarizes the results of the statistical analysis presenting the
magnitude of the statistically significant differences.

Table 2. Mean values and standard deviations (in the parentheses) for the execution time, coverage, cardinality, and
hypervolume metrics.

Execution Time (sec.) Coverage (CS) Cardinality (Card) Hypervolume (S)Type Target UAV
EMR EMAS EMNF WEM EMR EMAS EMNF WEM EMR EMAS EMNF WEM EMR EMAS EMNF WEM

20

3 5.07× 102

(1.18× 102)

4.16× 101

(1.81× 101)

4.94× 101

(2.24× 101)

1.56× 101

(0.72× 101)

0.86

(0.13)

0.59

(0.15)

0.71

(0.22)

0.20

(0.26)

2.60

(0.49)

1.93

(0.44)

2.07

(0.25)

1.53

(0.50)

1.0

(0.00)

0.98

(0.04)

0.98

(0.04)

0.74

(0.25)

6 4.59× 101

(2.98× 101)

0.70× 101

(0.35× 101)

1.37× 101

(1.68× 101)

0.21× 101

(8.02× 101)

0.92

(0.19)

0.35

(0.23)

0.30

(0.34)

0.50

(0.23)

2.27

(0.44)

2.47

(0.88)

1.73

(0.77)

2.20

(0.75)

0.84

(0.08)

0.64

(0.15)

0.54

(0.24)

0.66

(0.15)

30

3 1.11× 104

(2.04× 103)

3.90× 102

(1.73× 102)

7.58× 102

(1.99× 102)

1.10× 102

(3.13× 101)

0.5

(0.24)

0.76

(0.18)

0.84

(0.22)

0.10

(0.11)

4.40

(0.49)

4.07

(0.68)

4.07

(0.25)

3.40

(0.71)

0.96

(0.02)

0.98

(0.02)

0.99

(0.02)

0.77

(0.06)

6 4.31× 103

(1.55× 103)

1.62× 102

(5.75× 101)

2.15× 102

(1.51× 102)

5.03× 101

(2.03× 101)

0.92

(0.11)

0.47

(0.17)

0.28

(0.14)

0.13

(0.10)

(4.60)

(0.71)

3.80

(1.11)

3.93

(1.39)

3.00

(0.73)

(0.99)

(0.01)

0.94

(0.03)

0.91

(0.05)

0.88

(0.04)

C 40

3 3.69× 104

(9.95× 103)

1.66× 103

(3.67× 102)

2.71× 103

(3.41× 102)

6.87× 102

(2.36× 102)

0.54

(0.12)

0.42

(0.10)

(0.85)

(0.10)

0.05

(0.05)

6.87

(0.81)

6.67

(1.40)

7.60

(0.71)

6.33

(1.96)

0.97

(0.01)

0.96

(0.02)

0.99

(0.00)

0.91

(0.03)

6 2.17× 104

(7.45× 103)

2.47× 102

(9.89× 101)

4.73× 102

(2.11× 102)

8.74× 101

(3.82× 101)

0.90

(0.14)

0.43

(0.11)

0.48

(0.22)

0.12

(0.12)

4.60

(0.71)

3.27

(0.57)

3.40

(0.61)

3.27

(1.00)

0.98

(0.02)

0.80

(0.03)

0.84

(0.07)

0.67

(0.07)

50

3 1.80× 105

(5.40× 104)

3.83× 103

(1.32× 103)

1.23× 104

(2.97× 103)

1.29× 103

(4.76× 102)

0.49

(0.12)

0.43

(0.09)

0.76

(0.14)

0.04

(0.04)

9.53

(0.81)

7.27

(1.06)

9.33

(1.35)

5.93

(1.39)

0.91

(0.02)

0.94

(0.02)

0.96

(0.01)

0.88

(0.02)

6 1.22× 105

(3.98× 104)

4.90× 102

(2.08× 102)

2.59× 103

(7.60× 102)

1.38× 102

(6.62× 101)

0.93

(0.07)

0.19

(0.11)

0.36

(0.11)

0.02

(0.04)

8.40

(1.58)

3.33

(1.14)

5.47

(1.26)

2.53

(1.15)

0.96

(0.02)

0.90

(0.03)

0.94

(0.01)

0.86

(0.03)

60

3 2.46× 105

(6.16× 104)

8.52× 103

(2.57× 103)

2.04× 104

(6.30× 103)

3.41× 103

(1.94× 103)

0.52

(0.17)

0.43

(0.12)

0.76

(0.17)

0.02

(0.02)

7.47

(0.96)

7.60

(1.02)

8.13

(0.96)

5.07

(1.53)

0.93

(0.02)

0.96

(0.00)

0.97

(0.00)

0.87

(0.03)

6 3.21× 105

(1.60× 105)

1.14× 103

(4.02× 102)

5.90× 103

(4.00× 103)

2.37× 102

(9.80× 101)

0.59

(0.22)

0.32

(0.18)

0.64

(0.25)

0.04

(0.06)

8.20

(1.60)

4.33

(1.30)

5.93

(1.91)

3.27

(1.12)

0.91

(0.06)

0.84

(0.03)

0.89

(0.05)

0.71

(0.05)

9 7.04× 104

(2.19× 104)

2.94× 102

(1.09× 102)

1.40× 103

(1.30× 103)

7.73× 101

(6.07× 101)

0.91

(0.10)

0.30

(0.18)

0.43

(0.16)

0.05

(0.08)

5.13

(1.02)

3.40

(0.88)

3.73

(1.29)

2.60

(1.54)

0.95

(0.05)

0.69

(0.06)

0.78

(0.07)

0.48

(0.08)

Mean 9.22× 104

(3.24× 104)

1.52× 103

(4.84× 102)

4.25× 103

(1.48× 103)

5.55× 102

(2.70× 102)

0.73

(0.15)

0.43

(0.15)

0.58

(0.19)

0.12

(0.10)

5.82

(0.87)

4.38

(0.95)

5.04

(0.98)

3.56

(1.12)

0.95

(0.03)

0.87

(0.04)

0.89

(0.05)

0.77

(0.07)

20

3 4.70× 102

(3.96× 102)

9.21× 101

(4.65× 101)

1.01× 102

(4.40× 101)

4.21× 101

(1.79× 101)

0.66

(0.20)

0.63

(0.25)

0.56

(0.22)

0.13

(0.11)

3.13

(1.54)

3.33

(0.70)

3.13

(0.50)

3.60

(0.95)

0.88

(0.06)

0.90

(0.06)

0.89

(0.06)

0.79

(0.07)

6 4.90× 101

(2.22× 101)

2.38× 101

(0.80× 101)

2.09× 101

(1.66× 101)

0.95× 101

(0.33× 101)

0.86

(0.16)

0.40

(0.25)

0.32

(0.27)

0.45

(0.19)

2.00

(0.00)

2.53

(0.72)

2.27

(0.57)

3.13

(0.88)

0.86

(0.01)

0.78

(0.08)

0.78

(0.06)

0.83

(0.04)

30

3 1.20× 104

(4.71× 103)

9.76× 102

(2.40× 102)

1.35× 103

(5.11× 102)

2.55× 102

(8.12× 101)

0.72

(0.12)

0.51

(0.15)

0.62

(0.11)

0.01

(0.02)

5.00

(0.94)

6.40

(0.80)

7.20

(1.33)

5.67

(1.25)

0.87

(0.04)

0.85

(0.04)

0.86

(0.03)

0.60

(0.05)

6 1.88× 104

(3.89× 103)

1.47× 102

(6.24× 101)

3.01× 102

(1.27× 102)

6.26× 101

(3.87× 101)

0.98

(0.05)

0.25

(0.08)

0.35

(0.08)

0.03

(0.06)

10.47

(0.72)

4.00

(1.10)

3.73

(0.85)

4.47

(1.45)

0.99

(0.01)

0.85

(0.03)

0.86

(0.03)

0.77

(0.04)

D 40

3 8.25× 104

(3.75× 104)

4.04× 103

(1.72× 103)

9.58× 103

(2.74× 103)

1.22× 103

(4.82× 102)

0.65

(0.00)

0.39

(0.02)

0.55

(0.10)

0.01

(0.00)

9.69

(1.69)

7.73

(1.73)

11.13

(3.14)

6.53

(2.42)

0.87

(0.04)

0.91

(0.02)

0.93

(0.02)

0.84

(0.03)

6 2.74× 104

(5.63× 103)

6.08× 102

(1.76× 102)

1.55× 103

(6.70× 102)

1.69× 102

(7.23× 101)

0.99

(0.03)

0.32

(0.18)

0.42

(0.13)

0.08

(0.09)

6.33

(0.47)

4.93

(1.34)

5.73

(1.69)

4.87

(1.20)

0.99

(0.01)

0.87

(0.04)

0.90

(0.04)

0.79

(0.03)

50

3 9.65× 105

(2.60× 104)

7.47× 103

(1.67× 103)

3.06× 104

(4.67× 103)

2.78× 103

(8.44× 102)

0.77

(0.08)

0.37

(0.07)

0.56

(0.08)

0.00

(0.01)

12.00

(1.21)

9.47

(1.31)

13.40

(1.45)

9.27

(2.05)

0.88

(0.02)

0.92

(0.01)

0.94

(0.02)

0.84

(0.03)

6 2.38× 105

(8.13× 104)

1.31× 103

(4.59× 102)

5.51× 103

(1.67× 103)

5.17× 102

(1.42× 102)

0.90

(0.06)

0.32

(0.08)

0.49

(0.08)

0.00

(0.00)

10.73

(1.91)

7.13

(1.59)

8.87

(2.09)

7.20

(1.87)

0.93

(0.02)

0.86

(0.02)

0.89

(0.03)

0.75

(0.03)

60

3 1.64× 106

(3.78× 105)

2.23× 104

(5.94× 103)

8.41× 104

(9.96× 103)

7.92× 103

(2.61× 103)

0.86

(0.05)

0.26

(0.10)

0.56

(0.06)

0.00

(0.01)

15.87

(1.09)

9.60

(2.18)

15.80

(1.83)

9.93

(2.93)

0.96

(0.00)

0.87

(0.02)

0.97

(0.01)

0.68

(0.07)

6 2.45× 105

(1.52× 105)

1.80× 103

(4.09× 102)

4.18× 103

(2.49× 103)

7.65× 102

(2.25× 102)

0.82

(0.18)

0.29

(0.11)

0.48

(0.20)

0.00

(0.00)

6.53

(2.00)

4.67

(1.07)

5.73

(2.52)

4.07

(1.12)

0.92

(0.03)

0.85

(0.02)

0.88

(0.06)

0.68

(0.05)

9 3.24× 105

(7.41× 104)

8.22× 102

(2.91× 102)

4.33× 103

(2.07× 103)

3.23× 102

(1.12× 102)

0.94

(0.06)

0.26

(0.09)

0.42

(0.08)

0.03

(0.03)

9.20

(1.11)

5.13

(1.78)

7.73

(1.81)

4.47

(1.54)

0.96

(0.01)

0.78

(0.03)

0.88

(0.06)

0.66

(0.03)

Mean 2.62× 105

(7.26× 104)

3.60× 103

(1.00× 103)

1.29× 104

(2.27× 103)

1.28× 103

(4.21× 102)

0.83

(0.1)

0.36

(0.14)

0.49

(0.13)

0.07

(0.05)

8.27

(1.16)

5.90

(1.30)

7.70

(1.62)

5.75

(1.61)

0.92

(0.02)

0.86

(0.03)

0.89

(0.04)

0.75

(0.04)

As observed in Table 2, the WEM approach outperformed the others in the execution
time metric, and, as expected, the EMR was the slowest. The analysis in Table 3 supports
this observation, with WEM providing a reduction of 8.96 × 104 s compared to EMR,
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1.88 × 102 s in relation to EMAS, and 1.2 × 103 s in comparison to EMNF. The results
indicated no statistically significant difference between EMAS and EMNF for this metric.

The best results for the coverage metric observed in Table 2 were mostly obtained
by EMR, with a few instances where EMNF outperformed it. However, by examining
the results in Table 3, we observed no statistically significant differences in performance
between these two algorithms. EMR outperformed WEM by 0.73 and EMAS by 0.41.
These results are robust indicators of the superiority of the fronts returned by EMR, which
dominated 73% of the ones computed by WEM and 41% of those obtained by EMAS. The
quality of the front from EMNF outperformed only WEM, dominating about 46% of the
fronts returned by the last one.

The performances of EMR, EMAS, and EMNF were quite similar in terms of the
cardinality metric. Table 3 shows that, on average, these algorithms were only slightly
different. Table 3 indicates that the EMR returned 1.6 more solutions than EMAS and 2.2
more than WEM. The variation in performance between EMAS and EMNF was somewhat
modest, confirmed by the lack of statistically significant differences. EMNF outperformed
WEM, returning 1.7 more solutions.

For the hypervolume, all algorithms presented consistent performance in most prob-
lems, as shown in Table 2, with WEM being a little worse in terms of solution quality
compared to the other three methods. The statistical analysis reported in Table 3 confirms
this observation, showing that only WEM had statistically significant differences among
EMR, EMAS, and EMNF. EMR was 17% superior, EMAS was 10%, and EMNF enhanced
the quality of WEM solutions by around 12%. Due to the statistical results, we cannot
conclude that a difference exists among EMR, EMAS, and EMNF. This means that EMAS
and EMNF were, in general, able to return points in their fronts closer to those in the EMR
front.

Table 3. The estimated difference in the average performance between the row and column algorithms for the metrics
execution time, coverage, cardinality, and hypervolume. Only results statistically significant at 95% were calculated (ns, no
statistically significant result). For the execution time metric, negative values indicate superiority for the algorithms in the
rows. For the other metrics, negative values indicate superiority for the algorithms in the columns.

Execution Time Coverage Cardinality Hypervolume

EMR EMAS EMNF EMR EMAS EMNF EMR EMAS EMNF EMR EMAS EMNF
EMAS −87,496 - - −0.41 - - −1.6 - - ns - -
EMNF −80,959 ns - ns ns - ns ns - ns ns -
WEM −89,594 −187.8 −1112.5 –0.73 ns −0.46 −2.2 ns −1.7 −0.17 −0.10 −0.12

As the cost of generating the exact Pareto-optimal fronts to all instances used in this
work was prohibitive, we chose one of the smallest instances, type D with 20 targets and
three UAVs, to illustrate the performance of the exact approach and the proposed methods
(Figure 10). The fronts obtained by these methods, including the exact one referenced as
EM, are shown in Figure 10a. The fronts of EMR, EMAS, EMNF, and WEM were randomly
selected among their replications.

A common method used to generate the Pareto-optimal front is transforming the
multiobjective problem into several mono-objective problems, where the optimal solutions
of these problems represent the Pareto front solutions. In this work, we used two strategies
to generate the optimal points belonging to the set of efficient solutions: the weighted
problem Pλ and the problem ε-restrict Pε [82]. The Pλ approach aggregates the different
objectives through the weighted sum. Pε is based on scalarization, which minimizes one of
the objectives while restrictions limit the other objectives.

First, the Pλ was applied to aggregate both objectives of our problem by the weighted
sum. The parameter was set to λ = {0, 1} to obtain the extreme points of the front. In this
case, λ = 0 (minimize only the number of stations) returns a solution with two recharging
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stations and the longest route with 4.5 h, and for λ = 1 (minimize only the longest route),
another extreme point, returns seven recharging stations and longest route with 3.98 h.

The other points in the Pareto front were calculated by the ε-restrict approach, min-
imizing the longest route while the number of recharging stations was constrained by
an integer constraint ranging from 3 to 6. Figure 10b shows the computation time in the
logarithmic scale for each method to generate the solutions in the front. For this instance,
the exact method (EM) calculates the Pareto-optimal front as 45.68 h and WEM was the
fastest method, returning its front in 51 s.
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(b) Logarithmic scale of the time to compute the fronts.

Figure 10. Results for a type D instance with 20 targets and 3 UAVs.

Given the high computational costs of the exact method, we implemented the EMR
(cluster first-route second) matheuristic that combines the MOVNS with an MILP formula-
tion to generate the approximated front. This method splits the original problem into small
problems, one for each UAV, and applies the exact method for routing into the neighbor-
hood functions. The results shown in Table 2 indicate that EMR was the best in terms of the
quality of the solutions in most cases. However, it was the most time-consuming method.

The decrease in the number of calls of the exact method in EMAS, EMNF, and WEM
was achieved by designing a heuristic to route and evaluating each change performed
by their neighborhood functions. The strategy adopted in EMNF and EMAS to mitigate
the trade-off between execution time and the quality of the computed fronts was a wise
application of the exact method to improve some solutions. The EMAS calls the exact
method into the neighborhood functions only to the best solution returned by the routing
heuristic. Conversely, EMNF adds an intraroute operator on its VND that uses the exact
method to improve each route of the current solution separately.

The statistical tests showed that EMNF was faster than EMR and superior to WEM
considering cardinality, coverage, and hypervolume metrics. The WEM approach was
the fastest as the exact method is not used on its VND. The statistical analysis indicated
a significant degradation in all metrics used to evaluate the returned fronts compared to
EMR and EMNF. However, between WEM and EMAS, no significant differences were
detected in coverage and cardinality.

Although the results in Table 2 show EMAS was faster than EMNF in almost in-
stance problems, and most EMNF results were superior to EMAS for the other metrics, no
statistically significant differences were observed between them for any metric.
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7. Conclusions

This paper proposed strategies for the multiobjective location-routing problem in
complete area coverage missions using heterogeneous UAV fleets. Here, the decision on the
recharging station locations and the number of stations to be opened are jointly considered
with UAVs routing criteria. As the cost to compute the Pareto-optimal front to this problem
is usually prohibitive, four matheuristics based on MOVNS were presented, evaluated,
and compared using four performance metrics (execution time, coverage, cardinality,
and hypervolume).

The proposed EMR, a cluster first-route second matheuristic, returned most of the
best results considering the fronts quality metrics. However, it performed the worst in
execution time. The other approaches, EMAS, EMNF, and WEM, significantly reduced
the intensity of calls of the exact method using heuristics in the routing of clusters. Our
experimental comparison showed that the EMNF presented relatively high-quality perfor-
mance regarding the front’s quality metrics compared to EMAS and WEM. The statistical
analysis results indicated no significant degradation compared to EMR, standing out for
applying the exact method only as a neighborhood function in the VND, where it acts like
an intraroute operator.

Conversely, as expected, WEM, a one-shot approach where the MILP is only solved in
the beginning, produced superior performance in terms of the execution time. Despite the
results showing a significant degradation in the quality of its fronts compared to EMR and
EMNF, no evidence of significant difference from EMAS in coverage or cardinality was
observed. A modest loss in hypervolume was verified. Thus, WEM can be indicated for
applications that tolerate the observed degradation in the quality of its solution in order to
speed up computation.

In the future, we intend to consider the recharging station’s capability to attend a
limited number of UAVs. In this case, the recharging stations could be modeled as a queuing
system, as proposed in [40]. We also plan to adopt some strategies to avoid collisions in the
presence of intersecting routes. For this, it would be necessary to implement some speed
planner, as presented in [20,22].
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