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Abstract: This paper presents a framework for processing, modeling, and fusing underwater sensor
signals to provide a reliable perception for underwater localization in structured environments. Sub-
merged sensory information is often affected by diverse sources of uncertainty that can deteriorate
the positioning and tracking. By adopting uncertain modeling and multi-sensor fusion techniques,
the framework can maintain a coherent representation of the environment, filtering outliers, inconsis-
tencies in sequential observations, and useless information for positioning purposes. We evaluate
the framework using cameras and range sensors for modeling uncertain features that represent the
environment around the vehicle. We locate the underwater vehicle using a Sequential Monte Carlo
(SMC) method initialized from the GPS location obtained on the surface. The experimental results
show that the framework provides a reliable environment representation during the underwater
navigation to the localization system in real-world scenarios. Besides, they evaluate the improvement
of localization compared to the position estimation using reliable dead-reckoning systems.

Keywords: underwater vehicle frameworks; underwater localization; uncertainty modeling; multi-
sensor fusion; navigation; sonar

1. Introduction

Nowadays, underwater vehicles allow us access to restricted areas and traditionally
dangerous environments for human divers, such as deep seabed and under the ice. These
vehicles can perform many tasks in a broad spectrum of applications, such as inspection,
repair, and maintenance [1] in defense, oil and gas, and cable surveying, to name but a
few. Underwater vehicles incorporating a certain degree of autonomy usually rely on
proprioceptive sensors [2], such as an inertial navigation system (INS) integrated with
Doppler velocity logs (DVLs) [3]. This is because the submerged vehicle cannot detect
the electromagnetic signals provided by the global navigation satellite system (GNSS).
However, these proprioceptive sensors suffer from drift and biases, leading to growing
position uncertainty as the vehicle navigates. This fact makes unfeasible underwater
dead-reckoning navigation. For this reason, several works in the literature combine the
information of proprioceptive sensors to external positioning systems [4].

Acoustic positioning systems are the most used underwater external positioning ap-
proaches, from long baseline (LBL) [5–7] to sort baseline (SBL) [8] and ultrashort baseline
(USBL) [9,10]. However, these sensors suffer from multipath Doppler effects and thermo-
clines, which induce acoustic reflection effects. These underwater localization systems also
require the deployment of a network of sea-floor mounted baseline transponders, often
in the perimeter of the workplace area, for LBL or a support vessel with the transpon-
ders following the vehicle for SBL and USBL. We can also use optical or sonar sensors to
identify specific landmarks in the environment and use them to locate the underwater
vehicle using an a priori representation of the environment [11]. A significant advantage
of this approach is the cheap cost with a minimum modification of the workplace. The
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effectiveness of localization based on an a priori known representation of the environment
depends on the wealth of useful information. We should bear in mind that optical and
sonar sensors provide a short range of high-resolution uncertain sensing readings, mainly
due to the different factors affecting their uncertainty, such as multipath reflections and
poor underwater visibility. Therefore, the modeling, processing, and fusing of underwater
sensor readings are of paramount importance to build a reliable representation of the
submarine environment. The reliability of such a perception is a key for tracking and
location purposes.

Tracking and localization methods aim to fuse uncertain position measurements to
estimate the variable of interest with different assumptions about the representation of the
vehicle’s location. The techniques based on variants of the Kalman filter and Sequential
Monte Carlo (SMC) method are the most popular tracking and localization methods,
respectively. The Kalman filter is a recursive state estimator of a discrete-time controlled
process governed by a linear stochastic differential equation. It is the minimum variance
state estimator for linear dynamic systems with Gaussian noise and the minimum variance
linear state estimator for linear dynamic systems with non-Gaussian noise. We usually use
these methods for tracking the vehicle position in underwater scenarios. We can mention
the Extended Kalman filter (EKF) [12–14] and the unscented Kalman filter (UKF) [9,15].
However, we have to remark that these techniques are suboptimal state estimators for a
non-linear system. One of the main advantages of such tracking techniques is that they
represent the state and its uncertainty using a Gaussian distribution. This representation
facilitates the efficient implementation of the filter with a reduced computational cost.
However, they are not able to recover from divergences in the recursive estimation process.
The localization approaches based on the SMC method [16–18] are robust to uncertain and
incoherent information, allowing recovery from divergences in the state estimation process.
Nevertheless, they suffer from severe computational requirements. This fact is particularly
for large and complex domains, where we require numerous samples to represent complex
stochastic distributions of the state-space model.

In this paper, we present a framework for processing, modeling, and fusing under-
water sensor signals to obtain a reliable representation of the submarine environment
around the vehicle. We use such perceptions for localization purposes during underwater
navigation. We process the raw sensor readings to detect the features surrounding the
reference vehicle. This processing allows us to filter measures that do not match with
features. We also incorporate uncertainty representation to the detected features. We use
this information to fuse feature perceptions between them, which allows us to remove
redundant information and maintain a coherent perception in consecutive observations.
The underline idea is to consider the uncertainty of the perception to propagate it to the
localization method.

In particular, we present the feature extraction from buffered data of underwater
observations using optical and sonar sensors. We use a mechanism to verify these data
by coherent consecutive and redundant perceptions. We update the uncertainty of such
buffered perceptions induced by the movement of the vehicle and aging. We also remove
the observations from the buffer by aging and disparity. We propagate the uncertainty of
the sensor readings to the set of features surrounding the underwater vehicle. This set
of features provides a coherent local representation of the environment. We also update
and remove these features using the factors previously mentioned. The use of this local
buffer representation allows us to filter out inconsistent exteroceptive sensory information.
The reliability of this local representation is of paramount importance because incoherent
perceptions can deteriorate the position estimations. We use the extracted features from
noisy underwater sensors to feed the update stage of a particle filter localization method.
We have to remark that we can use the presented sensor modeling techniques with other
localization approaches.

We organize the manuscript as follows. Section 2 describes the underwater platform
used in this work. It details the sensory system incorporated into the vehicle and the de-
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scription of the hardware architecture. We devote Section 3 to the processing and modeling
of underwater sensor signals to provide a reliable representation during submarine navi-
gation. This representation includes information about the uncertainty, which is updated
using the factors that induce noise and imprecisions to such environment representation.
We propagate such uncertain information to a recursive state estimator. This fact allows
us to estimate both the location of the submerged vehicle and its uncertainty. Section 4
presents the modified sequential Monte Carlo (SMC) method as a recursive estimator to
obtain the variable of interest. Section 5 shows the experimental results evaluating the
proposed framework. We assess the processing, modeling, and sensor fusion of underwater
sensor signals using the localization method. Finally, section 6 presents the conclusion and
the future works of the proposal.

2. Underwater Platform

We use the commercial platform Sibiu Pro underwater vehicle from Nido Robotics
company incorporating new sensors and electronics for testing the developments presented
in this work. The Sibiu Pro standard platform is a fully operational underwater vehicle
operated with an umbilical cable. It is specially designed for the inspection and mainte-
nance of submerged systems. The propulsion system uses a Thrust Vector Control (TVC)
with three propellers that allow the vehicle to move/rotate in any direction combining
them. It also incorporates a 1080p camera with 1500 lumens lights to obtain a clear image in
low-light environments. Figure 1a shows the Sibiu Pro platform incorporating the sensory
system used in this work; the sonar scanner, the Doppler Velocity Logger (DVL), and
the GPS.

(a) (b)

Figure 1. (a) Modified Sibiu Pro underwater vehicle from Nido Robotics company, and (b) hardware architecture and
sensory system.

Figure 1b shows the hardware architecture and the sensory system incorporated
into the platform to increase the functionalities. As proprioceptive sensors, we include
a VectorNav VN-200 inertial navigation system and a Nortek DVL-1000. The former
combines MEMS inertial sensors and a high-sensitivity GNSS receiver to estimate position,
velocity, and orientation. It also allows us to obtain the GPS location on the surface in UTM
coordinates. The latter is an acoustic instrument that can estimate the velocity relative to
the bottom or to the surface. The combination of both systems provides accurate dead-
reckoning estimations obviating the GNSS receivers. As exteroceptive sensors, we include
a Blue Robotics Ping sonar (Ping 360) and an 8-megapixels Sony IMX219 Raspberry camera.
The former is a mechanical scanning sonar providing underwater acoustic imaging with
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50 m range, 300 m depth rating, and an open-source software interface using Ethernet.
The latter replaces the camera of the Sibiu Pro platform with higher specifications. We
install the software that communicates with propulsion, lights, and sensors in a Raspberry
Pi 3B, it using the interfaces indicated in Figure 1b. We currently perform the intensive
computation in an external CPU that communicates with the Raspberry Pi using TCP/UDP
protocols through the Ethernet of the umbilical cable.

3. Sensor Modeling

We present the processing and modeling of different underwater sensor signals to pro-
vide a reliable representation of the environment for underwater localization in structured
environments. The information provided by these underwater sensors is often affected
by diverse sources of uncertainty that can deteriorate the positioning and tracking. In
particular, we present the image processing of artificial markers using an 8-megapixels
Sony IMX219 Raspberry camera and the processing of the data provided by the mechanical
sonar scanner Ping360 of Blue Robotics. The processing of the feature detection techniques
aims to filter out noisy information and inconsistencies in sequential observations.

3.1. Visual Perception of Landmarks

We use a fiducial marker system specially appropriated for localization in structured
environments. In particular, we distribute Aruco markers [19,20] along the structured environ-
ment to take references during the navigation. The perception of such landmarks allows us to
improve the localization accuracy operating in the underwater environment. Following [19],
we adopt the process for marker detection from grayscale images consisting of image segmen-
tation, contour extracting and filtering, marker code extraction, and marker identification. The
image segmentation consists of the extraction of the most prominent contours in the grayscale
image. We use a local adaptive thresholding strategy based on the analysis of neighboring
pixels for their robustness to different lighting conditions. The contour extraction stage de-
tects polygons with four-vertices. We also discard four-vertex polygons contained in other
quadrilateral features leaving only the external ones. Then, the marker code extraction stage
removes the perspective projection computing the homography matrix. We then tessellate
the resulting pixels assigning zero or one value to each cell of a regular 11 × 11 grid. Finally,
the marker identification stage matches the tessellated image with the dictionary of markers
generated for the structured environment. We require four different identifiers for each Aruco
marker generated (one for each possible rotation).

Although the concept of marker detection is simple, there are several parameters to
control the detection process. Besides, these parameters are strongly dependent on the
image resolution. For these reasons, we have developed configuration tools to perform the
calibration and configuration while the vehicle is operating underwater. Figure 2 shows
an example of the vision processing for detecting the Aruco markers and the calibration
tools used to facilitate the configuration. Figure 2a shows an image captured by the on-
board camera of the underwater vehicle operating in a swimming pool with landmarks
distributed throughout its walls. These landmarks consist of 11 × 11 Aruco markers
printed at 12 × 12 cm with a plastic film covering to make them waterproof. The image
resolution is 480× 360, which allows us to process 15 frames per second from the computer
operating the vehicle. Figure 2b shows the interface for the on-line configuration of the
parameters of the processing. This tool allows us to modify the configuration of Aruco
markers with wrong identification as the vehicle operates. The proper tunning of marker
detection increases the robustness of the perception, which is of paramount importance
because a lack of it could degrade the localization process.
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(a) (b)

(c) (d) (e)

Figure 2. (a) Aruco marker with ID 2 detected by the on-board camera and (b) the on-line parameter configuration of maker
recognition process with the (c) grayscale image, (d) binarized image, and (e) polygon extraction stage with marker identification.

Figure 2c shows the grayscale image used for detecting the Aruco markers. We obtain
the grayscale image using the algorithm indicated in the configuration tool shown in
Figure 2b. Figure 2d shows the resulting grayscale image binarization using the adaptive
mean thresholding technique indicated in the configuration tool. We configure the block
size in pixels (Binariz. Block Size) to apply the adaptive thresholding. We can detect
numerous polygons in the walls of the swimming pool because they have mosaic tiles.
We only extract the polygons with an area higher than the parameter configured on-line.
We indicate this parameter as (Min. Polygon Area) in the configuration tool. Another
filter consists of only considering quadrilateral polygons with edge length higher than the
parameter (Min. Quad Side) configured on-line. Figure 2e shows the polygon filtering and
rejection, where the yellow square indicates the area to remove the perspective projection
computing the homography matrix. We depict the projected and binarized image in the
upper left of the configuration tool of Figure 2b, which is tessellated into a regular grid
to compare it with the dictionary of Aruco markers. We then perform the matching with
the possible patterns in the four possible orientations. Once the landmark is detected, we
calculate the area in pixels squared of the perceived Aruco marker because we use this
magnitude to estimate the distance to the perception.

The navigation system requires the distance estimation from the camera to the land-
marks. The problem is not straightforward since the marker orientation can be any, as
seen from the robot camera. Moreover, measuring the side of the detected polygon is not
robust enough for distance triangulation. Lastly, but no less important, the camera lens
distortion is quite appreciable, which is especially critical in non-centered perceptions. We
solve these problems using a non-linear model to estimate the distance to the marker based
on a measurable parameter of the detected Aruco model: the square root of the number of
pixels contained in the polygon of the marker detection. A key issue is the calibration of the
model. We proceed with a measurement process in which we measure this size reference to
the marker positioned at different known distances. Finally, we produce an interpolation
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function that provides a distance estimation from the computed size reference. This process
performs quite well if the marker is in the center of the image. Otherwise, the distance is
undervalued. We calibrate the distance estimation using the following expression

Distance(x) = a1xb1 , with
{

a1 = 28.2239
b1 = −0.903

(1)

where x is the size reference obtained from the square root of the number of pixels contained
in the polygon of the marker detection. We adjust a1 and b1 to obtain a coefficient of
determination as close as possible to one (R2 = 1) in the exponential fitting using least
squares. Figure 3a shows the setup for the distance calibration process. Figure 3b shows
the distance calibration using the non-linear interpolation function. We calibrate the
uncertainty of distance estimation depending on the slope of the distance calibration
interpolation function. We can observe a steeper slope with longer distance estimation.

(a) (b)

Figure 3. (a) Distance calibration of Aruco markers and (b) the distance calibration interpolation function.

Figure 4 summarizes the flowchart of the procedure for detecting the Aruco markers
surrounding the underwater vehicle. The algorithm for detecting the landmarks operates
with grayscale images. The first stage consists of the image binarization using an adaptive
thresholding technique. We then extract the four-vertices polygons filtering the ones that
do not satisfy some geometrical requirements. We detail the filtering criteria and the
parameters for their configuration above. We remove the perspective projection of the
candidate four-vertices polygons computing the homography matrix. We tessellate the
resulting image using a regular grid to match such a resulting image and the reference
Aruco markers in the possible orientations. Finally, we use the square area in pixels of
the perceived landmark to estimate the distance, whereas we calculate the heading using
the position of the detected marker in the image. This processing provides us the set of
perceptions from each camera image.

Grayscale
image

Grayscale
image

Image segmentation
(Adaptive thresholding)

Image segmentation
(Adaptive thresholding)

Contour extraction
and filtering

Contour extraction
and filtering

Marker code
extraction

Marker code
extraction

Marker
identification

Marker
identification

Distance and
heading estimation

Distance and
heading estimationSet of markers

Figure 4. Flowchart of the procedure for detecting the Aruco markers surrounding the underwater vehicle.
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3.2. Feature Extraction Using Sonar Scanner Readings

The information received from the mechanical scanning sonar is innate noisy because
these active acoustic devices estimate the distance using the time-of-flight principle. Echoes
from sonar are affected by different sources of uncertainty that can seriously degrade the
distance estimation accuracy. Some examples are the wide opening angle of acoustic signals
presented by most sonar sensors and the multi-path reflections. One solution to filter out
noisy distance estimation readings is to check the coherence of data received at different
times. We deal with this problem by building the spatio-temporal relations between the
sonar echoes. Maintaining the sonar buffer implies a series of operations:

• Aging. We remove from the buffer those echoes that are older than a given amount
of time. This filter is of paramount importance because the uncertainty of the local
position of the sonar echoes grows unbounded with time.

• Motion. Whenever the vehicle moves, all the echoes stored in the buffer have to be
translated and rotated correspondingly. This update is key to maintaining a coherent
representation of the environment.

• Blanking. When a new scan is available, remove previous echoes that lie inside the
scanning zone. The application of this filter is crucial for eliminating noise from the
sonar buffer.

Figure 5a shows the underwater vehicle equipped with a mechanical scanning sonar
at the top operating at a circular swimming pool. Figure 5b depicts the spatio-temporal
buffer of sonar echoes. The distance estimation readings that lie along the green thick radial
line are incorporated into the buffer while the underwater vehicle moves, performing both
translations and rotations. The rotation velocity is computed from the heading readings,
while we estimate the translation velocity from the inertial and DVL sensors. Echoes with
the most amplitude are represented in red, while others in different shades of yellow. We
can notice a static object close to the robot, about its left rear part, appears to move in the
vehicle-centered coordinate space.

We can view the sonar buffer as a vehicle-centered consistent local map along time,
at least up to a certain degree depending on how the vehicle’s velocity is measured or
estimated. We can apply multiple feature extraction algorithms when a map is available.
The next sections present the techniques adopted to perceive circumference arcs and
line segments in structured environments. The perception of such features is useful for
improving the accuracy of the navigation system.

(a) (b) (c)

Figure 5. (a) Underwater vehicle with mechanical scanning sonar at the top, (b) local buffer of data received from the sensor,
and (c) local buffer after the rotation and displacement of the underwater vehicle.

3.2.1. Circular Model-Fitting

The recognition of circumference arcs is useful when the underwater vehicle operates
in a structured environment with these features. We can mention circular swimming pools,
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fish farms, and tanks, to name but a few. The recognition of these features provides us
information that allows us to locate the vehicle to the distance estimated from the center
of the circumference with a known location in the workplace. We can adopt different
alternatives for the perception of circumference arcs [21] from the sonar scanner reading.
We can mention algebraic-fitting methods and geometric-fitting techniques. The former is
quite fast, but they lack robustness in the presence of outliers. The latter are iterative and
tend to be robust in the presence of outliers. Since the sonar scanner readings tend to be
quite noisy, algebraic fitting techniques produce very few fittings, always when the robot
is static, and thus we conclude that geometric fitting methods seem more appropriate for
circumference arc extraction. We follow the circle-fitting approach [22], which is detailed
as follows.

Let P = { ( xi , yi ) }i be a set of points with a distribution approximately circular. We
can use the following circle equation to model their position

( x − a )2 + ( y − b )2 = R2 , (2)

where ( a , b ) is the center of the circle and R its radius. Each point ( xi , yi ) in our set
P will approximately satisfy this equation. We can rewrite this approximate equation
factorizing in terms that contain the model parameters {a, b, R} , and terms that contain
the position of each point ( xi , yi ) as follows

( xi − a )2 + ( yi − b )2 ≈ R2 =⇒

=⇒ x2
i + a2 − 2 a xi + y2

i + b2 − 2 b yi ≈ R2 =⇒

=⇒
(

xi yi 1
)  2 a

2 b
R2 − a2 − b2

 ≈ x2
i + y2

i .

(3)

We can then transform our model-fitting problem into a linear least-squares problem.
Note that, since we have three unknown variables (a, b, and R), we need three (or more) ne
equations to obtain a determined (or overdetermined) system of linear equations; at least
three points to determine the parameters of our model. Then, building the matrices

A =


x1 y1 1
x2 y2 1
...

...
...

xne yne 1

 , (4)

b =


x2

1 + y2
1

x2
2 + y2

2
...

x2
ne + y2

ne

 , (5)

we can compute the matrix X that minimizes the distance ‖A X − b ‖2 through

X = (AT A )−1 AT b . (6)

Finally, we can obtain the model parameters using the following relations:

a =
X1

2
, b =

X2

2
, R =

√
X3 + a2 + b2 , (7)

where { X1, X2, X3 } is the solution of Equation (6).
However, we often obtain measurements that do not fit with a distribution approx-

imately circular. We should detect and filter out these measures to achieve a robust
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detection of circumference arcs in the structured environment. The random sample con-
sensus (RANSAC) method [23] and its variants are fundamental tools for outlier rejection.
In particular, we rely on the RANSAC variant maximum likelihood estimation sample
and consensus method MLESAC [24] to design the outlier rejection method in the circu-
lar model-fitting approach. For this purpose, we define the cost function for the model
parameters a, b, and R as follows:

ei =
∣∣∣ R −

√
(xi − a)2 + (yi − b)2

∣∣∣ , (8)

ρ( ei ) =

{
ei if ei < T ,
T if ei ≥ T ,

(9)

C
(

a , b , R
)

= ∑
i

ρ( ei ) . (10)

Algorithm 1 presents the circular model-fitting with outlier rejection. The algorithm
requires the set of P points received from the mechanical scanning sonar (Blue Robotics
Ping 360), the threshold T used to compute the cost function, the probability of not finding
a correct model, and the proportion of inliers in data. The output of the process is the best
model parameters for a, b, and R.

Figure 6a shows an example of a fit to a circle with noisy data using Algorithm 1. We
represent the set of points P to fit using black crosses. The continuous green circumference
is the target fit with the center at the green cross point. We show the best circle-fitting
using three points with a red dotted circle with the center at the red cross point. Finally,
we depict the best fit using all the inliers with a dashed blue circumference with the center
at the blue cross point. We can observe that the best fit using all the inliers is closer to the
target solution than the fit using three points. Figure 6b shows the resulting circumference
using the mechanical scanning sonar readings while the underwater vehicle navigates in
the swimming pool.

-10 -5 0 5 10

-5

0

5

10

(a) (b)

Figure 6. (a) Example of circle-fitting using noisy data, and (b) the fitted circumference using data received from the
mechanical scanning sonar in a swimming pool with Algorithm 1.
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Algorithm 1 Circular model-fitting with outlier rejection

Input:

points . Set of points to be fitted

T . Threshold used to compute the cost function

FAILURE_PROBABILITY . Probability of not finding a correct model

INLIER_PROPORTION . Proportion of inliers in data

Output:

best2_a , best2_b , best2_R . Best model parameters found

Initialization

1: best_C ← 1012 . Initialize to a large number

2: N ← log(FAILURE_PROBABILITY)/ log(1− INLIER_PROPORTION3)

Find model

3: for i = 1 to N do

Find possible model

4: Take 3 points randomly

5: Build matrices A and b using equations (4) and (5) and the 3 sampled points

6: Find model parameters a , b , R using equations (6) and (7)

7: Compute the cost function C using equations (8) to (10)

If this possible model is better than the previous one, we keep it

8: if ( C < best_C ) then

9: best_C ← C

10: best_a , best_b , best_R ← a , b , R

11: end if

12: end for

Refine the model using inliers

13: Select the points ( xi , yi ) such that ei < T using (8)

14: Build matrices A and b using equations (4) and (5) and the selected inliers

15: Find model parameters best2_a , best2_b , best2_R using equations (6) to (7)

16: return best2_a , best2_b , best2_R

3.2.2. Line Segment Model-Fitting

The perception of line segments in structured environments is a more complicated
task than the circle fitting presented above. This fact is because we can obtain several
features of this type from the sonar scanning sensor. We have to deal with the uncertainty
of such perceptions to maintain a coherent representation of the environment surrounding
the underwater vehicle. We adopt a fuzzy segment framework [25,26] to represent and deal
with the location uncertainty using line segments. These features include a representation
of their uncertain location. The fuzzy segment framework represents the uncertainty
using a fuzzy set whose degree of membership reflects how much the location could
be occupied. This fuzzy segment framework provides power tools, based on similarity
interpretation of fuzzy logic [27], to match the degree of similarity of information expressed
as fuzzy segments. We use such tools to fuse and manage formally the uncertainty of the
observations represented by fuzzy sets [28].

Let a line segment S be defined as a tuple as
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S = {θ, ρ, (xi, yi), (xj, yj), k}, (11)

where θ and ρ are the parameters of the line equation xcos(θ) + ysin(θ) = ρ obtained by
fitting k collinear range sensor observations, and (xi, yi) and (xj, yj) are the end-points of
the line segment calculated as the projection of the sensor observations on the fitted line
using the k collinear sensor observations.

We need to extract the set of k collinear sensor scanner readings to perform the
eigenvector line fitting mentioned above. We have adopted an optimized algorithm that
only split sets from consecutive reading. The main reason is the performance constraints of
our application. In particular, we use the Iterative End Point Fit (IEPF) algorithm [29,30],
which requires the initial definition of the minimum number of points kmin of a set of
collinear observations and the maximum distance ρmax of the scatter sensor readings to
the fitted line segment. We have to remark that this algorithm requires a set of ordered
observations. For a set s of continuous sensor scanner readings, the algorithm is as follows:

1. Initialization. We initialize the algorithm with a set s containing all the ordered observa-
tions.

2. Step 1. If the set s is composed of more than kmin observations, draw a line segment
between the first and last data (end-points), otherwise reject the set s.

3. Step 2. Detect the point P with maximum distance ρP to the fitted line segment
between the end-points.

4. Step 3. If ρP ≥ ρmax splits the set s at P into two subsets s1 and s2 and goes to Step 1
for both subsets. Otherwise, the set s is a candidate to be a line segment.

5. Stopping criteria. We finalize the search when all the subsets are a candidate to be
a line segment satisfying the condition ρP ≤ ρmax or are rejected because they have
fewer than kmin observations.

Figure 7 shows an example of the Iterative End Point Fit recursive (IEPF) method.
We can observe that the algorithm operates with a set s of k continuous sensor scanner
readings. The initial step consists of drawing a line segment (represented as a red dotted
line) between the end-points of the initial set s. Since there are numerous sensor readings
further away from the confidence interval defined by the ρmax parameter (represented
as a blue dotted line), the initial set is divided by the point P at the furthest distance ρP
from the line segment between end-points (red dotted line) into two subsets. If all the
sensor readings of the corresponding set (with more than kmin observations) are inside the
confidence interval, we consider such a set of sensor readings as a candidate to be fitted as
a line segment. We repeat this procedure until there is not any set candidate to form a line
segment. We have to remark that this approach does not provide a set of line segments but
groups of sensor readings candidate to be fitted as line-segments.
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Figure 7. Iterative End Point Fit (IEPF) algorithm: (a) initial splitting process considering k points, (b,c) recursive split, and
(d) stopping criterion.
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We represent the uncertainty on the location of the line segment S using the trapezoidal
fuzzy set tρ. This set represents the uncertainty in the ρ parameter. Different factors can
affect the location uncertainty of the ρ parameter, such as the line segment fitting from
scattering sonar scanner readings, the aging of the fuzzy segment building, and the motion
of the underwater vehicle, to name but a few. Assuming the independence of all these
factors, we can define the trapezoidal fuzzy set tρ in the Ω domain as the addition of the
representation of all the sources of uncertainty that affect the ρ parameter as

tpρ = tp1
ρ ⊕ tp2

ρ ⊕ ...⊕ tpn
ρ = (−ρ0,−ρ1, ρ1, ρ0), (12)

where tpi
ρ with i = 1, . . . , n are the trapezoidal fuzzy sets representing the i factors that

influence the ρ parameter, ⊕ is the bounded sum operator, (−ρ0,ρ0) is the α-cut in the fuzzy
membership µ = 0, and (−ρ1,ρ1) is the α-cut in fuzzy membership µ = 1. These α-cuts
define the regions within fuzzy segments are considered within the degree of similarity α.
We can use this criterion to address matching problems taking into account the location
uncertainty. Figure 8 shows the scatter points fitted to a fuzzy segment with the trapezoidal
fuzzy set tpρ, defined as an ordered tuple (−ρ0,−ρ1, ρ1, ρ0), including the different factors
affecting the location uncertainty.

0
a

1

W

m

a-cut

r0

r1

Figure 8. Scatter of points and fuzzy segment representing its uncertainty with a trapezoidal fuzzy set.

Thus, we define a fuzzy segment as a line segment S including its associated location
uncertainty represented as a trapezoidal fuzzy set tρ as

FS = {θ, ρ, tpρ, (xi, yi), (xj, yj), k}, (13)

where tpρ is the trapezoidal fuzzy set representing the uncertainty in ρ. We build this fuzzy
set from the sonar scanner readings candidate to be fitted as a line segment. In particular,
we assign the interval with confidence level 0.68 to the α-cut in µ = 1, and the interval with
a confidence level of 0.95 to the α-cut in µ = 0. These intervals are the values of one and
two standard deviations for a Gaussian distribution of the observations. The confidence
interval for the Gaussian distribution with known variance is given by ρ± |tk−1;1− α

2
| · σρ,
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where tk−1;1− α
2

is the value of a t-student distribution with k− 1 degrees of freedom with
probability α

2 and σρ is the standard deviation of the fitted ρ parameter. Thus, the fuzzy set
that represents the uncertainty of the fitted line is given by

tpρ = (−|t0.025| · σρ,−|t0.16| · σρ, |t0.16| · σρ, |t0.025| · σρ). (14)

We can calculate the uncertainty in the θ parameter of the line equation xcos(θ) +
ysin(θ) = ρ obtained by fitting k collinear range sensor observations as

tpθ = (θ − atan(
2ρ0

l
), θ − atan(

2ρ1

l
), θ + atan(

2ρ1

l
), θ + atan(

2ρ0

l
)), (15)

where l is line segment length.
We can maintain a coherent representation surrounding the underwater vehicle with

the fuzzy segments using a similar approach to the Spatio-temporal relations between
the different sonar echoes presented above. We can update the location and uncertainty
of such features using the time elapsed from their generation. We can also update their
position using the motion estimation of the underwater vehicle. The bounded sum operator
⊕ allows us to fuse the uncertainty of the fuzzy segment tpρ with the motion estimation
and the elapsed time from the generation of the features representing the world around
the vehicle.

We can also fuse the detection of new features to the local perception representing the
environment surrounding the underwater vehicle using the degree of similarity between
fuzzy segments. We merge similar features by detecting their collinearity and fusing their
uncertainty. Two segments FSa and FSb are considered collinear if they satisfy

f (tpθa , tpθb) ≥ 0.5 ∧ f (tpρa , tpρb) ≥ 0.5, (16)

where f (x, y) function is the matching degree between two trapezoidal fuzzy sets defined
in the same universe Ω as follows

f (x, y) =
(Ax + Ay) · Axy

2 · Ax · Ay
, (17)

where Ax and Ay denote the area enclosed by the fuzzy sets x and y, respectively, and Axy
denotes the area of the intersection of x and y.

We combine new fuzzy segment perceptions with the ones contained in the buffer
representing the environment around the underwater vehicle that satisfies the collinear
condition (16). This procedure allows us to enrich the local representation and remove
redundant information, which reduces the uncertainty of old and imprecise feature repre-
sentations. The combined fuzzy segment FSr from two collinear ones is calculated by

FSr = {θr, ρr, tpρr , (xir, yir), (xjr, yjr), ka + kb}, (18)

where (xir,yir) and (xjr,yjr) are the end-point perpendicular projections of (xia,yia), (xja,yja),
(xib,yib), and (xjb,yjb) on the line with (θr,ρr) parameters calculated as

θr =
kaθa + kbθb

ka + kb
,

ρr =
kaρa + kbρb

ka + kb
,

tpρr = (2− f (tpρa , tpρb))
katpρa ⊕ kbtpρb

ka + kb
,

where tpρr is the trapezoidal fuzzy set representing the uncertainty of the fusedfuzzy segment.
Figure 9a shows an example of the buffer data using the range observations from the

mechanical sonar scanner sensor. We extract the set of candidate points to be considered
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a line segment using the IEPF method. We fit these candidates to form a line using
an eigenvector line fitting method. We represent these line segments using green lines.
Figure 9b depicts the local representation of the environment around the vehicle using
fuzzy segments. We can observe that such features include the location uncertainty using the
corresponding trapezoidal fuzzy set tpρ. This local representation using fuzzy segments
allows us to add and remove perceptions using a formal model, maintaining a coherent
representation around the vehicle.

(a) (b)

Figure 9. (a) Local buffer of sonar scanner data with line segment fitting and (b) fuzzy segment representation around the
underwater vehicle.

Figure 10 shows the flowchart of the procedure for building and maintaining a local
representation of the environment using fuzzy segments. We group the sonar scanner
readings into n sets with {k1, . . . , kn} observations using the IEPF method described above.
We then fit such groups of consecutive sensor readings using some eigenvector line fitting
method to obtain the set of line segments {S1, . . . , Sn}. We use the confidence interval of
the line-fitting algorithm to build the trapezoidal fuzzy sets {tpρ1, . . . , tpρn} representing
the uncertainty of the fuzzy segment with (14). Once we have calculated the set of n
fuzzy segments detected from the observations, they are fused with the set of m fuzzy
segments representing the environment around the underwater vehicle using the (16)
criteria, or they are incorporated into such a representation. We update periodically the set
of fuzzy segments {LFS1, . . . , LFSm} representing the local environment around the vehicle
introducing the different sources of uncertainty affecting them. We model the uncertainty
of the vehicle motion and the aging of the representation using trapezoidal fuzzy sets.
We incorporate these sources of uncertainty into the fuzzy segment representation using
the bounded sum operator of (12). We also remove these uncertain features when the
area enclosed by the trapezoidal fuzzy set tpρ of the fuzzy segment is higher than a
prescribed threshold.
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Figure 10. Flowchart of the procedure for building the fuzzy segment representation surrounding the underwater vehicle.

4. Particle Filter

We detail the flowchart of the navigation system in Figure 11. The localization system
makes use of the GPS location provided by the Vectornav VN-200 navigation system. This
device combines an inertial solid-state microelectromechanical system (MEMS) with a
high-sensitivity GNSS receiver using Kalman filtering algorithms to estimate the position,
velocity, and orientation. While the vehicle is on the surface, the navigation system makes
use of the GPS. When the vehicle detects that it dives, by using the barometer of the
standard Sibiu Pro platform, the last known and high-quality GPS position (using the
HDOP Horizontal Dilution of Precision) is stored as a reference. The GNSS receiver still
provides locations at low depths, but the position estimation degrades severely. Thus,
we ignore GPS information when the barometer depth is higher than a threshold thr, for
instance, thirty centimeters for the standard Sibiu Pro platform. We initialize the structured
representation of the environment where the vehicle operates using a reference to the UTM
(Universal Transverse Mercator) location where the vehicle submerged. From here on, the
underwater localization method works in local metric coordinates. We convert these local
estimations to global positions using the reference UTM position and the local coordinates.
We can then convert the resulting UTM positions to latitude/longitude coordinates for
visualization purposes. When the vehicle emerges again, we switch to GPS positions.

When the vehicle is operating submerged, we use a particle filter or Sequential Monte
Carlo (SMC) method to fuse the proprioceptive and exteroceptive sensory information
to estimate the location. SMC method estimates a variable of interest, typically with
non-Gaussian and potentially multi-modal Probability Density Function (PDF) [31], in
dynamical systems with partial observations and random perturbations, both in the mea-
surements and in the dynamical system. The technique uses a set of particles (also called
samples), with a likelihood weight representing the probability of that particle being sam-
pled from the PDF, to represent the stochastic distributions of the state-space model and
the noisy and partial observations. We can obtain an estimate of the variable of interest
by the weighted sum of all the samples. The particle filter is recursive in nature operating
in two phases: prediction and update. The former modifies the particles according to the
acting model (prediction stage) and also incorporates random noise on the variable of
interest. The latter re-evaluate the weight of samples wi using the sensory information
available (update stage). We evaluate the particles periodically to remove particles with
small weights. These samples have a low probability of being a sample from the PDF. This
procedure is called resampling. Resampling techniques aim to avoid weight disparity, and
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thus the particles with negligible weight are replaced by new particles in the proximity of
samples with higher weights.

 VN-200

GNSS receiversGNSS receivers INSINS

Kalman
filtering
Kalman
filtering

 Barometer
depth>thr

xk ,σ k

 Particle filter
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Figure 11. Flowchart of the navigation system.

Let xk = [pk, θk]T be the state-space at the time k of the submerged underwater
vehicle, where pk = (xk, yk) is the 2D location and θk is the vehicle’s orientation. We
represent the 2D location pk uncertainty of each particle by a 2D Gaussian function, whose
distribution follows a multivariate normal distribution φ(pk) ∼ N2(pk, σ) with σ the
correlation coefficient between (xk, yk) variables. This representation allows us to model
the location uncertainty of the perceptions and then merges it with the set of particles
representing the probability density function of the variable of interest [32]. It also allows
us to evaluate the probability of the particles representing the PDF, which is used to reject
them at the resampling stage.

Thus, we represent the location of the underwater vehicle (variable of interest) as a
set of n particles sk

i = [xk
i ; wk

i ; φk
i : i = 1, . . . , n], where: the index i denotes the sample

(copies of the variable of interest), the weight wi defines the contribution of the particle i
to the overall estimate of the variable of interest, and the density function φi represents
the 2D location uncertainty (xk, yk) of each particle i to the estimation of the location
uncertainty. Algorithm 2 presents a pseudo-code of the recursive estimation process of the
state-space using the particle filter. When the vehicle submerges, we set the time step k to
zero and initialize the set sk of n particles considering the last location p and uncertainty
provided by the Vectornav VN-200 navigation system using the GNSS receiver and the
inertial navigation system (INS). In particular, we initialize the location uncertainty with
correlation coefficient σ to all the samples, which are randomly distributed around the
position estimation p of GPS depending on the accuracy of such an estimation.

Then, the localization algorithm estimates the variable of interest xk recursively by the
prediction and update stages. The former incorporates the motion estimation α, provided by
the INS and DVL devices, to all the particles representing the location belief. We also include
a certain degree of random noise configured by a normal distribution with variance αu to
spread the particles. The spreading of particles contributes to a better representation of the
vehicle belief since the resampling duplicates samples with high weight. The latter updates
the weights wk of the set of particles sk

i representing the vehicle belief by the product of the
2D Gaussian distribution of the features detected γ and the φk distribution of each sample.
We obtain such a weight from the resulting likelihood of the product operation between



Sensors 2021, 21, 1549 17 of 23

two 2D Gaussians representing the location uncertainty. This approach allows us to merge
the uncertainty of both sources: the sample and the perceived feature. The result of the
product operation between two Gaussian distributions has a low likelihood for distributions
representing different locations. Since these samples with low weight have a low probability
of being a sample from the vehicle belief, we remove them from duplicating samples with
high weight. These redundant particles have a different location when we apply the random
noise of the prediction stage. There are different criteria to perform the resampling [33], we
adopt the effective number of particles (ENP) as defined in Algorithm 2. When this number
is lower than the product β · n, with β tuned for the particular application and n the number
of samples, we perform the resampling of the set of particles. We depict the flowchart of all
these steps in Figure 11. Finally, the particle filter approach allows us to estimate a position
xk and its location uncertainty σk from the vehicle belief by the weighted average of the
samples and the correlation coefficient, respectively.

Algorithm 2 Particle filtering for localization.

Initialization

1: p0
i ← N2(p, σ) {i = 1, . . . , n} . Randomly initialization of particles from location p

2: φ0
i ← N2(p0

i , σ) {i = 1, . . . , n} . Initialization of distribution from the position p0
i

3: s0
i ← [x0

i ; w0
i ; φ0

i : i = 1, . . . , n] . Initialization of samples within the uncertain location

Recursive loop for localization

4: while true do

5: k++

6: ENP = 1
∑n

i=1 log2(wk
i )

. Effective number of particles

7: if ENP < β · n then . Condition of particle population depletion (0 ≤ β ≤ 1 )

8: sk ← Resampling(wk)

9: end if

10: Prediction stage

11: xk+1 ← h(xk, α) . Include action α (dead-reckoning displacements)

12: xk+1 ← xk+1 + α · N (0, αu) . Include ramdom noise to the variable of interest

13: Update stage

14: wk+1 = wk · g(γ, xk
j ) . Update with sensing γ

15: Normalization of the weights

16: for j← 1 to n do

17: wk+1
j =

wk+1
j

∑n
i=1 wk+1

i

18: end for

19: end while

5. Experimental Results

We have conducted experiments in two different scenarios to evaluate the performance
and accuracy of the proposed methods. One set of experiments have been carried on in
a controlled environment, a circular swimming pool, while the other set of experiments
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is carried on at sea, in a harbor dock. The former scenario allows us to evaluate the
sensor modeling and localization in a structured environment. We have an external vision
system that tracks the position of the vehicle in the controlled environment. This location
estimation serves as a ground-truth and allows us to correlate the position estimates using
the navigation system and the ground-truth. The latter scenario presents the navigation
system operating in a more complex scenario without any system to estimate the ground-
truth. In this case, we evaluate the accuracy of the system comparing the last estimated
underwater position with the first stable GPS position obtained when surfacing. Care has
been taken to emerge vertically so that the error associated with emerging is negligible.

We perform the experiments running the intensive computation in a remote computer.
We communicate with the Raspberry Pi using TCP/UDP protocols through the Ethernet of
the umbilical cable. We also use this computer for monitoring, configuring, and operating
the underwater vehicle. This computer installs an Intel Core i7 running at 3.3 GHz. We
configure the image acquisition with 480 × 360 resolution, which allows us to compute
15 frames per second in the remote computer. In particular, vision processing takes
about 25 milliseconds on average. Concerning the localization approach, it takes about
three milliseconds per update. This timing is tessellating the variable of interest using
1000 samples. By adjusting this timing allows us to perform the localization update every
150 milliseconds.

5.1. Experiments in the Swimming Pool Scenario

The experiments in the swimming pool consist of the submerged navigation of the
underwater vehicle performing inspection tasks. Figure 12 shows the swimming pool sce-
nario and the external vision system designed to provide the ground-truth. The swimming
pool has six meters in diameter and has different objects simulating working conditions
for inspection tasks. The shallow depth of the swimming pool is enough to degrade the
GNSS signal. Thus, the particle filter becomes mandatory for underwater navigation. The
vehicle uses the mechanical sonar scanner Ping360 to perceive arcs corresponding to the
swimming pool walls. We use the standard camera of the Sibiu Pro platform to detect the
Aruco markers. We use the sensor modeling techniques presented above to estimate the
features surrounding the vehicle during underwater navigation. We fuse these features
with the motion estimation to calculate the vehicle belief using the particle filter.

(a) (b)

Figure 12. (a) Structured swimming pool scenario and (b) ground-truth estimation system.

Figure 13 shows the path followed by the vehicle in underwater navigation performing
inspection tasks. The brown circle represents the ground-truth position estimation using
the external vision system, and the brown segment-lines the connection between location
estimations. The green circle represents the location estimation using the corresponding
sensory information. The pink line segments represent the connection between position
estimates with the navigation system of the vehicle. We evaluate the estimated path
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followed by the immersed vehicle in three situations: navigation using dead-reckoning,
using the vision markers, and using the sonar scanner observations. We can observe that
the ground-truth is similar for the three cases since we represent the same experiment
using different sensory information.

The dead-reckoning experiment only uses the INS of the Vectornav VN-200 navigation
system and the DVL-1000 speed estimations. We can observe that the path followed using
dead-reckoning approximates the route followed by the underwater vehicle. However,
the position error is cumulative or compounding over time using such an approach. Thus,
we can observe that the underwater vehicle goes through the pipe in the structured envi-
ronment because the estimated position degrades over time. We also have noted that the
correlation coefficient σ grows unbounded during the navigation. We only introduce three
Aruco markers in the structured environment, which are detected sporadically during the
navigation. We represent these Aruco markers using empty squares with the correspond-
ing ID. These sporadic observations allow us to correct the position estimation and the
uncertainty of the vehicle belief represented by the correlation coefficient σ, as shown in
Figure 13(middle). However, we can observe that the position estimation compared to the
ground-truth is of the order of half a meter. We have to remark that we can enhance the
accuracy of position estimation by adding vision markers. The Video S1 in the Supple-
mentary Materials shows the navigation and position estimates using the Aruco markers.
Finally, we can observe that the best position estimation is obtained using the features
from the sonar scanner observations, in particular the circumference arcs obtained using
the circular model fitting presented above. The representation surrounding the vehicle
during the underwater navigation allows us to feed the localization approach with coherent
information that allows us to track the vehicle with a high degree of accuracy. We can also
observe that the estimation σ of the uncertainty of vehicle location is kept under half a
meter during the navigation. This information is coherent with the location estimation
provided by the ground-truth.

5.2. Experiments in the Dock Harbor Scenario

The experiments in the harbor dock consist of the submerged navigation of the
underwater vehicle performing inspection tasks. In particular, we follow the dock harbor
wall to perform such inspection tasks [34]. Figure 14a shows the satellite image of the dock
harbor scenario. Figure 14b depicts a representation of the environment around the vehicle
using the fuzzy segment representation. We update the belief of the variable of interest using
the speed estimates provided by the INS of the Vectornav VN-200 navigation system and
the DVL-1000. The vehicle uses the mechanical sonar scanner Ping360 to perceive the walls
of the dock harbor. We use the sensor modeling techniques presented above to perceive
the features surrounding the vehicle during underwater navigation. We fuse these features
with the motion estimation to estimate the vehicle belief and the location uncertainty using
the particle filter.

In this scenario, we do not have an external system providing the ground-truth. We
only can evaluate the accuracy of the localization when the vehicle emerges. We do it
by comparing the GPS location with the position estimation in submerged navigation.
As previously mentioned, we initialize the structured representation of the environment
from the last GPS estimation using UTM coordinates, and when the vehicle emerges, we
transform the estimated underwater position in the structured local representation to UTM
coordinates again. Figure 15 shows the position estimation of the submerged vehicle
during underwater navigation. The yellow line segments represent the connection of
position estimates using the GPS information, whereas the pink line segments represent the
connection between position estimates in submerged conditions. The localization system
performs this switch using the barometer readings, as shown in Figure 11.
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Dead-reckoning using VectorNav and DVL
Position uncertainty

Localization using vision markers
Position uncertainty

Localization using sonar perceptions
Position uncertainty

Figure 13. Position estimation uncertainty using (top) dead-reckoning, (middle) vision markers, and (bottom) sonar
perceptions in the structured swimming pool scenario.

Figure 15(top) shows the path followed using dead-reckoning with the speed esti-
mation provided by the INS of the VectorNav and DVL-1000. We can observe that the
correlation coefficient σ representing the location uncertainty grows unbounded during
the navigation. We also note that the position estimation is drifting further and further
away from the wall that it is inspecting. When the vehicle emerges, we observe that the
GPS position is at a distance of more than five meters from the location estimated by the
underwater navigation system. The drastic changes of the GPS position estimates are
attributed to the initialization of the Kalman filters of the Vectornav VN-200 navigation
system. Figure 15(bottom) shows the path followed by the underwater vehicle using the
sonar scanner observations with the line fitting approach and the fuzzy segment represen-
tation. The representation around the underwater vehicle allows us to feed the localization
approach with coherent information, which allows us to track the vehicle with a high
degree of accuracy. We have to remark that a wall does not provide information to locate
the vehicle, but ensuring that the vehicle location is posed at the corresponding distance
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from the wall. For these reasons, the estimation σ of the uncertainty of vehicle position is
only reduced in one dimension. The localization algorithm would need more information
to perform some kind of triangulation to locate the vehicle. In any case, the position
estimated by the particle filter is located at a distance of less than one meter from the GPS
location when the underwater vehicle emerges.

(a) (b)

Figure 14. (a) Harbor dock scenario and (b) the fuzzy segment representation of the environment surrounding the vehicle.

Dead-reckoning using VectorNav and DVL
Position uncertainty

Localization using sonar perceptions
Position uncertainty

Figure 15. Position estimation uncertainty using (top) dead-reckoning and (bottom) particle-based localization system
sensing uncertain line segments in the harbor scenario.
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6. Conclusions and Future Works

We have presented the processing, modeling, and fusing of different underwater
sensor signals to provide a reliable representation for underwater localization in structured
environments. In particular, we have presented the feature extraction from the buffered
data of underwater observations using a camera and a mechanical sonar scanner. The
underwater sensor readings using these sensors are noisy and uncertain, and thus we
propose a mechanism to verify such measures by coherent consecutive and redundant data
observations, which are removed from the buffer by aging and disparity. We propagate
the uncertainty of such perceptions to the set of features surrounding the underwater
vehicle, which provides a coherent representation of the environment. We also update and
remove these features using the factors previously mentioned. This processing filters out
inconsistent information that can deteriorate the position estimations of the localization
approach. We use the extracted features from noisy underwater sensors to feed the update
stage of a particle filter localization method. However, we can also use the proposed sensor
modeling techniques with other localization approaches. We evaluate the underwater
sensor modeling with the accuracy of the localization system when the vehicle submerges.
The experimental results show significant accuracy improvements in comparison with dead-
reckoning underwater navigation. As future works, we plan to include acoustic sensor
readings in the proposed framework, fusing these measurements with the perceptions
using sonar and optical sensors. We also plan to estimate the location by combining a local
(tracking) and a global localization method. This will allows us to improve the accuracy
and robustness of the position estimation.

Supplementary Materials: The following are available at https://www.mdpi.com/1424-8220/21/4
/1549/s1, Video S1.
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