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Abstract: The localization of outdoor acoustic sources has attracted attention in wireless sensor
networks. In this paper, the steered response power (SRP) localization of band-pass signal associated
with steering time delay uncertainty and coarser spatial grids is considered. We propose a modified
SRP-based source localization method for enhancing the localization robustness in outdoor scenarios.
In particular, we derive a sufficient condition dependent on the generalized cross-correlation (GCC)
waveform function for robust on-grid source localization and show that the SRP function with GCCs
satisfying this condition can suppress the disturbances induced by the grid distance and the uncertain
steering time delays. Then a GCC refinement procedure for band-pass GCCs is designed, which uses
complex wavelet functions in multiple sub-bands to filter the GCCs and averages the envelopes of
the filtered GCCs as the equivalent GCC to match the sufficient condition. Simulation results and
field experiments demonstrate the excellent performance of the proposed method against the existing
SRP-based methods.

Keywords: source localization; wireless acoustic sensor networks; steered response power; general-
ized cross-correlation

1. Introduction

With the rapid development of communication technology and mobile computing
devices, applications of wireless acoustic sensor networks (WASNs) are becoming pop-
ular in acoustic signal processing. Particularly, WASN-based sound source localization
has captured researchers’ attention in the last two decades [1–5]. The existing methods
available for passive source localization in WASNs include (1) the received energy-based
approaches [6–9]; (2) the direction of arrival (DOA)-based approaches [10,11]; (3) the time
of arrival (TOA)-based approaches [12]; (4) the time difference of arrival (TDOA)-based
approaches [13–15] and (5) the steered response power (SRP)-based approaches [16–22].

Most methods require a pre-processing stage in which specific modalities are mea-
sured from sensor signals before the location-estimating stage. In contrast, the SRP-based
approaches locate the source position or direction by maximizing the power of spatially
steered filter and sum beamformer of a group of sensors and contain only one decision step
in processing sensor signals to estimate location. Without information compression and
disturbances resulting from partial mistakes in the front-end stage, the SRP-based solutions
can usually yield more robust performance in noisy and reverberant acoustic environments.
Practical implementations commonly use the generalized cross-correlation [23]-based form
of the SRP function [16] to reduce computation. The methods similar to the GCC-expression
of SRP function are also called a “global coherence field (GCF)” in several references [24,25].

In practice, the primary constraint of the SRP-based approaches is the time-consuming
on-grid searching procedure for finding their global maximums. Hence, it has been a hot
issue to reduce the computational cost for the SRP-based approaches. In [17], a stochastic
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region construction (SRC) method is proposed to avoid global grid searching. However, this
strategy also causes information loss. In [26], a geometrically sampled grid set based on the
TDOA gradient is proposed to improve the SRP performances. An alternative strategy to
solve the high-cost searching problem is adopting some adaptive SRP functions regarding
the grid resolution to apply a coarse or a hierarchical searching. In [27], the authors use
the low-frequency component of GCC for coarse grid resolution and the high-frequency
component for fine grids in the SRP-based DOA estimation. In [28], the authors adopt a
Gaussian low-pass filter to the GCC for coarse grids. For full-band signals, a similar kind of
modification is proposed both in microphone arrays [29] and WASNs [18,19], respectively, in
which the spatial spectrum of a given grid is calculated from the sum of the phase-transform
weighted GCCs (GCC-Phase Transform (PHAT)s) within a time window containing the
TDOA values in the volume surrounding the grid, instead of the original GCC-PHAT in the
SRP function.

The SRP-based approaches can provide a robust solution in DOA estimation and
source localization tasks in confined spaces. However, they could lose their robustness in
an outdoor WASN scenario due to the synthetic effect of the following factors. (1) Grid
size, since the monitoring area in outdoor cases may become much more extensive than
the area of indoor applications, and the proper searching grids would be much coarser
(e.g., meter-level grids outdoors compared with centimeter-level grids indoors). (2) Steering
time delay uncertainty; in the classical SRP-based localization frame, the steering time
delay at a given position is generated from an ideal propagation model and is always
assumed to be entirely right. However, the steering time delay to the source position is
different from the actual propagation time. Such a difference becomes no more negligible
in the outdoor environment and causes a defocus effect, even though the WASN system
is well synchronized. (3) Signal passband; when processing the acoustic data collected
in outdoor environments, high-pass or band-pass filtering is indispensable because the
environmental noise is intense in the low-frequency range, and the source signals in the real
world often possess the band-pass characteristic. The synthetic effect of these three factors
would make it difficult to achieve stable localization results. The Modified-SRP functional
(MSRP) method introduced in [18,19] provides an elegant solution for scalable grids but it
is not suitable for band-pass signals. In [21], the authors elaborate on the SRP in band-pass
situations and use the GCC-PHAT envelope or frequency-shifted GCC-PHAT to enhance
the robustness in such situations. Nevertheless, the above two methods hardly consider the
other two factors (the grid and the steering time uncertainty). In [30], the authors propose a
Frequency-Sliding GCC (FSGCC) method, which uses singular value decomposition (SVD)
or weighted SVD (WSVD) on the FSGCC matrix and can intelligently extract time delay
information of the source signal from multiple sub-band GCCs. The authors adopt the
WSVD-FSGCC to the MSRP functional for source localization. This solution can provide
excellent localization performance in the band-pass situation with scalable grids. However,
in outdoor applications, the high computation cost of the SVD of giant matrices is inevitable
due to the long GCC range.

Previously, several common acoustic source placements have been proposed in outdoor
scenarios. They mostly focus on localizing the source from TDOA [31] and DOA [32,33]
measurements. Some uncertainties are then introduced by the estimation error of TDOA or
DOA estimating algorithms. Moreover, some useful information is also compressed, which
results in unstable performance. In this direction, in this paper, a robust SRP-based outdoor
source localization problem is discussed.

In this paper, a modified SRP-based method is proposed, in which the systematic
influence of the above inevitable factors in outdoor WASNs scenarios is considered. The
localization performance is analyzed using the normalized contribution of the signal com-
ponents in the SRP function. A sufficient condition dependent on the GCC waveform
function for robust on-grid SRP-based source localization is derived by geometrical analy-
sis. The SRP function using GCCs satisfying this condition can suppress the disturbances
induced by the grid distance and the uncertain steering time delay. A GCC refinement
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procedure for band-pass GCCs is then designed, which uses the complex wavelet functions
in multiple sub-bands to filter the GCC and averages the envelopes of the filtered GCCs as
the equivalent GCC to match the sufficient condition. Simulation results and field experi-
ments demonstrate the excellent performance of the proposed method against the existing
SRP-based methods.

The rest of this paper is organized as follows. In Section 2, the outdoor SRP-based
source localization problem is formulated. Section 3 gives the sufficient condition in brief
and introduces the GCC refinement procedure. The results of the simulation and the field
experiment are presented in Section 4. Conclusions are given in Section 5.

2. SRP-Based Localization in Outdoor Acoustic Sensor Network
2.1. System Models

We discuss the acoustic source localization problem in an N-dimensional Euclidean
space with M distributed microphones (M > N). Let x ∈ RN be a spatial coordinate
vector. Specifically, define xs as the source location and zm as the position of the mth sensor
(m = 1, 2, . . . , M). Let s(t) be the source signal in the time domain, and the received signal
of the microphone at zm can be modeled as

ym[n] = [hm(t) ∗ s(t) + wm(t)]δ(t− n/Fs), (1)

where hm(t) is the impulse response function representing the propagation of sound from
xs to zm, the operator “∗” represents the convolution operation, wm(t) stands for the
additive noise signal, and δ(t− n/Fs) denotes the sampling process at rate Fs. When the
multi-path delay and non-linear distortion are neglected, the propagation function in the
frequency domain can be simplified as

Hm(ω) = Ame−jωtm , (2)

where Am ∈ R is the amplitude-attenuation factor and tm is the time delay factor. In the
frequency domain Equation (1) can be denoted as

Ym(Ω) = AmS(Ω)e−jΩFstm + Wm(Ω), (3)

where Ω = ω/Fs ∈ [−π, π] is the normalized angular frequency, Ym(Ω) is the discrete-
time Fourier transform (DTFT) of ym[n], S(Ω) and Wm(Ω) are the Fourier transforms of
s(t) and wm(t), respectively.

Let ηm(x) ∈ R be the steering time delay function describing the time delay associated
with sound propagation from a given location x to zm. In practice, it is commonly modeled
as the sound traveling time going through the line-of-sight (LOS) path with a constant
sound speed vs; i.e.,

ηm(x) = ||x− zm||/vs, (4)

where “‖.‖” denotes the Euclidean distance. Note that ηm(x) is not exactly the sound
propagation in reality. Then the SRP function, which is defined as the output power of the
filtered-and-sum beam-former, is given by:

P(x) =
∫ π

−π

∣∣∣∣∣ M

∑
m=1

Gm(Ω)Ym(Ω)ejΩm Fsηm(x)

∣∣∣∣∣
2

dΩ, (5)

where Gm(Ω)ejΩm Fsηm(x) is the filter associated with the mth sensor. It can be equivalently
expressed in term of GCCs [16]:

P(x) = 2π
M

∑
l=1

M

∑
m=1

Rl,m(ηm(x)− ηl(x)), (6)



Sensors 2021, 21, 1591 4 of 20

where
Rl,m(τ) =

1
2π

∫ π

−π
Ψl,m(Ω)Yl(Ω)Y∗m(Ω)ejΩFsτdΩ (7)

denotes the GCC of the sensor pair {l, m}, τ is the time lag, superscript “(.)∗” represents
the conjugate operation, Ψl,m(Ω) = Gl(Ω)G∗m(Ω) and denotes the weight function of the
associated GCC. Ideally, each Rl,m(τ) achieves its peak at τ = tm − tl so that the SRP
function is supposed to achieve its maximum value at the source position xs, as shown in
Figure 1a,b. The Phase Transform (PHAT) weight function

ΨPHAT
l,m (Ω) = 1/|Yl(Ω)Y∗m(Ω)| (8)

is widely used in the TDOA- and SRP-based localization applications. The PHAT-weighted
GCC is generally referred to as the GCC-PHAT, and the SRP using the GCC-PHAT is
generally referred to as the SRP-PHAT.

Removing those irrelevant and repetitive terms in Equation (6), the effective compo-
nent for source localization can be simplified as

PE(x) =
M−1

∑
l=1

M

∑
m=l+1

Rl,m(ηm(x)− ηl(x)) =
C2

M

∑
p=1

Rp
(
τp(x)

)
, (9)

where p is the sequence number of the valid sensor pair cp = {l, m}(l < m) and is deduced
to be p = (2M − l)(l − 1)/2 + m− l, varying from one to a combinatorial number C2

M;
τp(x) = ηm(x)− ηl(x) and can be referred to as the steering TDOA function.

(a) (b) (c)

(d) (e) (f)

Figure 1. Comparison of the ideal steered response power (SRP)-based source localization in an ideal
case and with the unexpected effects (the symbols “o” and “+” represent the source position and the
estimated position, respectively): (a) SRP map (3D view); (b) Ideal SRP map (2D view); (c) defocus
effect from steering time uncertainties; (d) undersampled effect from coarse grid; (e) rippling effect
from band-pass generalized cross-correlations (GCCs); (f) combined effect.

2.2. Problem Formulation

The classical SRP-based localization method often lacks robustness in outdoor scenar-
ios. The steering time delay function ηm(x) in the SRP function is different from the sound
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propagation in reality denoted as η0
m(x), and ∆ηm(x) = ηm(x)− η0

m(x) is denoted as the
steering time-uncertainty function. Similarly, the steering TDOA-uncertainty functions in a
pair of sensors can be expressed as

∆τp(x) = ∆ηm(x)− ∆ηl(x) = τp(x)− τ0
p(x), (10)

where τ0
p(x) = η0

m(x)− η0
l (x), representing the real steering TDOA function for a given

sensor pair cp. This term is usually negligible within a confined space, so it has been rarely
discussed in classical SRP models. However, in outdoor applications, the sound propa-
gation is much more unpredictable, resulting in enlarged uncertainty with the increase
in distances. The steering time uncertainty can easily be influenced by the geography,
temperature, wind, and self-localization error among sensors, and then yields a noticeable
defocus effect on the SRP map, as shown in Figure 1c. The GCCs would intersect with each
other dispersedly around xs.

Since the spatial spectrum generated by the SRP function contains many local extrema
and ridged areas, the maximal value of P(x) is usually found through a grid-searching
process. Consider a uniform sampling grid (USG) case in RN . Define Xg as the set of grid
points in the candidate searching region (V ∈ RN), and dg ∈ R, Ng ∈ R as the grid distance
and the total number of the grids in Xg, respectively, then the estimated on-grid location is
formulated as

x̂s = arg max
x∈Xg

P(x) = arg max
x∈Xg

PE(x). (11)

Note that the localization precision depends on the gird resolution. A more accurate
estimation usually requires a smaller dg. This will leads to a larger Ng and significantly
increased calculation burden because the number of grids is inversely proportional to
the Nth power of dg (i.e., Ng ∝ (dg)−N). Hence, the accuracy and feasibility can hardly
be balanced in an outdoor WASN system confronting a large search region, for which
the minimal grid resolution limited by computing power is much coarser than that in
indoor applications. However, most SRP approaches usually work well at subtle grid
resolutions, and coarser grid resolution has an undersampled effect, as shown in Figure 1d.
The searching process probably would miss the source peak.

It is known that the background noise always dominates at low frequencies in the
field environment, and real sound sources often show band-pass characteristics. Thus a
band-pass GCC is indeed required. However, the SRP-PHAT with a band-pass source
would cause a rippling effect [21], as shown in Figure 1e. The rippling effect does not
alter the location of the maximal value of the SRP function. However, it may lead to local
extrema and even fake peaks such that the SRP spectrum is susceptible to the two other
factors and shows a lack of robustness.

Under the influence of the synthetic effect of the above inevitable factors, the real-
world SRP output is illustrated in Figure 1f. It shows that classical SRP implementations
hardly deal with all these factors outdoors and yield a divergent localization result.

3. A Robust Outdoor SRP-Based Source Localization Method
3.1. On-Grid SRP-Based Localization Error Bound Condition

It is known that the SRP-based spatial spectra mainly depend on the phase information
of the source components. It is always reasonable to assume that the additive noise of
sensors is independent of each other and the source signal, and then it has no spatial prefer-
ence (which means that they have zero mean in the phase domain). Their contributions to
the SRP spectrum can be neglected and not related to the grid resolution and the steering
time uncertainty. Therefore, only the contribution of the source signal is considered in
analyzing the SRP function. With the terms of additive noise wm(τ) neglected, the weight
functions Ψp(Ω) of the sensor pair cp usually can be expressed as

Ψp(Ω) = BpΨ0(Ω), (12)
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where Bp ∈ R is an amplitude-scaling factor irrelevant to the frequency, and Ψ0(Ω) =
Ψ0(−Ω) ∈ R is a real function irrelevant to sensors. Substituting Equation (12) into
Equation (7), the GCC Rp(τ) can be rewritten as

Rp(τ) =
Bp Al Am

2π

∫ π

−π
Ψ0(Ω)S(Ω)S∗(Ω)ejΩFs(τ−τ0

p (xs))dΩ

=
Bp Al AmC0

2π
R0

(
τ − τ0

p(xs)
)

,
(13)

where C0 = max
∣∣∣∫ π
−π Ψ0(Ω)S(Ω)S∗(Ω)jΩFsτdΩ

∣∣∣, and

R0(τ) =
1

C0

∫ π

−π
Ψ0(Ω)S(Ω)S∗(Ω)ejΩFsτdΩ, (14)

is the amplitude-normalized version of the weighted self-correlation function of the source
signal s(t). Hence, each GCC contains the same waveform function R0(τ) with different
time-shifting factors τ0

p(xs) and amplitude factors Bp Al Am/C0. In practice, the range
information in amplitude is usually less stable or accurate than in time delay. Thus, a
normalized mapping function representing the contribution of the source component in
the SRP function can be constructed as

FE(x, xs) =
1

C2
M

C2
M

∑
p=1

R0(τp(x)− τ0
p(xs)). (15)

In the above equation, the amplitude factors Bp Al Am/C0 between different sensor
pairs are removed. Thus, each pair yields an equal contribution to the SRP function. Note
that FE(x) ∈ [−1, 1] has a definite value range regardless of the sensor number M.

For a given grid distance dg ∈ R>0, an arbitrary uniform sampling grid set in RN can
be expressed as

X (dg, xo
g) =

{
x + xo

g : x = [n1dg, . . . , nNdg]
T ; n1, . . . , nN ∈ Z

}
, (16)

where xo
g ∈ RN is the position of the origin of the set. Then the on-grid location estimation

is given by

x̂g
s = arg max

x∈X (dg ,xo)
FE(x, xs)

= arg max
x∈X (dg ,xo

g)

1
C2

M

C2
M

∑
p=1

R0
(
τp(x)− τp(xs) + ∆τp(x)

)
.

(17)

It is worth pointing out that the grid resolution, the steering time uncertainty, and
band-pass issues are comprehensively considered in the above-simplified SRP function.

The grid issue should be unrelated to the origin position xo
g. In the real world, the

uncertainty functions ∆τp(x) are hard to closely describe due to many interference factors,
and it is reasonable to assume that they have an upper bound ∆τmax (i.e.,

∣∣∆τp(x)
∣∣ ≤ ∆τmax).

∆τmax indicates the steering time delay uncertainty level and can be estimated from the
environmental and devices’ conditions. Thus, the robustness of the on-grid localization
problem can be described as: given a dg and a ∆τmax, there exists a ε ∈ (0, ∞) such that∥∥∥x̂g

s − xs

∥∥∥ ≤ ε. (18)

Define a level-passed area based on FE(x, xs):

M(α, xs) , {x : FE(x, xs) ≥ α} ⊆ RN , (19)
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where α ∈ R is the level-pass threshold. Then a sufficient condition can be obtained in the
following Proposition:

Proposition 1. ifM(α, xs) ∩ X (dg, xo
g) 6= ∅ andM(α, xs) is a bounded set (i.e., there exists

a εM ∈ (0, ∞) such that ‖x1 − x2‖ ≤ εM for all x1, x2 ∈ M(α, xs)), then Inequality (18)
is satisfied.

The proof is given in Appendix A.1. Thus, the robustness of the on-grid source
localization problem can be analyzed in terms ofM(α, xs).

A practical example ofM(α, xs) is depicted in Figure 2, and its area shrinks inwards
when α increases. The first sub-condition (M(α, xs) ∩ X (dg, xo

g) 6= ∅) can be satisfied
whenM(α, xs) covers enough areas. The shape ofM(α, xs) relates to α, R0(τ), ∆τp(x),
and sensor distribution, and it is generally irregular. Consider a closed ball BN(x0, r) ,{

x : |x− x0| ≤ r; x0, x ∈ RN} with center x0 and radius r. If

r ≥ dg
√

N/2, (20)

then BN(x0, r) ∩ X (dg, xo
g) 6= ∅ is satisfied. The proof can be seen in Appendix A.2.

Consequently, if BN(xs, dg
√

N/2) ⊆M(α, xs), then the first sub-condition is satisfied.

Figure 2. Illustration of the level-pass areaM(α, xs). (Orange:M(0.3, xs); yellow green:M(0.2, xs);
celeste:M(0.1, xs)).

Figure 3 illustrates a typical waveform of R0(τ), the GCC-PHAT of the passband
[ΩC −ΩB, ΩC + ΩB] ⊂ (0, π], which can be expressed by

RPHAT−BP
0 (τ) = sinc

(
ΩBFs

π
τ

)
cos(ΩCFsτ). (21)

A valid R0(τ) is an even and bounded function (i.e., R0(τ) = R0(−τ) and R0(τ) ∈
[−1, 1]) and contains a main-lobe around τ = 0, where its maximum am lies. The maximum
side-lobe height (or the maximum value outside the main-lobe area if R0(τ) has no side-
lobes) can be denoted as as, where as < am.

Let us define a function based on R0(τ) by

TR(aT) , inf{|τ| : R0(τ) < aT}, (22)

where aT ∈ [aS, aM] is the level-pass threshold of GCC, “ inf{.}′′ represents the infimum.
TR(aT) represents the half-width of the level-passed section of R0(τ) within its main-lobe.
It follows that R0(τ) ≥ aT if and only if τ ∈ (−TR(aT), TR(aT)).
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Figure 3. An example of R0(τ).

Based on a geometrical analysis in Appendix A.3, if R0(τ) possesses the following
property:

TR(α) ≥ dg
√

N/vs + ∆τmax, (23)

thenM(α, xs) ⊃ BN(xs, dg
√

N/2). Therefore, the first sub-condition can be satisfied.
For all α such that α > max‖x‖→+∞{FE(x, xs)}, the second sub-condition (M(α, xs) is a

bounded set) is satisfied . The area ofM(α, xs) is mainly the superposition of the projection
area of the main-lobe sections of GCCs belonging to individual sensor pairs. Denote

Λp(τ
c, T) = {x : |τp(x)− τc| ≤ T}

to be the projection area of the TDOA section [τc − T, τc + T] of sensor pair cp, where

T ∈ [0, ∞) and τc ∈
[
−τmax

p , τmax
p

]
are the half-width and the central TDOA of the section,

respectively, and τmax
p = ‖zl − zm‖/vs is the maximal TDOA value that this sensor pair

can produce.
For each sensor pair cp, the solution set of the half hyperbolic equation τp(x) = τc can

be denoted as Λp(τc, 0) and extends to infinity (i.e., there exists an x such that ‖x‖ = ∞ and
x ∈ Λp(τc, 0) ). For two different sensor pairs ci and cj, if there exist a τc

i ∈
[
−τmax

i , τmax
i
]

and a τc
j ∈

[
−τmax

j , τmax
j

]
such that Λi

(
τc

i , 0
)
⊆ Λj

(
τc

j , 0
)

or Λi
(
τc

i , 0
)
+ Λj

(
τc

j , 0
)

, then
the half hyperbolic functions τi(x) = τc

i and τj(x) = τc
j are not independent. The sense

might occur when the sensors of these two pairs are co-linear or have the same axis of
symmetry; in the meantime, both τc

i and τc
j reach their extremum or become zero. In

WASNs, this case rarely happens because the sensor distributions are often irregular.
Despite this sense for all sensor pairs, the maximal value of FE(x, xs) at infinity does not
exceed a linear combination of am and as, which is given as

αin f =
C2

N am +
(
C2

M − C2
N
)
as

C2
M

. (24)

The detailed derivation can be found in Appendix A.4. If α > αin f , thenM(α, xs)
is bounded.

Combining Inequality (23) and Equation (24) together, a sufficient condition for robust
on-grid source localization is given by

TR

(
αin f

)
> dg

√
N/vs + ∆τmax. (25)
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It means that for a given grid distance dg and steering TDOA uncertainties within ∆τmax, if
the GCC waveform function R0(τ) has a wide main-lobe satisfying this condition, then the
divergent on-grid location estimation can be avoided.

The SRP-PHAT generates a sharp GCC to increase the TDOA resolution for cases
with reverberation or multiple sources. However, as shown in Figure 3, the band-pass
effect would bring a narrow main-lobe section and strong side-lobes to the GCC waveform
function. It can hardly satisfy the requirement Inequality(25), which is also shown by the
poor performance of SRP-PHAT in Figure 1f. Next, we will introduce a GCC waveform
refinement procedure for the band-pass SRP.

3.2. Robust SRP-Based Source Localization with Refined GCC Waveform

The condition in Inequality (25) is too strict for band-pass GCC situations with coarse
grid resolution and perceptible steering TDOA uncertainties. Some classical GCC methods
utilized low-pass filtering to meet a broader main-lobe requirement, but they are not
applicable for band-pass signals. In this section, the GCC is refined to obtain a suitable
waveform to modify the SRP function.

Consider a complex wavelet function ψe(τ, ΩC) = ue(τ)e−jΩC Fsτ , where ue(τ) ∈
L2(R) is an even symmetrical function. Applying ψe(τ, ΩC) as the filtering function on the
GCC-PHAT, the filtered output of cp can be denoted as

RCF
p (τ, ΩC) = RPHAT

p (τ) ∗ ψe(τ, ΩC), (26)

where RPHAT
p (τ) is the GCC-PHAT of cp.

When the real function ue(τ) has an effective support [−ΩB, ΩB] ⊂ [−π, π] in the
frequency domain, i.e.,∫ ∞

−∞
|Ue(Ω)|2dΩ−

∫ ΩB

−ΩB

|Ue(Ω)|2dΩ�
∫ ΩB

−ΩB

|Ue(Ω)|2dΩ, (27)

where Ue(Ω) is the Fourier Transform of ue(τ), and if the source is dominant in the
frequency band [ΩC −ΩB, ΩC + ΩB] ⊆ (0, π], then the approximation

RCF
p (τ, ΩC) =

1
2π

∫ ∞

−∞

Ypl (Ω)Y∗pm(Ω)

|Ypl (Ω)Y∗pm(Ω)|Ue(Ω−ΩC)ejΩFsτdΩ

≈ 1
2π

∫ ΩC+ΩB

ΩC−ΩB

Ypl (Ω)Y∗pm(Ω)

|Ypl (Ω)Y∗pm(Ω)|Ue(Ω−ΩC)ejΩFsτdΩ

≈ 1
2π

∫ ΩC+ΩB

ΩC−ΩB

e−jΩFsτ0
p (xs)Ue(Ω−ΩC)ejΩFsτdΩ

≈ 1
2π

∫ ∞

−∞
e−jΩFsτ0

p (xs)Ue(Ω−ΩC)ejΩFsτdΩ

= ue(τ − τ0
p(xs))ejΩC Fs(τ−τ0

p (xs))

(28)

exists. It can be observed that the approximate function carries the same envelope as ue(τ)
and extracts the TDOA information in [ΩC −ΩB, ΩC + ΩB].

Note that the RCF
p (τ, ΩC) is equal to the time domain approach of the sub-band GCC

defined in [30]. Since the main goal is to obtain an equivalent GCC to match the sufficient
condition in Inequality (25), a lightweight approach is to average the envelope of those
filtered GCCs of multiple sub-bands in high SNR conditions. According to the power
spectral density (PSD) of source signal or other prior knowledge, Nq valid sub-bands can
be selected with individual central frequency Ωq. The final refined GCC is given by

RWR
p (τ) =

1
Nq

∑
q

∣∣∣RCF
p (τ, Ωq)

∣∣∣ ≈ ∣∣∣ue(τ − τ0
p(xs))

∣∣∣,
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which has a specific waveform function R0(τ) ≈ |ue(τ)|. Furthermore, the improved
spatial function is calculated as

PWR(x) =
1

C2
M

C2
M

∑
p=1

RWR
p (τp(x)) =

1
C2

M Nq

C2
M

∑
p=1

Nq

∑
q=1

∣∣∣RCF
p (τp(x), Ωq)

∣∣∣. (29)

The selection ue(τ) has a significant influence on the refinement of GCC. Its envelope
|ue(τ)| provides the waveform function of refined GCCs. The suitable envelope of a
suitable ue(τ) should have no side-lobes, i.e., |ue(τ1)| > |ue(τ2)| ≥ 0 for all |τ1| < |τ2|.
Meanwhile, each Ue

(
Ω−Ωq

)
in the frequency domain serves as a band-pass filter, thus the

spectral distribution of Ue(Ω) should be concentrated to satisfy Inequality (27). Gaussian
function given by

ue(τ) = e−(Ωd Fsτ)2
(30)

which possesses the required properties both in the time domain and in the frequency
domain. Then the corresponding complex filtering function ψe(τ, ΩC) can be regarded as
a complex Morlet wavelet. According to (25), for a given grid distance dg and steering
TDOA uncertainty level ∆τmax, the parameter Ωd can be given by

Ωd = vs
√
− ln α/

(
Fsdg
√

N + vs∆τmax

)
, (31)

where N is the space dimension, α is the threshold value, which usually can be set as
α = 0.5. Taking Equation (31) into Inequality (27) and dividing (27) by its right side term,
it yields [∫ ∞

−∞
e−
(

Ω
2Ωd

)4

dΩ−
∫ ΩB

−ΩB

e−
(

Ω
2Ωd

)4

dΩ

]
/

(∫ ΩB

−ΩB

e−
(

Ω
2Ωd

)4

dΩ

)
� 1.

Thus, the relation of Ωd and ΩB can be obtained by the following equivalent equation:

2Ωd

[∫ ∞

0
e−Ω4

dΩ−
∫ ΩB

0
e−Ω4

dΩ
]

/
(∫ ΩB

0
e−Ω4

dΩ
)
= c,

where c is an extremely small number. Then, it can be obtained that

ΩB = 2ceΩd, (32)

where ce is the positive solution of the following equation:

xE 3
4

(
x4
)
=

4c
1 + c

Γ
(

5
4

)
,

where En(x) =
∫ +∞

1
e−xt

tn dt, (x > 0) and Γ(x) =
∫ +∞

0 tx−1e−1dt, (x > 0). When c is set as
0.001(−30 dB), ce in Equation (32) can be obtained as 2.89.

A simulation is performed to illustrate the effect of the GCC waveform refinement
procedure on on-grid SRP-based source localization. As shown in Figure 4, the dot-dashed
box shows the range of TDOA within the volume of the nearest gird xg, the dashed line
with “∆” shows the real TDOA, which should coincide with the peak of the GCC; the dotted
line with “∇” marks Rp

(
τp
(
xg
))

, corresponding to the nearest gird xg. The Rp
(
τp
(
xg
))

of
the traditional GCC-PHAT is small, thus leading to poor performance in grid searching.
In contrast, the proposed refining method generates a smooth waveform and high values
throughout the TDOA region indicated by the box in the figure.
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(a) (b)

Figure 4. An example of refined GCC from field data: (a) GCC-Phase Transform (PHAT); (b) re-
fined GCC.

The modified algorithm with the GCC refinement procedure is shown in Algorithm 1,
in which ue(τ) = e−(Ωd Fsτ)2

is taken as the target waveform function.

Algorithm 1: SRP with the waveform refinement procedure
Parameter Setting
(1) Set the maximum steering TDOA error ∆τmax = ∆τC

max + ∆τS
max, where the

sub-items ∆τC
max and ∆τS

max are determined by the wind and the synchronization
error of sensors, respectively.

(2) Set the grid distance dg and searching region V that meet the system
requirement. Then the searching grid set Xg is generated.

(3) Set the waveform function ue(τ) = e−(Ωd Fsτ)2
and α =0.5.

(4) Set c =0.001 and compute the bandwidth ΩB using Equation (32).
Band selecting
(1) Set up the passband [ΩL, ΩU ]
(2) Pick up Nq highest PSD bands of the source or divide the passband uniformly.
Source Localization
(1) Calculate the refinement waveform (WR)-SRP function PWR(x) by Equation
(29) at all x ∈ Xg.

(2) Estimate the source location x̂s by Equation (11).

4. Experiment Results and Discussion
4.1. Numerical Simulations

In this section, we use Monte Carlo simulations to analyze the efficiency of the pro-
posed SRP-based localization method (the SRP functional with the refinement waveform,
referred to as WR), compared with the traditional SRP functional with GCC-PHAT (PS), the
SRP functional—the envelope of GCC-PHAT (PES) that is designed for acoustic band-pass
signals [21], the modified-SRP (M-SRP) functional with GCC-PHAT (PM) [18] in which
grid resolution is considered, and the M-SRP functional with the envelope of GCC-PHAT
(PEM) in which both band-pass and grid resolution are considered.

In this setup, M = 8 sensors and one source are randomly deployed in a monitored
area of 200 m by 200 m . The propagation model is set to be the line-of-sight path with a
constant sound speed of 345 m/s. The input GCCs are generated by the waveform function
in Equation (21) with passband of [0.15π, 0.4π]. The steering TDOA uncertainty ∆τp(x)
uniformly distributes over [−∆τmax, ∆τmax], where ∆τmax is the maximal time uncertainty
dependent on the sound-propagation model error and the synchronization error.

We consider four different conditions in WASNs to test the algorithms: (a) a small
steering TDOA uncertainty and small grid distance (STSG) condition with ∆τmax = 0.1 ms,
dg = 0.1 m, (b) a large steering TDOA uncertainty and small grid distance (LTSG) condition
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with ∆τmax = 100 ms, dg = 0.1 m, (c) a small steering TDOA uncertainty and large grid
distance (STLG) condition with ∆τmax = 0.1 ms, dg = 10 m, (d) a large steering TDOA
uncertainty and large grid distance (LTLG) condition with ∆τmax = 100 ms or dg = 10 m.

The mean absolute error (MAE) E{‖x̂s − xs‖} of distance and the cumulative distribu-
tion function (CDF) of estimation errors of relative distance are calculated to evaluate the
accuracy and robustness of these algorithms, where the relative distance in the cumulative
distribution function (CDF) is normalized by the grid distance, i.e.,

F(eu) = P
{
‖x̂s − xs‖/dg ≤ eu

}
, (33)

where eu is the relative positioning error that is determined as the system requirement.
Specifically, the 95th percentile of the localization error in meters is computed as F−1(0.95) · dg.

The MAE and 95th percentile results are listed in Table 1. All the localization algo-
rithms can obtain the best estimation accuracy in the STSD condition in which the defocus
effect and undersampled effect are slight. When the steering TDOA uncertainty or the grid
distance increases, the MAE would increase. However, compared with the PS, PES, PM,
and PEM methods, the MAE in the WR has almost the smallest estimate error because all
these factors have been considered. The 95th percentile has similar results with the MAE,
which indicates that the proposed WR method has a stable localization performance in
outdoor conditions.

Table 1. Mean absolute error (MAE) and 95th percentile under different conditions in the simulation.

MAE (m)

Condition PS PES PM PEM WR
STSG 0.81 0.07 1.01 0.07 0.06
LTSG 44.53 29.27 52.04 36.37 13.16
STLG 51.90 15.39 42.97 4.07 4.46
LTLG 77.64 50.74 70.37 22.88 13.65

95th percentile (m)

Condition PS PES PM PEM WR
STSG 2.83 0.17 2.99 0.18 0.17
LTSG 123.13 82.61 128.10 118.61 33.43
STLG 147.04 58.81 124.39 7.11 9.24
LTLG 172.37 139.73 163.95 74.07 34.68

Figure 5a–d depict the CDF of each algorithm in the range eu ∈ [0.5, 100 m/dg] under
the four conditions. Specifically, the CDF curves will increase rapidly with the location error
in the fine condition, and then the estimate errors are the smallest for all the algorithms
in the STSG. The CDF curve will move down as the grid distance dg and steering TDOA
uncertainty ∆τmax increase, such as in the LTSG, STLG, and LTLG. Since the steering TDOA
uncertainty is not considered in PES and PEM, their descent range of CDF in the SDLG
is lower than that in the LDSG. Among these localization algorithms, the CDF of the WR
is the highest or very close to the highest (STLG), and the PEM method is better than the
PS, PES, and PM. The proposed WR method is very robust even though the condition
becomes abominable.



Sensors 2021, 21, 1591 13 of 20

200 400 600 800 1000

Location error/grid distance

0

0.2

0.4

0.6

0.8

1

C
u

m
u

la
ti

v
e 

d
is

tr
ib

u
ti

o
n

 f
u

n
ct

io
n

5 10
0

0.5

1

(a)

200 400 600 800 1000

Location error/grid distance

0

0.2

0.4

0.6

0.8

1

C
u

m
u

la
ti

v
e 

d
is

tr
ib

u
ti

o
n

 f
u

n
ct

io
n

(b)

2 4 6 8 10

Location error/grid distance

0

0.2

0.4

0.6

0.8

1

C
u

m
u

la
ti

v
e 

d
is

tr
ib

u
ti

o
n

 f
u

n
ct

io
n

(c)

2 4 6 8 10

Location error/grid distance

0

0.2

0.4

0.6

0.8

1

C
u

m
u

la
ti

v
e 

d
is

tr
ib

u
ti

o
n

 f
u

n
ct

io
n

(d)

Figure 5. Simulation comparison in the cumulative distribution function (CDF) of relative distance
error. (a) small steering time difference of arrival (TDOA) uncertainty and small grid distance
(STSG); (b) large steering TDOA uncertainty and small grid distance (LTSG); (c) small steering TDOA
uncertainty and large grid distance (STLG); (d) large steering TDOA uncertainty and large grid
distance (LTLG).

Furthermore, Figure 6 presents the MAE in four situations: (a) fixed small steering
TDOA uncertainty (ST) with ∆τmax= 0.1 ms, dg ranges from 0.1 m to 50 m; (b) fixed
large steering TDOA uncertainty level (LT) with ∆τmax= 100 ms, dg ranges from 0.1 m
to 50 m; (c) fixed small grid distance (SG) with dg= 0.1 m, ∆τmax range from 0.1 ms to
100 ms; (d) fixed large grid distance (LG) with dg= 10 m, ∆τmax range from 0.1 ms to
100 ms. The MAE increases with dg or ∆τmax significantly, and this indicates that the
steering TDOA uncertainty and grid distance have a severe influence on the performance
of source localization. In each situation, the PS and PM produce larger MAE than the other
algorithms when dg and ∆τmax are small because they are not applied to band-pass signals.
Since the scalable grid sampling and steering TDOA uncertainty are not considered in
the PES, it shows reliable performance only when dg ≤ 1 m and ∆τmax ≤ 1 ms. The PEM
considered both grid size and band-pass effect; thus, it achieves the best performance in
the small ∆τmax case. However, the MAE becomes worse when the influence caused by
the steering TDOA uncertainties is more significant than by the grid size. The WR obtains
the MAE close to the PEM when ∆τmax is small. Moreover, it is the smallest in all the other
situations. These results abundantly demonstrate its excellent robust performance.



Sensors 2021, 21, 1591 14 of 20

0.1 0.2 0.5 1 2 5 10 20 50

Grid distance (m)

0.1

1

5

10

20

50

100

M
e
a
n

 a
b

so
lu

te
 e

r
r
o
r
 (

m
)

PS

PES

PM

PEM

WR

(a)

0.1 0.2 0.5 1 2 5 10 20 50

Grid distance (m)

5

10

20

50

100

M
e
a
n

 a
b

so
lu

te
 e

r
r
o
r
 (

m
)

PS

PES

PM

PEM

WR

(b)

0.1 1 10 100

0.1

1

5

10

20

50

100

M
e
a
n

 a
b

so
lu

te
 e

r
r
o
r
 (

m
)

PS

PES

PM

PEM

WR

(c)

0.1 1 10 100
1

5

10

20

50

100

M
e
a
n

 a
b

so
lu

te
 e

r
r
o
r
 (

m
)

PS

PES

PM

PEM

WR

(d)

Figure 6. The mean absolute errors (MAEs) under different conditions. (a) small steering TDOA
uncertainty (ST) (∆τmax= 0.1 ms, dg ∈ [0.1 m,50 m]); (b) large steering TDOA uncertainty level (LT)
(∆τmax= 100 ms, dg ∈ [0.1 m,50 m]); (c) small grid distance (SG) (dg = 0.1 m, ∆τmax ∈ [0.1 ms,100 ms]);
(d) large grid distance (LG) (dg = 10 m, ∆τmax ∈(0.1 ms,100 ms)).

4.2. Field Experiment

In this experiment, seven nodes are distributed in a park, as shown in Figure 7a,b.
Each node consists of a microphone sensor, a Wi-Fi module, and a GPS module for self-
localization and time calibration. The monitoring area has the same 200 m × 200 m in
addition with a hillock. A portable speaker generates the sound signals at 12 positions
inside the area, such as the Gaussian signal (S-G), the whistle of vehicles (S-V) representing
an urban source, and birdsong (S-B) representing a field source. The temperature was
approximately 30 °C, and the wind speed is slower than 3 m/s. Therefore, in the proposed
method ∆τmax can be set to be 10 ms fully considering the self-localization error of the
sensors and the effect of wind.

The sampling frequency is 10,000 Hz and Figure 7c shows the PSDs of both the
background noise and received source signals, which are obtained with the Burg method
of 50 order number and 2048 FFT length. The PSDs of the source signals are collected at
about 30 m away from the speaker. Because the environmental noise is mainly distributed
in the frequency bands below 1500 Hz, the passband is set to be (1500 Hz, 3500 Hz) for
all sources. The estimated SNRs are shown in Figure 7d, and the SNRs of the full band
(0, 5000 Hz) and of the passband (1500 Hz, 3500 Hz) are plotted in solid lines and dashed
lines, respectively. For the three source types, the SNR is improved by 20 dB∼30 dB.
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Figure 7. Setup of the field experiment (a) Device. (b) Distribution. (c) Estimated power spectrum
density of sensor signal 30 m away from source. (d) Estimated signal to noise ratio.

The recorded data are divided into 1242 two-second audio frames. SRP algorithms
with full-band and band-pass cross-correlation (referred to as CSF and CSB) are added to
analyze the necessity of band-pass signals. The PS and PM are not included since they have
been proven unreliable in the simulation. Then the candidate SRP-based locators compared
in this sub-section include: (1) SRP with full-band GCC (CSF), (2) SRP with band-pass
GCC (CSB), (3) SRP with the envelope of band-pass GCC-PHAT (PES), (4) MSRP with the
envelope of band-pass GCC-PHAT (PEM) and (5) WR-SRP with band-pass GCC (WR). A
well known TDOA-based localization method [13] (referred to as TC) is also compared as a
reference in which the TDOAs are obtained by band-pass GCC-PHATs.

The MAE and the 95th percentile of the localization errors of the TC method and the
SRP-based methods with different grid distances (dg ∈ {0.1, 1, 10}m) are listed in Table 2.
Moreover the MAEs with grid distance dg ranging from 0.1 m to 50 m are presented in
Figure 8a. Figure 8b–d give the CDF curves at the three grid distances (dg ∈ {0.1, 1, 10}m).

Like the simulation, the MAEs increase and the CDF curves move down as the grid
distance increases. The MAE of the TC method is the highest because some sensor pairs
might produce very severe TDOA measurements in noisy acoustic environments. Its CDF
curve also shows that the solution is not stable. By comparing the result of CSF and CSB,
the band-pass GCC can significantly enhance the SNR and the localization performance.
The PES and PEM obtain more significant localization errors and lack robustness, which
indicates the influence of the steering TDOA uncertainty is very remarkable. The proposed
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WR method achieves the best estimation for all the grid distances, which thoroughly verifies
its effectiveness.

Table 2. Mean absolute error (MAE) and 95th percentile under different conditions in the field exper-
iment.

MAE (m)

Condition TC CSF CSB PES PEM WR

no grid 102.2 - - - - -
dg = 0.1 m - 79.2 23.5 7.1 18.7 1.4
dg = 1 m - 83.0 33.0 12.6 27.4 2.0
dg = 10 m - 93.3 66.0 42.6 46.1 7.2

95th percentile (m)

Condition TC CSF CSB PES PEM WR

no grid 322.8 - - - - -
dg = 0.1 m - 146.5 100.8 53.7 105.0 5.4
dg = 1 m - 150.4 113.1 91.6 105.1 6.0
dg = 10 m - 171.8 149.0 138.5 104.6 21.0
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Figure 8. Experiment results: (a) MAE comparison; (b) CDF of relative error at dg = 0.1 m; (c) CDF
of relative error at dg = 1 m; (d) CDF of relative error at dg = 10 m.

5. Conclusions

In this work, a novel and robust Steered Response Power (SRP)-based source local-
ization approach is proposed to localize the band-pass source in outdoor WASNs with
steering time delay uncertainty and coarser spatial grids. The robustness of on-grid source
localization is analyzed by a sufficient condition, in which the relation between GCC signal
waveform and on-grid localization error is demonstrated. A band-pass GCC refinement
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procedure is designed to meet the sufficient condition for enhancing the on-grid source
localization performance. The Monte Carlo simulation and field experiment show that the
proposed method has a robust performance in outdoor WASNs scenarios, compared with
some state-of-the-art SRP-based methods.
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Appendix A

Appendix A.1

Proposition A1. ifM(α, xs) ∩ X (dg, xo
g) 6= ∅ andM(α, xs) is a bounded set (i.e., there exists

a εM ∈ (0, ∞) such that ‖x1 − x2‖ ≤ εM for all x1, x2 ∈ M(α, xs)), then Inequality (18) will
be satisfied.

Proof of Proposition A1. For an arbitrary xo
g, ifM(α, xs) ∩ X (dg, xo

g) 6= ∅, there exists an
xa such that xa ∈ M(α, xs) ∩ X (dg, xo

g). Let x̂g
s be the estimated result from Equation (17).

Then FE(x̂
g
s , xs) ≥ FE(xa, xs) ≥ α. According to the definition ofM(α, xs), x̂g

s ∈ M(α, xs)
holds. Since M(α, xs) is a bounded set, ‖xa‖ < ∞. Then ‖xs − xa‖ is finite. Denote
εM ∈ (0, ∞) be a bound ofM(α, xs) and let ε = εM + ‖xs− xa‖ ∈ (0, ∞). Then ‖x̂g

s − xs‖ ≤
‖x̂g

s − xa‖+ ‖xa − xs‖ ≤ ε.

Appendix A.2

Proposition A2. If a closed ball BN(xo, r) such that r ≥ dg
√

N/2, then for all xo
g ∈ RN ,

BN(xo, r)
⋂X (dg, xo

g) 6= ∅ holds.

Proof of Proposition A2. Let BN(xo, r) be a closed ball with center xo and radius r. For an
arbitrary xo

g ∈ RN , the vector from xo to xo
g is denoted as ∆xo = xo − xo

g =
[
∆xo

1, . . . , ∆xo
N
]T .

Given dg ∈ R+, it deduces no
k = 〈

∆xo
k

dg
〉(k = 1,. . . ,N), where ”〈.〉” means the nearest integer.

https://1drv.ms/u/s!AskSoQGpB3VUgfIqsxtYhosVrGyzOg?e=pnfutC
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Therefore, we can find the grid point xn
g = xo

g +
[
no

1dg, . . . , no
Ndg

]T ∈ X (dg, xo
g), so that

xo − xn
g =

[
∆xo

1 − no
1dg, . . . , ∆xo

N − no
Ndg

]T . The distance yields

‖xn
g − xo‖ ≤

√√√√ N

∑
i=1

(
dg

2

)2

=

√
Ndg

2
.

Thus, if r ≥
√

Ndg/2, then xn
g ∈ BN(xo, r). Hence, X (dg, xo

g) ∩ BN(xo, r) 6= ∅
holds.

Appendix A.3

Proposition A3. If the waveform function R0(τ) such that TR(α) ≥ 2r/vs + ∆τmax, then
BN(xs, r) ⊂M(α, xs).

Proof of Proposition A3. Based on Equation (4), it derives that

|τp(x)− τp(xs)| = |ηm(x)− ηl(x)− ηm(xs) + ηl(xs)|
≤ |ηm(x)− ηm(xs)|+ |ηl(xs)− ηl(x)|

=
|‖x− zm‖ − ‖xs − zm‖|+ |‖x− zl‖ − ‖xs − zl‖|

vs

≤ 2‖x− xs‖/vs

Given the steering TDOA uncertainty level ∆τmax , for each x ∈ BN (xs, r), the steering
TDOA function τp(x) derives that

|τp(x)− τ0
p(xs)| = |τp(x)− τp(xs) + ∆τp(xs)|

≤ |τp(x)− τp(xs)|+ |∆τp(xs)|
≤ 2‖x− xs‖/vs + ∆τmax

≤ 2r/vs + ∆τmax.

Since TR(α) ≥ 2r/vs + ∆τmax, according Equation (22), it derives that

Rp(τp(x)) = R0(τp(x)− τ0
p(xs)) ≥ α

holds for all cp. According to Equation (15), then for every x ∈ BN (xs, r), the inequality

FE(x, xs) ≥ α

holds. According to Equation (19), BN(xs, r) ⊆M(α, xs) holds.

Appendix A.4

Proposition A4. If for all two different pairs of sensors ci = {il , im} , cj = {jl , jm} in the WASNs
satisfy that ∀τc

i ∈ [−‖zil − zim‖, ‖zil − zim‖]/vs and ∀τc
j ∈ [−‖zjl − zjm‖, ‖zjl − zjm‖]/vs,

Λi
(
τc

i , 0
)
* Λj

(
τc

j , 0
)

and Λi
(
τc

i , 0
)
+ Λj

(
τc

j , 0
)

, then

max
{‖x‖=+∞,‖xs‖<+∞}

{FE(x, xs)} ≤
C2

N am + (C2
M − C2

N)as

C2
M

holds.
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Proof of Proposition A4. For a spatial point x such that ‖x‖ = ∞, let K ∈ N be the total
number of sensor pairs cp such that x ∈ Λp

(
τ0

p(xs), TR(as)
)

. According to Equation (15)
and Inequality (22), it follows that

FE(x, xs) ≤
Kam + (CM − K)as

C2
M

. (A1)

If K ≥ C2
N + 1, there exists a collection of N linear independent sensor pairs from those(

C2
N + 1

)
sensor pairs. Without the loss of generality, denote this collection as {c1, . . . , cN}.

Then for each xd ∈
⋂N

p=1 Λp

(
τ0

p(xs), TR(as)
)

, there exists an equation set such that:


τ1(xd) = τc

1 ,
τ2(xd) = τc

2 ,
. . .

τN(xd) = τc
N ,

where τc
N ∈

[
τ0

p(xs)− TR(as), τ0
p(xs) + TR(as)

]
. According to the condition of the Proposi-

tion A4 and since the sensor pairs are all linear independent, these N equations are linear
independent. Then it holds that ‖xd‖ 6= ∞ which is in contradiction with ‖x‖ = ∞. Thus
K ≤ C2

N . According to Inequality (A1), it is easily obtain that FE(x, xs) ≤ (C2
N am + (C2

M −
C2

N)as)/C2
M.
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